(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 21055, 566] NotebookOptionsPosition[ 20128, 532] NotebookOutlinePosition[ 20535, 549] CellTagsIndexPosition[ 20492, 546] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[TextData[{ "This notebook has been created on 4 December by Sergei K. Suslov, Arizona \ State University, for simple ", StyleBox["Mathematica", FontSlant->"Italic"], " simulations to accompany the paper\n", StyleBox["\[OpenCurlyDoubleQuote]On the Harmonic Oscillator Group\ \[CloseCurlyDoubleQuote] by R Lopez-Medina, SK Suslov and JM Vega-Guzman.", FontFamily->"Century", FontSize->18, FontColor->RGBColor[0., 0.5019607843137255, 0.5019607843137255]], "\n", StyleBox["See: http://arxiv.org/abs/1111.5569 \n", FontFamily->"Times New Roman", FontColor->RGBColor[1., 0., 0.]], StyleBox["\nEXAMPLE 1\nThe simplest (dynamic ground state) wavefunction has \ the form:", FontFamily->"Times New Roman", FontColor->RGBColor[0., 0., 1.]] }], "Text", CellFrame->{{0, 0}, {2, 0}}, CellChangeTimes->{ 3.531767351953125*^9, {3.5319975871296625`*^9, 3.5319976086265*^9}, { 3.5319976874690385`*^9, 3.5319976983422575`*^9}, {3.531997742459135*^9, 3.5319977530515537`*^9}, {3.531997890409795*^9, 3.531997899457811*^9}, { 3.5319987824514446`*^9, 3.5319987851190495`*^9}, {3.5320076772811546`*^9, 3.532007696703189*^9}, {3.532007729744047*^9, 3.5320077498992825`*^9}, { 3.532007861377078*^9, 3.5320079030759516`*^9}, {3.5320080462218027`*^9, 3.532008058124624*^9}, {3.5320081273419456`*^9, 3.5320082270885205`*^9}, { 3.5320082642321863`*^9, 3.532008286509025*^9}, {3.5320085886347556`*^9, 3.532008601395578*^9}, {3.5320089717870283`*^9, 3.532008977169038*^9}, { 3.532009077773615*^9, 3.5320091203616896`*^9}, {3.5320099557275567`*^9, 3.5320099686287794`*^9}, {3.532010023010475*^9, 3.532010053305728*^9}, { 3.5320102524088783`*^9, 3.532010258227688*^9}, 3.5320108005314407`*^9, { 3.5320141643442855`*^9, 3.532014243280424*^9}, 3.5320143050253325`*^9, { 3.532014568790596*^9, 3.5320145812550178`*^9}, {3.5320146169166803`*^9, 3.53201462222069*^9}, {3.5320147278328753`*^9, 3.532014772760954*^9}, { 3.5320148053962116`*^9, 3.532014825270646*^9}, {3.5320148773747377`*^9, 3.5320149136604013`*^9}, 3.5320149518180685`*^9, 3.5320150924523153`*^9, { 3.532015272617032*^9, 3.532015281540248*^9}, {3.5320525174421453`*^9, 3.5320525551318116`*^9}, {3.5320527745957966`*^9, 3.5320528071842537`*^9}}, FontSize->14], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"\[CapitalPsi]", "[", RowBox[{"{", RowBox[{"x", ",", "t"}], "}"}], "]"}], "=", RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", "*", RowBox[{"(", RowBox[{ RowBox[{"x", "*", RowBox[{"Cos", "[", RowBox[{"2", "*", "t"}], "]"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], "*", RowBox[{"Sin", "[", RowBox[{"4", "*", "t"}], "]"}]}], "-", "t"}], ")"}]}], "]"}], "*", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{"1", "/", "2"}], ")"}]}], "*", RowBox[{ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{"2", "*", "t"}], "]"}]}], ")"}], "^", "2"}]}], "]"}]}]}], "\[LineSeparator]"}]], "Input", CellChangeTimes->{{3.532009129628106*^9, 3.532009166865371*^9}, { 3.5320093064856167`*^9, 3.5320093241604476`*^9}, {3.532009432221837*^9, 3.532009437198246*^9}, {3.5320096760502653`*^9, 3.532009709933525*^9}, { 3.5320098192585173`*^9, 