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Abstract. Let V be a 6-dimensional complex vector space with an involution σ of trace 0, and
let W ⊆ Sym2 V ∨ be a generic 3-dimensional subspace of σ-invariant quadratic forms. To these
data we can associate an Enriques surface as the σ-quotient of the complete intersection of the
quadratic forms in W . We exhibit noncommutative Deligne-Mumford stacks together with Brauer
classes whose derived categories are equivalent to those of the Enriques surfaces. This provides a
more accessible treatment of [16, Theorem 6.16].

1 Introduction

Derived categories are a fascinating invariant of algebraic varieties. Two algebraic varieties are
called derived equivalent if their bounded derived categories of coherent sheaves are equivalent as
triangulated categories [12]. Bondal and Orlov showed that a smooth projective variety X, whose
KX or −KX is ample, is determined by its bounded derived category Db(Coh−X) [1], so in these
cases derived equivalence implies isomorphism. However in the case when KX = 0 (Calabi-Yau)
there are multiple constructions of non-trivial derived equivalence [2]. The notion is also related to
string theory: for Calabi-Yau varieties X,Y and Z, homological mirror symmetry predicts that if
X and Y are both “mirror” to Z (we say that X and Y are a double mirror pair), then X and Y
are derived equivalent.

Many of the examples come from the Homological Projective Duality of Kuznetsov [15]. In these
examples, the derived partners of a Calabi-Yau variety can be slightly non-commutative and involve
a DM-stack structure or a Brauer class. Of particular interest to us is the example of complete
intersections of quadrics [14], especially in dimension 2, which we describe briefly here: for V = C6

and W ⊆ S2V ∨ a generic dimension 3 subspace homogeneous quadratic forms on V such that the
intersection X of quadrics parametrized by W is a complete intersection, there exists a Brauer
class α on PW constructed via Clifford algebras such that the derived category of sheaves on PW
twisted by α is equivalent to the derived category of X:

Db(Coh−PW, α) # Db(Coh−X).

Borisov and Li proposed a toric framework to generalize the above construction. In particular, they
argued the existence of a derived partner of Enriques surfaces (see [3, Section 9.2]), making use
of the fact that all complex Enriques surfaces can be obtained as a quotient of (2, 2, 2)-complete
intersection in P5 by a fixed-point-free involution [7].
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In this paper, we look into the case of Enriques surfaces in more details and aim to prove 2
main theorems:

Theorem 2.8. There exists a Brauer class α of order 2 on Y such that there is an equivalence:

Db(Coh−Y ,α) # Db(Coh−X).

Theorem 2.12. There exists a Brauer class α̃ of order 2 on Y /Z2 such that there is an equivalence:

Db(Coh−(Y /Z2), α̃) # Db(Coh−(X/σ)).

After that, we will construct the geometric realization of the Brauer classes as Severi-Brauer vari-
eties over the stacks Y and Y /Z2.

Structure of the paper. In section 2 we define the notations and list some properties of the quotient
stacks involved. In section 3 we define the Brauer classes in terms of Clifford algebras and provide
the proof of the main theorems. In section 4 we will construct the associated Severi-Brauer varieties
as geometric realizations of the Brauer classes. In section 5 we discuss further research directions
and open problems.

Acknowledgements. We thank Alexander Kuznetsov, Daniel Krashen and Franco Rota for insight-
ful suggestions and discussions. We note that the main results of this paper have also appeared in
[16], although our setup is more explicit. We do not know whether our equivalence of categories is
the same as that of [16].

2 Quotient stacks associated to the K3 and Enriques surfaces

In this section we define all of the schemes and stacks that we will be using in the paper, and fix
our notations in the process.

Definition 2.1. Let V be a 6-dimensional complex vector space with coordinates x±1 , x
±
2 , x

±
3

equipped with an involution σ that fixes x+i and sends x−i $→ −x
−
i . Let W ⊆ S2V ∗ be a general

dimension 3 subspace of homogeneous quadratic forms which are invariant under the involution.
Each quadratic form q in W defines a quadric in V . Let X ⊆ PV be the zero locus of the quadric
forms in W . Assume that X is a complete intersection of 3 quadrics q1, q2, q3 in W . Then X
is a K3 surface. If we take the quotient of X by the involution σ on V , assuming σ acts freely
on X, we obtain an Enriques surface X/σ. (All complex Enriques surfaces can be constructed
using this process [7].) On the double mirror side, let u1, u2, u3 be coordinates on W ∼= C3 so that
every quadratic equation q in W can be written as

∑
i uiqi. As each q ∈ W is invariant under the

involution, q can be written as q = q+ + q− where each of q± involves x±i only, and the matrix
representation of q is a block matrix consisting of two 3× 3 matrices representing q+ and q−. Now
det(q) = 0 is a sextic equation on W in ui and the curve E it defines in PW is the union of two
cubic curves E+, E− respectively defined by

f± := det(q±).

