Oral Qual Transcript
 Anthony Zaleski
 December 7, 2015

My examiners arrived in the order $\mathbf{K} \rightarrow \mathbf{S} \rightarrow \mathbf{R} \rightarrow \mathbf{Z}$, with \mathbf{Z} (to my surprise) arriving last but still on time. The exam commenced at 10AM.

Disclaimer: These are, for the most part, not the examiners' exact words.
S:So, is there anything you'd like to start with?
ME: Not particularly. There are some topics I'd rather not be asked about, but I probably shouldn't mention those.[pause] Ok, how about experimental math?

Z : Some ODEs, for example $y^{\prime}=y$, are easy to solve exactly. But in many cases this is not possible. What are some ways to solve an ODE numerically?

ME: Well, there's Euler and Runge-Kutta. . .
Z : Good! Implement Euler's method in Maple code. [I write the first few lines.] Ok, good enough!

K : So can you draw a picture of what's going on? You know, there is a nicer way to write Euler's method. Why don't you integrate the ODE to represent $y(x+h)$?

ME: $y(x+h)=y_{0}+\int_{0}^{x+h} f(t, y(t)) d t$.
K : So now, what does Euler's method do? How could we get R-K from this integral equation?
ME: It approximates $\int_{x}^{x+h} f(t, y) d t$ by $f(x, y(x)) h$. Would R-K come from using Simpson's rule on the integral? [trails off...]

Z : So why is R-K usually better than Euler?
ME: Euler has local truncation error $O\left(h^{2}\right)$ and global truncation error $O(h)$, while R-K has l.t.e. $O\left(h^{5}\right)$ and g.t.e. $O\left(h^{4}\right)$.

Z: Write down the R-K method.
ME: The standard one? Ok. [starts to write]

Z : Good enough! Now, how could you derive this from scratch experimentally? [I start to explain the Butcher tableau for a general R - K method, symbolically solving in h and getting coefficients up to some order, etc...] Ok good enough!
\mathbf{R} : So suppose y is a vector and f is a matrix. Can you generalize these methods to solve $y^{\prime}=f$? [I mumble something about Euler being straightforward to generalize and being unsure about $R-K$.] Ok, I was just curious!

Z : Now, what is a stock option? [I define it.] How is the fair price of an option defined? [I talk about no arbitrage and a one-period binary model.] How could we derive the Black-Scholes formula from this? [I talk about looking at an n-stage binary model and letting $n \rightarrow \infty$.] Ok, I'm finished!
$\mathbf{R}:[m u m b l e s ~ s o m e t h i n g ~ a b o u t ~ B e r n i e ~ S a n d e r s ~ a n d ~ s t o c k ~ m a r k e t s] ~$

S : I see Markov chains are on your syllabus. Define a Markov chain.
ME: [taken off guard because I'd expected \boldsymbol{S} to ask about the combinatorics portion] Well. . . it's a stochastic process. Discrete in time. And space. It has a transition matrix. . .

S : Ok. What can you say about the entries of this matrix? What is a steady state π ? When might $\lim _{n} A^{n} p$ not approach π ? [This is the question that gave me the most trouble and embarrassment-not because it was hard, but because I hadn't prepared for this. After lots of awkward silences and ample hints from \boldsymbol{S} and \boldsymbol{K}, I arrived at a somewhat acceptable answer. After this, \boldsymbol{S} asked a question regarding the digraph corresponding to the transition matrix of such a Markov chain, but I forget the details. I was relieved when \boldsymbol{S} said] Ok, enough of that. Let's move on to combinatorics.

Suppose I have a k-uniform hypergraph with $\leq m$ edges. Derive a condition on k and m for there to exist a 2-coloring on the vertices with no edge monochromatic.

ME: Consider a random coloring of the vertices... [the rest goes smoothly]
S : Ok good. Now suppose we replace the restriction on the size of the hypergraph with the condition that each vertex belongs to $\leq r$ edges. Derive an analogous condition.

ME: Again, we choose a random coloring. This time we use the Lovász local lemma... [again, no problems here]

S : Good. I have one more. Suppose $P_{1}=\left\{A_{1}, \ldots A_{m}\right\}$ and $P_{2}=\left\{B_{1}, \cdots B_{m}\right\}$ are k-uniform partitions of $[n]$. Is there a permutation σ of $[n]$ s.t. $A_{i} \cap B_{\sigma(i)} \neq \emptyset$ $\forall i \in[n]$?

ME: Let's define a bipartite graph from $P_{1} \rightarrow P_{2}$ with edges joining intersecting sets. We want a perfect matching. By König's theorem, if we can show $\tau=m$, we're good. Assume $\tau<m \ldots$ [With some help, I eventually get $>m$ disjoint k-sets in [mk], a contradiction.]

S: Ok, I'm done. It looks like the time is almost up.
Z : I have one more question! Suppose I am a writer of stories. I have ten stories, and I want to publish them in as many collections as possible. However, I don't want any collection to be contained in any other one. What is the most collections I can publish? [This was probably the second most embarrassing part of the exam. I spent a long time muttering, even mentioning inclusionexclusion.] Ok maybe it's my fault. This uses a famous theorem that I see on your syllabus. But this guy has many theorems; maybe this is a different one.
\mathbf{S} : No, no! Z is right. This is a good problem. Why don't you suppose there are four stories? Write the subsets in lexicographical order.

ME: [embarrassed] Oh! Sperner's theorem! The answer is $\binom{10}{5}$.
Z : Very good!
S : And can you prove Sperner's theorem?
ME: Can I assume the LYM inequality?
S : Ok, how would you prove it from that? [I show it in one line.] All right, now see if you can prove LYM.

ME: [rushing because time is nearly up] Consider a random maximal antichain. . . [standard proof]

S : Ok good enough! And you did it in three minutes. [to the others] Anything else?

K : One quick question. Going back to Markov chains - can you show that every Markov matrix has 1 as an eigenvalue?

ME: ...
K : You can solve this algebraically, but I think \mathbf{Z} would have a different approach...

Z: Can you find one vector such that $A x=x$?
ME: $(1, \ldots, 1)^{T}$.
K : Good enough!
*

Dr. Z. asked me to leave the room. After a minute or two, I was invited back in by Dr. Z., who told me I'd passed. I shook hands with my committee, and they signed the paperwork.
"Now you can relax," Dr. Saks said. I agreed!