3.5320098268245306`*^9}}, FontSize->14], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{"2", " ", "t"}], "]"}]}], ")"}], "2"]}], "+", RowBox[{"\[ImaginaryI]", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "t"}], "+", RowBox[{"x", " ", RowBox[{"Cos", "[", RowBox[{"2", " ", "t"}], "]"}]}], "-", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"Sin", "[", RowBox[{"4", " ", "t"}], "]"}]}]}], ")"}]}]}]]], "Output", CellChangeTimes->{{3.532009828119333*^9, 3.532009846636565*^9}, 3.5320100032764406`*^9, 3.532010275294118*^9, 3.532010523584154*^9, 3.5320110754926825`*^9, 3.532015011176173*^9, {3.5320169834206657`*^9, 3.5320170121091156`*^9}, 3.5320247141556406`*^9, 3.5320519061082716`*^9, 3.532052865060356*^9, 3.5320880555607677`*^9}, FontSize->14] }, Open ]], Cell[TextData[{ StyleBox["This wavefunction (which cannot be obtained by the separation of \ variables) does satisfy the time-dependent Schr", FontFamily->"Times New Roman", FontColor->RGBColor[0., 0., 1.]], "\[OTilde]", StyleBox["dinger equation for the harmonic oscillator. The corresponding \ eigenvalue problem for the quadratic invariant holds.", FontFamily->"Times New Roman", FontColor->RGBColor[0., 0., 1.]] }], "Text", CellFrame->{{0, 0}, {2, 0}}, CellChangeTimes->{ 3.531767351953125*^9, {3.5319975871296625`*^9, 3.5319976086265*^9}, { 3.5319976874690385`*^9, 3.5319976983422575`*^9}, {3.531997742459135*^9, 3.5319977530515537`*^9}, {3.531997890409795*^9, 3.531997899457811*^9}, { 3.5319987824514446`*^9, 3.5319987851190495`*^9}, {3.5320076772811546`*^9, 3.532007696703189*^9}, {3.532007729744047*^9, 3.5320077498992825`*^9}, { 3.532007861377078*^9, 3.5320079030759516`*^9}, {3.5320080462218027`*^9, 3.532008058124624*^9}, {3.5320081273419456`*^9, 3.5320082270885205`*^9}, { 3.5320082642321863`*^9, 3.532008286509025*^9}, {3.5320085886347556`*^9, 3.532008601395578*^9}, {3.5320089717870283`*^9, 3.532008977169038*^9}, { 3.532009077773615*^9, 3.5320091203616896`*^9}, {3.5320099557275567`*^9, 3.5320099686287794`*^9}, {3.532010023010475*^9, 3.532010053305728*^9}, { 3.5320100848021836`*^9, 3.5320101260330563`*^9}, {3.532010741890938*^9, 3.5320107514849544`*^9}, {3.5320108892487965`*^9, 3.532010919154049*^9}, { 3.5320522782469254`*^9, 3.5320523496482506`*^9}, {3.532052585115064*^9, 3.532052595769883*^9}, {3.532052845045521*^9, 3.5320528727979693`*^9}, { 3.5320880797408104`*^9, 3.532088098507643*^9}}, FontSize->14], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[CapitalPsi]", "=", RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", "*", RowBox[{"(", RowBox[{ RowBox[{"x", "*", RowBox[{"Cos", "[", RowBox[{"2", "*", "t"}], "]"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], "*", RowBox[{"Sin", "[", RowBox[{"4", "*", "t"}], "]"}]}], "-", "t"}], ")"}]}], "]"}], "*", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{"2", "*", "t"}], "]"}]}], ")"}], "^", "2"}]}], "/", "2"}], "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{"DT\[CapitalPsi]", "=", RowBox[{"D", "[", RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", "*", RowBox[{"(", RowBox[{ RowBox[{"x", "*", RowBox[{"Cos", "[", RowBox[{"2", "*", "t"}], "]"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], "*", RowBox[{"Sin", "[", RowBox[{"4", "*", "t"}], "]"}]}], "-", "t"}], ")"}]}], "]"}], "*", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{"2", "*", "t"}], "]"}]}], ")"}], "^", "2"}]}], "/", "2"}], "]"}]}], ",", "t"}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"DX\[CapitalPsi]", "=", RowBox[{"D", "[", RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", "*", RowBox[{"(", RowBox[{ RowBox[{"x", "*", RowBox[{"Cos", "[", RowBox[{"2", "*", "t"}], "]"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], "*", RowBox[{"Sin", "[", RowBox[{"4", "*", "t"}], "]"}]}], "-", "t"}], ")"}]}], "]"}], "*", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{"2", "*", "t"}], "]"}]}], ")"}], "^", "2"}]}], "/", "2"}], "]"}]}], ",", "x"}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"DXX\[CapitalPsi]", "=", RowBox[{"D", "[", RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", "*", RowBox[{"(", RowBox[{ RowBox[{"x", "*", RowBox[{"Cos", "[", RowBox[{"2", "*", "t"}], "]"}]}], "-", RowBox[{ RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}], "*", RowBox[{"Sin", "[", RowBox[{"4", "*", "t"}], "]"}]}], "-", "t"}], ")"}]}], "]"}], "*", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{"2", "*", "t"}], "]"}]}], ")"}], "^", "2"}]}], "/", "2"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "2"}], "}"}]}], "]"}]}]}], "}"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Schroedinger", "=", RowBox[{ RowBox[{"I", "*", "DT\[CapitalPsi]"}], "+", "DXX\[CapitalPsi]", "-", RowBox[{ RowBox[{"x", "^", "2"}], "*", "\[CapitalPsi]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{"QuadraticInvariant", "=", RowBox[{ RowBox[{"-", "DXX\[CapitalPsi]"}], "+", RowBox[{"2", "*", "I", "*", RowBox[{"Cos", "[", RowBox[{"2", "*", "t"}], "]"}], "*", "DX\[CapitalPsi]"}], "+", RowBox[{ RowBox[{"x", "^", "2"}], "*", "\[CapitalPsi]"}], "-", RowBox[{"2", "*", RowBox[{"Sin", "[", RowBox[{"2", "*", "t"}], "]"}], "*", "x", "*", "\[CapitalPsi]"}]}]}]}], "}"}], ";"}], "\[IndentingNewLine]", RowBox[{"Factor", "[", "%", "]"}], "\[IndentingNewLine]", RowBox[{"FullSimplify", "[", "%", "]"}]}], "Input", CellChangeTimes->{{3.5320246984620132`*^9, 3.5320247094600325`*^9}, 3.5320519411615334`*^9, {3.532051981628004*^9, 3.5320522381392546`*^9}, { 3.532052359523068*^9, 3.5320523638910756`*^9}}, FontSize->14], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t"}], "+", RowBox[{"\[ImaginaryI]", " ", "x", " ", RowBox[{"Cos", "[", RowBox[{"2", " ", "t"}], "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{"2", " ", "t"}], "]"}]}], ")"}], "2"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"4", " ", "t"}], "]"}]}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox[ RowBox[{"Cos", "[", RowBox[{"2", " ", "t"}], "]"}], "2"]}], "+", RowBox[{"Cos", "[", RowBox[{"4", " ", "t"}], "]"}], "+", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{"2", " ", "t"}], "]"}], "2"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{ RowBox[{"-", "\[ImaginaryI]"}], " ", "t"}], "+", RowBox[{"\[ImaginaryI]", " ", "x", " ", RowBox[{"Cos", "[", RowBox[{"2", " ", "t"}], "]"}]}], "-", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{"2", " ", "t"}], "]"}]}], ")"}], "2"]}], "-", RowBox[{ FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[{"Sin", "[", RowBox[{"4", " ", "t"}], "]"}]}]}]]}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox[ RowBox[{"Cos", "[", RowBox[{"2", " ", "t"}], "]"}], "2"], "+", SuperscriptBox[ RowBox[{"Sin", "[", RowBox[{"2", " ", "t"}], "]"}], "2"]}], ")"}]}]}], "}"}]], "Output", CellChangeTimes->{3.53201015668711*^9, 3.532010279038125*^9, 3.5320105280925617`*^9, 