As W is assumed to be a general subspace, and the loci for which the rank of q+ or q− drops to 1
is cut out by the 2 × 2 minors of their associated matrices, we see that all quadratic forms in W
have rank ≥ 4. !
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In the original setting, Kuznetsov considered the double cover Y of PW ramified over E, which is a
smooth sextic curve. In our case, the double cover would be singular because the ramification locus
E+ ∪ E− has nodes, so we want to look at desingularizations of it. There are at least 2 options:
blowing up at the nodes which gives nine (−2)-curves; or consider stack structures on the nodes.
In this paper, we go with the second route.

Now let us define the stacky resolution Y of the ramified double cover Y as a global quotient
stack. Define the following algebras over the coordinate ring C[u] := C[u1, u2, u3] of W :

A := C[u1, u2, u3, y+, y−]/〈y
2
+ − f+, y

2
− − f−〉,

B := C[u1, u2, u3, y]/〈y
2 − f+f−〉.

They are related by the map B → A sending y $→ y+y−. Next, define group actions of C∗
λ, C

∗
t := C∗

on A and B respectively:

λ · (u1, u2, u3, y+, y−) := (λ2u1,λ
2u2,λ

2u3,λ
3y+,λ

3y−),

t · (u1, u2, u3, y) := (tu1, tu2, tu3, t
3y),

where we added subscripts λ and t under the groups to distinguish two different C∗-actions. The
two actions are related by the map C∗

λ → C∗
t where λ $→ t = λ2, which is compatible with the map

B → A. Passing to the quotient stacks, we obtained a map

[(SpecA\0)/C∗
λ]→ [(SpecB\0)/C∗

t ].

The C∗
t -action on the ui coordinates is just the scaling action on the projective space PW . There

are N-gradings on A and B corresponding to the two C∗-actions, explicitly:

A :

{
u1, u2, u3 : degree 2

y+, y− : degree 3
and B :

{
u1, u2, u3 : degree 1

y : degree 3
.

Then the ramified double cover Y → PW can be realized as ProjB → PW .

Remark 2.2. The algebra A cannot be made into a graded algebra over C[u] that respects the
natural grading of ui’s in PW (i.e. ui’s have degree 1), because the relations in A will not be
homogeneous.

Here and for the remainder of the paper, we abbreviate

SpecA\0 := (SpecA) \ {(u1, u2, u3) = 0} = (SpecA) \ {(u1, u2, u3, y+, y−) = 0},

and do the same to W\0 etc. The ui coordinates will often be collectively referred as u. We first
explore the smoothness conditions on SpecA\0.

Proposition 2.3. SpecA\0 is smooth if and only if E+, E− are smooth and intersect transversely.

Proof. E+, E− are smooth means that their Jacobians [∂f+/∂x
±
i ] and [∂f−/∂x

±
i ] are non-vanishing

on themselves, and E+ intersects E− transversely means that the 2× 6 matrix



∂f+
∂x+

1

∂f+
∂x+

2
. . . ∂f+

∂x−

3
∂f−
∂x+

1

∂f−
∂x+

2
. . . ∂f−

∂x−

3




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has rank 2 at the points of E+ ∩E−. The Jacobian for 〈y2+ − f+, y2− − f−〉 is the 2× 8 matrix




− ∂f+

∂x+
1
− ∂f+

∂x+
2

. . . − ∂f+
∂x−

3
2y+ 0

− ∂f−
∂x+

1
− ∂f−

∂x+
2

. . . − ∂f−
∂x−

3
0 2y−





so it has rank 2 at the points of PW outside of E+ ∪ E− because of the second block matrix.
Looking at the first block matrix, we see that it has rank 2 at the points of E+∪E− precisely when
E+, E− are smooth and intersect transversely.

Proposition 2.4. The C∗
λ-action on SpecA\0 has stabilizer groups at a point (u, y±):

{
trivial if y+ .= 0 or y− .= 0,

Z2 if y+, y− = 0.

Proof. To compute the stabilizer, we require that

(λ2u1,λ
2u2,λ

2u3,λ
3y+,λ

3y−) = (u1, u2, u3, y+, y−),

so λ must be ±1 by looking at the ui’s. Then λ = −1 fixes (u, y±) iff y+ = y− = 0.

Definition 2.5. Let Y be the quotient stack [ (SpecA\0) /C∗
λ ].

Proposition 2.6. Y is a stacky resolution of Y , and Y is its coarse moduli space. Y has Z2-stack
structure at the 9 intersection points of E+ and E−, and ordinary scheme points elsewhere.

Proof. SpecA\0 is a smooth scheme, so by definition Y = [(SpecA\0)/C∗
λ] is a smooth stack, and

the second statement is just a restatement of the last proposition. Next, giving a point in Y over
C is equivalent to giving a map C∗

λ → SpecA\0 that is C∗
λ-equivariant, which is determined by

the image of 1 ∈ C∗
λ. If the image is not one of the intersection points, then it is of the form

(u1, u2, u3, y+, y−) where y2± = f±(u). So we have a bijection of C-points of Y and Y outside of
E+∪E−, and a map of smooth schemes bijective on points is an isomorphism, showing that Y → Y
is a birational map. Y being the coarse moduli space of Y follows from the fact that, for a graded
C-algebra R, the GIT quotient (SpecR\0)//C∗ is the coarse moduli space of [(SpecR\0) /C∗], see
[11] for example.

A common approach to non-commutative algebraic geometry focuses on the abelian categories of
coherent sheaves and the corresponding derived categories.

Definition 2.7. (Kuznetsov) Let Y be an algebraic variety and B be a locally free sheaf of algebras
on Y of finite rank as OY -module. Then the category of coherent sheaves Coh−(Y,B) on the
noncommutative algebraic variety (Y,B) is defined to be the category of coherent sheaves of right
B-modules on Y , and Db(Coh−Y,B) is defined to be the bounded derived category of Coh−(Y,B).

Of particular interest is the case when B is a sheaf of Azumaya algebras on Y , which encodes a
Brauer class.

There is another definition by Cǎldǎraru based on twisted sheaves, see [2, Definition 1.2.1]. Both
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definitions naturally extend to the case where Y is an algebraic stack by pulling back to a scheme
cover.

Having stated all the relevant definitions, we can state our first main result in more details, which
is the analog of [14] for Y and K3 surface X:

Theorem 2.8. There exists a Brauer class α of order 2 on Y such that there is an equivalence:

Db(Coh−Y ,α) # Db(Coh−X).

The Brauer class α will be constructed in terms of Clifford algebras in Section 3, and the proof of
Theorem 2.8 will be provided there after all relevant definitions are given.

Our next goal is to incorporate the Enriques involution on the side of X, and we will take in-
spiration from Prof. Borisov’s and Zhan Li’s result, which suggests the presence of a (2, 2)-root
stack. We can construct another quotient stack with Z2-stack structure on each of the curves
E± except the intersections and (Z2 × Z2)-stack structure at their intersections. We observe that
−1 ∈ C∗

λ already acts as (−1,−1) on the pair (y+, y−), so we define the group G as follows:

Definition 2.9. Let G := Z2 × C∗
λ and its action on A to be:

(±1,λ) · (u0, u1, u2, y+, y−) = (λ2u0,λ
2u1,λ

2u2,λ
3y+,±1 · λ3y−),

and let Y /Z2 denote the quotient stack [ (SpecA\0) /G ].

We observe that the extra Z2-action together with −1 ∈ C∗
λ generate a Z2 × Z2. Note that the

selection of the Z2-action specifies a special role for y−.

Proposition 2.10. The G-action on SpecA\0 has stabilizer group at a point (u, y±):






trivial if y+, y− .= 0,

Z2 if exactly one of y+, y− = 0,

Z2 × Z2 if y+, y− = 0.