3.532011088984454*^9, 3.532015015731381*^9, 3.5320170216563325`*^9, 3.53202471930365*^9, 3.532051913237484*^9, 3.532052042514911*^9, 3.5320522093572044`*^9, 3.532052248482073*^9, 3.532052376199497*^9, 3.5320528783203793`*^9, 3.532088133966505*^9}, FontSize->14], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]], "Output", CellChangeTimes->{3.53201015668711*^9, 3.532010279038125*^9, 3.5320105280925617`*^9, 3.532011088984454*^9, 3.532015015731381*^9, 3.5320170216563325`*^9, 3.53202471930365*^9, 3.532051913237484*^9, 3.532052042514911*^9, 3.5320522093572044`*^9, 3.532052248482073*^9, 3.532052376199497*^9, 3.5320528783203793`*^9, 3.5320881341225057`*^9}, FontSize->14] }, Open ]], Cell[TextData[StyleBox["The probability density is given by", FontFamily->"Times New Roman", FontColor->RGBColor[0., 0., 1.]]], "Text", CellFrame->{{0, 0}, {2, 0}}, CellChangeTimes->{ 3.531767351953125*^9, {3.5319975871296625`*^9, 3.5319976086265*^9}, { 3.5319976874690385`*^9, 3.5319976983422575`*^9}, {3.531997742459135*^9, 3.5319977530515537`*^9}, {3.531997890409795*^9, 3.531997899457811*^9}, { 3.5319987824514446`*^9, 3.5319987851190495`*^9}, {3.5320076772811546`*^9, 3.532007696703189*^9}, {3.532007729744047*^9, 3.5320077498992825`*^9}, { 3.532007861377078*^9, 3.5320079030759516`*^9}, {3.5320080462218027`*^9, 3.532008058124624*^9}, {3.5320081273419456`*^9, 3.5320082270885205`*^9}, { 3.5320082642321863`*^9, 3.532008286509025*^9}, {3.5320085886347556`*^9, 3.532008601395578*^9}, {3.5320089717870283`*^9, 3.532008977169038*^9}, { 3.532009077773615*^9, 3.5320091203616896`*^9}, {3.5320099557275567`*^9, 3.5320099686287794`*^9}, {3.532010023010475*^9, 3.532010053305728*^9}, { 3.5320100848021836`*^9, 3.5320101260330563`*^9}, {3.532010312359783*^9, 3.5320103410638337`*^9}}, FontSize->14], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Rho]", "[", RowBox[{"{", RowBox[{"x", ",", "t"}], "}"}], "]"}], "=", RowBox[{"Exp", "[", RowBox[{"-", RowBox[{ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{"2", "*", "t"}], "]"}]}], ")"}], "^", "2"}]}], "]"}]}]], "Input", CellChangeTimes->{ 3.532010205218795*^9, 3.5320102845605345`*^9, {3.5320103669130793`*^9, 3.532010377209097*^9}}, FontSize->14], Cell[BoxData[ SuperscriptBox["\[ExponentialE]", RowBox[{"-", SuperscriptBox[ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{"2", " ", "t"}], "]"}]}], ")"}], "2"]}]]], "Output", CellChangeTimes->{3.532010286588538*^9, 3.5320103899855194`*^9, 3.53201053274137*^9, 3.532011092771671*^9, 3.532015019880988*^9, 3.5320170254315395`*^9, 3.5320247458860965`*^9, 3.5320528865883937`*^9, 3.532088152936139*^9}, FontSize->14] }, Open ]], Cell[TextData[StyleBox["Please run the following (one and two period) \ animations for this \[OpenCurlyDoubleQuote]dynamic ground state\ \[CloseCurlyDoubleQuote]:", FontFamily->"Times New Roman", FontColor->RGBColor[0., 0., 1.]]], "Text", CellFrame->{{0, 0}, {2, 0}}, CellChangeTimes->{ 3.531767351953125*^9, {3.5319975871296625`*^9, 3.5319976086265*^9}, { 3.5319976874690385`*^9, 3.5319976983422575`*^9}, {3.531997742459135*^9, 3.5319977530515537`*^9}, {3.531997890409795*^9, 3.531997899457811*^9}, { 3.5319987824514446`*^9, 3.5319987851190495`*^9}, {3.5320145219437137`*^9, 3.5320145247049184`*^9}, {3.532014974110508*^9, 3.5320149876045313`*^9}, { 3.5320151446500072`*^9, 3.532015159392033*^9}, {3.5320152358633676`*^9, 3.532015241557378*^9}, 