Proof. Assume (u0, u1, u2, y+, y−) .= 0 is a fixed point of (s,λ) ∈ G. Again this forces λ = ±1. We
can then list all the cases:






s = 1, λ = 1 if y+, y− .= 0,

(s,λ) = (1,−1) or (−1, 1) if y+ = 0, y− .= 0,

s = ±1, λ = 1 if y+ .= 0, y− = 0,

s = ±1, λ = ±1 if y+, y− = 0.

Hence the stabilizer groups are the subgroups {1} × Z2, Z2 × {1} and Z2 × Z2 of G.

As we have the map SpecA\0 → W\0 and the group actions are compatible, we obtain a map
Y /Z2 → [(W\0) /C∗

t ]→ PW of stacks.

Proposition 2.11. Y /Z2 is the (2, 2)-root stack over PW branched over (E+, E−) in the sense of
Cadman [5]. In particular, Y /Z2 → PW is a birational map.
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Proof. We will use Cadman’s definition in [5], in which the root stack is denoted by PW(E+,E−), (2,2)

in Cadman’s notation. By definition the root stack R := PW(E+,E−), (2,2) is the fiber product

R

!!!!!
!!!

!!!
!!!

!!!

""""
"""

"""
"""

"

PW = [(W\0)/C∗
t ]

####
###

###
###

#
[C2/(C∗

λ)
2]

$$$$
$$
$$
$$
$$

[C2/(C∗)2]

so it can be identified with [ (W\0)×C2 C2 / C∗
t ×(C∗)2 (C

∗
λ)

2 ], where the fiber product of the groups
is

C
∗
t ×(C∗)2 (C

∗
λ)

2 = {(t,λ1,λ2) : t
3 = λ2

1 = λ2
2} ⊆ C

∗
t × C

∗
λ × C

∗
λ

via the maps

t ∈ C∗
t
%

####
###

###
###

##
(λ1,λ2) ∈ (C∗

λ)
2

&

%%'''
'''

'''
'''

'''

(t3, t3), (λ2
1,λ

2
2) ∈ (C∗)2

and can be identified with {(
λ1

λ2
,
λ1

t

)}
= Z2 × C

∗ # G.

The maps of the underlying schemes are

u ∈W\0
(

&&))
)))

)))
)))

)))
)

(a1, a2) ∈ C2
&

''''''
'''

'''
'''

'''

(f+(u), f−(u)), (a21, a
2
2) ∈ C2

so it is clear that their fiber product is (W\0)×C2 C2 = SpecA.

Our second main result is:

Theorem 2.12. There exists a Brauer class α̃ of order 2 on Y /Z2 such that there is an equivalence:

Db(Coh−(Y /Z2), α̃) # Db(Coh−(X/σ)).

Again, elaborations and proof of Theorem 2.12 will be provided in Section 3.
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Remark 2.13. The relations of the schemes and stacks above (and some addditional ones) can be
summarized in the diagram:

SpecA\0

2:1

(( [−/C∗

λ
]

"""
""

""
""

""
""

""
""

""
""

""
""

""
""

""
""

""
""

""
"

[ (SpecA\0) / {1} × Z2 ]

((
2:1

''****
****

****
****

****
****

**

[−/C∗

t ]
))+++

++++
++++

++++
++++

++++
++++

+

[ (SpecA\0) /Z2 × Z2 ]

coarse moduli

((
[−/C∗

t ]
**+++

++++
++++

++++
++++

++++
+++

SpecB\0

'' ))

Y = [ (SpecA\0) / {1} × C∗
λ ]

coarse moduli

((
2:1

++****
****

****
****

****
****

****

W\0

[−/C∗

t
]

**+++
++++

++++
++++

++++
++++

++++
++++

++ Y /Z2 = [ (SpecA\0) /G ]

coarse moduli

((

Y = ProjB

2:1

++,,,,
,,,,

,,,,
,,,,

,,,,
,,,,

,,,,
,,,,

PW

3 Clifford Algebras

In this section, we will define the Brauer classes α and α̃ appearing in Theorem 2.8 and 2.12 in
terms of Clifford algebras and provide the proofs to the theorems. For the sake of readability, we
shall first prove the equivalence of categories, namely that

Db(Coh−Y , α) # Db(Coh−X),

and
Db(Coh−(Y /Z2), α̃) # Db(Coh−(X/σ))

in Propositions 3.9 and 3.10. After that, we shall tackle the implicit statements that the α and α̃
defined are indeed sheaves of Azumaya algebras over Y and Y /Z2 respectively, thus they represent
Brauer classes on the corresponding spaces.

We start by defining several Clifford algebras of interest. In Kuznetsov’s main theorem, the Brauer
class is defined by means of a sheaf of even parts of Clifford algebras. In the presence of the invo-
lution σ in our setup, it is more natural to work with a variant of the full Clifford algebra, rather
than its even part. The full Clifford algebra will be denoted by

Cl := Cl(V ) = C[u]{v+1 , v
+
2 , v

+
3 , v

−
1 , v

−
2 , v

−
3 } / 〈v±i v

±
j + v±j v

±
i + 2qu(v

±
i , v

±
j ), v

+
i v

−
j + v−j v

+
i 〉.

Its odd and even parts will be denoted by Clodd and Clev respectively, as before. The two smaller
Clifford algebras on V+ and V− over C[u] will be denoted by

Cl+ := Cl(V+) = C[u]{v+1 , v
+
2 , v

+
3 } / 〈v+i v

+
j + v+j v

+
i + 2qu(v

+
i , v

+
j )〉,

Cl− := Cl(V−) = C[u]{v−1 , v
−
2 , v

−
3 } / 〈v−i v

−
j + v−j v

−
i + 2qu(v

−
i , v

−
j )〉.
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Note that Cl is the super tensor product of Cl+ and Cl− over C[u]. For reasons listed in the remark
below, we will mainly work with the ordinary tensor product

C̃l := Cl+ ⊗C[u] Cl−

= C[u]{v+1 , v
+
2 , v

+
3 , v

−
1 , v

−
2 , v

−
3 } / 〈v±i v

±
j + v±j v

±
i + 2qu(v

±
i , v

±
j ), v

+
i v

−
j − v−j v

+
i 〉.

In terms of relations, the only difference between Cl and C̃l is the anti-commutativity or commu-
tativity of the variables v+i and v−j .

Remark 3.1. Some reasons for working with the ordinary tensor product C̃l are listed here, and
they will be elaborated by the upcoming propositions:

(1) the original Clifford algebra Cl doesn’t contain A in the center, while C̃l does,

(2) there is a naturally defined grading on C̃l that is compatible with the C∗
λ-grading on A, which

is essential in the proof of the main theorem,

(3) the ordinary tensor product C̃l is more compatible with A = A+⊗A− as shown in Proposition
3.13, and is more readily understood than a Clifford algebra of corank 2,

(4) consideration of twisted sheaves in Section 4 suggests tensor products of Brauer classes.

Remark 3.2. Ordinary tensor products of Clifford algebras were named quasi Clifford algebras or
extended Clifford algebras and studied in [10, 17].

On top of the Clifford algebra structure, we will define a new N-grading to handle the grading
change between the C∗

λ-action and the C∗
t -actions. To handle the case of Enriques surfaces (Theorem

2.12), we also need to introduce another Z2-grading corresponding to the distinction of v+i and v−i
variables. Combined:

Proposition 3.3. The algebras Cl, Cl± and C̃l can be given a (Z2 ×N)-grading corresponding to
the action of G = Z2 × C∗

λ as follows:






u1, u2, u3 : degree (0, 2),

v+1 , v
+
2 , v

+
3 : degree (0, 1),

v−1 , v
−
2 , v

−
3 : degree (1, 1).

(Here the grading group Z2 = {0, 1} is additive.) Notice that the N-grading extends the ordinary
Clifford grading which counts the parity of the Clifford variables, in the sense that Clev consists of
elements of even degree in the N-grading, but C[u] is not contained in the degree 0 part.

Proof. With the relations of the algebras listed above, one can verify that they are homoge-
neous w.r.t to the assigned (Z2 × N)-degrees, keeping in mind that in the relations qu(v

±
i , v

±
j ) =∑

k ukqk(v
±
i , v

±
j ) and qk(v

±
i , v

±
j ) ∈ C.

Definition 3.4. For an N-graded ring R, define another N-graded ring R(d) :=
⊕

i≥0Rd·i, and its
i-th graded piece to be Rd·i.

8



With this notation, the even part Clev of the Clifford algebra Cl can be denoted by Cl(2) and so
on. Next, we observe that, as C-vector spaces,

C̃lev = (Cl+ ⊗ Cl−)ev = (Cl+ev ⊗ Cl−ev)⊕ (Cl+odd ⊗ Cl−odd) = Clev.