3.5320234672215867`*^9, {3.532052702882471*^9, 3.532052724426109*^9}}, FontSize->14], Cell[BoxData[ StyleBox[ RowBox[{"ListAnimate", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"-", SuperscriptBox[ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{ FractionBox["3.1415926", "1000"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "T"}], ")"}]}], "]"}]}], ")"}], "2"]}]], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "3.5"}], ",", "3.5"}], "}"}], ",", RowBox[{"Filling", "\[Rule]", "Bottom"}]}], "]"}], ",", RowBox[{"{", RowBox[{"T", ",", "2001"}], "}"}]}], "]"}], "]"}], FontSize->14]], "Input", CellChangeTimes->{{3.5320214848181057`*^9, 3.5320214911049166`*^9}, { 3.5320220110054293`*^9, 3.532022027822259*^9}, {3.5320221603756914`*^9, 3.5320221610464926`*^9}, {3.5320224348425736`*^9, 3.532022435513375*^9}, { 3.5320416848567104`*^9, 3.5320417034051433`*^9}, {3.5320418322613697`*^9, 3.532041840981785*^9}}, FontSize->14], Cell[BoxData[ StyleBox[ RowBox[{"ListAnimate", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"-", SuperscriptBox[ RowBox[{"(", RowBox[{"x", "-", RowBox[{"Sin", "[", RowBox[{ FractionBox["3.1415926", "1000"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "T"}], ")"}]}], "]"}]}], ")"}], "2"]}]], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "3.5"}], ",", "3.5"}], "}"}], ",", RowBox[{"Filling", "\[Rule]", "Bottom"}]}], "]"}], ",", RowBox[{"{", RowBox[{"T", ",", "4001"}], "}"}]}], "]"}], "]"}], FontSize->14]], "Input", CellChangeTimes->{{3.532017274922777*^9, 3.532017312534444*^9}, { 3.532021636121171*^9, 3.5320216872424603`*^9}, {3.532022314254362*^9, 3.5320223260167823`*^9}, {3.532022430146965*^9, 3.5320224307865667`*^9}, 3.532042120643476*^9}, FontSize->14], Cell[TextData[StyleBox["(It is rotating, sorry oscillating!)", FontFamily->"Times New Roman", FontColor->RGBColor[0., 0., 1.]]], "Text", CellFrame->{{0, 0}, {2, 0}}, CellChangeTimes->{ 3.531767351953125*^9, {3.5319975871296625`*^9, 3.5319976086265*^9}, { 3.5319976874690385`*^9, 3.5319976983422575`*^9}, {3.531997742459135*^9, 3.5319977530515537`*^9}, {3.531997890409795*^9, 3.531997899457811*^9}, { 3.5319987824514446`*^9, 3.5319987851190495`*^9}, {3.5320145219437137`*^9, 3.5320145247049184`*^9}, {3.532014974110508*^9, 3.5320149876045313`*^9}, { 3.5320151446500072`*^9, 3.532015159392033*^9}, {3.5320152358633676`*^9, 3.532015241557378*^9}, {3.5320182740889325`*^9, 3.532018302356182*^9}, { 3.532052950064905*^9, 3.5320529542925124`*^9}}, FontSize->14] }, WindowSize->{996, 730}, WindowMargins->{{128, Automatic}, {Automatic, 14}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (November 7, 2010)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[557, 20, 2281, 41, 141, "Text"], Cell[CellGroupData[{ Cell[2863, 65, 1152, 34, 52, "Input"], Cell[4018, 101, 981, 27, 39, "Output"] }, Open ]], Cell[5014, 131, 1696, 29, 59, "Text"], Cell[CellGroupData[{ Cell[6735, 164, 4592, 134, 172, "Input"], Cell[11330, 300, 2341, 67, 78, "Output"], Cell[13674, 369, 436, 8, 32, "Output"] }, Open ]], Cell[14125, 380, 1143, 18, 40, "Text"], Cell[CellGroupData[{ Cell[15293, 402, 462, 16, 31, "Input"], Cell[15758, 420, 470, 12, 36, "Output"] }, Open ]], Cell[16243, 435, 862, 15, 40, "Text"], Cell[17108, 452, 1153, 31, 46, "Input"], Cell[18264, 485, 1071, 30, 46, "Input"], Cell[19338, 517, 786, 13, 40, "Text"] } ] *) (* End of internal cache information *)