In fact:

Proposition 3.5. Cl(2)(= Clev) and C̃l
(2)

are isomorphic as C[u]-algebras.

Proof. We recall that the Cl(2) and C̃l
(2)

are defined using the N-grading in Proposition 3.3. We
will establish an explicit isomorphism between these two algebras. The generators of Cl(2) over
C[u] are v+i v

+
j , v

−
i v

−
j and v+i v

−
j . A product of them can be rearranged into the “standard order”,

i.e. so that the v+i ’s are on the left
m∏

i=1

v+i

n∏

j=1

v−j ,

where m + n is even. We construct an isomorphism ϕ : Clev → (Cl+ ⊗ Cl−)ev by sending the
elements

ϕ :
m∏

i=1

v+i

n∏

j=1

v−j $→ (−1)
m(m−1)

2

m∏

i=1

(v+i ⊗ 1)
n∏

j=1

(1⊗ v−j ).

To verify that it is an algebra homomorphism, we need to show that the image of a product before
rearranging




m∏

i=1

v+i

n∏

j=1

v−j








m+k∏

i=m+1

v+i

n+#∏

j=n+1

v−j



 $→ (−1)
m(m−1)+k(k−1)

2

m+k∏

i=1

(v+i ⊗ 1)
n+#∏

j=1

(1⊗ v−j ),

is the same as the image we get if we arrange the product into the standard order beforehand,

(−1)nk
m+k∏

i=1

v+i

n+#∏

j=1

v−j $→ (−1)nk+
(m+k)(m+k−1)

2

m+k∏

i=1

(v+i ⊗ 1)
n+#∏

j=1

(1⊗ v−j ).

We see that the only difference is the exponent of the scalar (−1), so we check that

[
nk +

(m+ k)(m+ k − 1)

2

]
−

[
m(m− 1) + k(k − 1)

2

]
≡ mk +

2mk

2
≡ 0 mod 2,

which shows that the 2 exponents have the same parity.

Remark 3.6. Note that the isomorphism works in the more general context of Z/2-graded algebras.
See [9] and [4, Chapter III, Section 4.6-4.7] for similar constructions.

The existence of an N-grading on C̃l allows us to utilize the following “Veronese” theorem from
[19]:

Lemma 3.7. Let R be a N-graded left Noetherian ring which is generated by R1 as a R0-algebra.
Then the category of coherent (or quasicoherent) sheaves, obtained by localizing the categories of
left R(d)-modules and R-modules, are equivalent for any natural number d.
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An immediate consequence of Lemma 3.7 is that it connects our result to Kuznetsov’s main theorem,
which is included here for readers’ benefit.

Proposition 3.8. (Kuznetsov) Let V = C6 with coordinates x1, · · · , x6 and W ⊆ S2V ∗ with
coordinates u1, u2, u3 a dimension 3 subspace of rank ≥ 4 (except the origin) homogeneous quadratic
forms on V such that the intersection X of quadrics parametrized by W is a complete intersection.
Let q ∈ C[ui, xj ] be the quadratic form corresponding to the choice of W . Let Y be the double cover
of PW ramified over the sextic curve of degenerate quadrics, and Cl(V ) be the sheaf of Clifford
algebras on Y associated to q. Then we have derived equivalences:

Db(Coh−X) # Db(Coh−PW, Cl(V )ev) # Db(Coh−Y, Cl(V )ev).

Here Cl(V )ev is equipped with the C∗
t -grading and Cl(V ) with the C∗

λ-grading.

Now we have all the tools to carry out the main step of the proofs of Theorems 2.8 and 2.12:

Proposition 3.9. There exists an equivalence of the categories (provided that they are well-defined):

Db(Coh−Y , α) # Db(Coh−X).

Proof. Let α be the sheaf of algebras associated to C̃l on Y with the N-grading corresponding to
the C∗

λ-action. Now Lemma 3.7 tells us that the categories

Cohproj(C̃lev) and Cohproj(C̃l)

are equivalent, which translates to the equivalence of Coh(Proj C̃lev) and Coh(Proj C̃l) when both
Proj’s are considered as non-commutative varieties. This allows us to apply Kuznetsov’s theorem
(Proposition 3.8) to conclude that

Db(Coh−X) # Db(Coh−PW, Clev) # Db(Coh−PW, C̃lev) # Db(Coh−Y , C̃l).

Proposition 3.10. There exists an equivalence of the categories (provided that they are well-
defined):

Db(Coh−(Y /Z2), α̃) # Db(Coh−(X/σ)).

Proof. Let α̃ be the sheaf of algebras associated to C̃l on Y /Z2 with the (Z2 × N)-grading corre-

sponding to the G-action. Considering the induced N-grading on C̃l, we can again apply Lemma 3.7
to conclude that the equivalence of categories Coh(Proj C̃lev) and Coh(Proj C̃l) when both Proj’s
are considered as non-commutative varieties. We can then use [3, Theorem 6.2] by Borisov and Li
to get

Db(Coh−(X/σ)) # Db(Coh−[PW/Z2], Clev) # Db(Coh−[PW/Z2], C̃lev) # Db(Coh−(Y /Z2), C̃l).

Remark 3.11. In [3, Section 9.2], a semidirect product of a Clifford algebra and C[h]/〈h2 − 1〉 is
considered. However, the extra element h should be thought of as an extra Z2-grading on the sheaf
of algebras, since adjoining the element h would change the rank of the algebras and they will not
be matrix algebras anymore.
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Now we will show that C̃l represents a Brauer class on Y and Y /Z2. The C[u]-algebra C̃l can be
made into an algebra over A by y+ $→ d+ ⊗ 1 and y− $→ 1⊗ d−, where d± is the central element in
Cl±, which can be computed explicitly:

Proposition 3.12. The center of Cl+ is isomorphic to C[u][d+]/〈d2+ − f+〉 where

d+ = v+1 v
+
2 v

+
3 − q32v

+
1 + q31v

+
2 − q21v

+
3 .

Similar statement holds for Cl−.

Proof. Since we know the central element is the product v1v2v3 . . . vn when q is in the standard
form (dropping the + signs), in any coordinates the central element in Cl+ is odd degree of the
form

d+ = v1v2v3 + r1v1 + r2v2 + r3v3

where ri ∈ C[u]. Then we compute

v1v2v3v1 = v1v2(2q31 − v1v3) = 2v1v2q31 − v1(2q21 − v1v2)v3 = 2v1v2q31 − 2v1q21v3 + q11v2v3,

d+v1 = v1v2v3v1+r1q11+r2v2v1+r3v3v1 = (2v1v2q31−2v1q21v3+q11v2v3)+r1q11+2r2q21−r2v1v2+2r3q31−r3v1v3,

v1d+ = q11v2v3 + r1q11 + r2v1v2 + r3v1v3,

[d+, v1] = d+v1 − v1d+ = 2v1v2q31 − 2v1q21v3 + 2r2q21 − 2r2v1v2 + 2r3q31 − 2r3v1v3.

Setting this to 0, we get r2 = q31 and r3 = −q21. Consideration of the commutators [d+, v2] and
[d+, v3] gives r1 = −q32 and consistent values of r1, r2, r3. Furthermore, it can be verified that

d2+ = v1v2v3v1v2v3 − q32v1v2v3v1 + q31v1v2v3v2 − q21v1v2q33

=− q32q11v2v3 + q232q11 − q32q31v1v2 + q32q21v1v3

=+ q31v2v1v2v3 − q31q32v2v1 + q231q22 − q31q21v2v3

=− q21v3v1v2v3 − q21q32v3v1 − q21q31v3v2 + q221q33

= q11q22q33 + q12q23q31 + q13q21q32 − q11q23q32 − q12q21q33 − q13q22q31

= det(q+)

= f+(u).

Now we check that the center contains nothing in the even part. First we assume there is a central
element z ∈ (Cl+)ev of the form z = r1v2v3 + r2v3v1 + r3v1v2 (which is symmetric in vi’s). Setting
[z, v1] = 0 gives 





−r1q12 + r2q11 = 0

r1q13 − r3q11 = 0

r2q13 + a3q12 = 0

We can simplify the equations by localizing at ui’s and use the fact that the centers satisfy

Z(Cl+) = Z(Cl+ ⊗C[u] C(u1, u2, u3)) ∩ C[u].

11



Over C(u) := C(u1, u2, u3), we can diagonalize the quadratic form q+ and assume that

[qij ] =




1 0 0
0 1 0
0 0 det(q+)



 ,

so the equations above reduces to r2 = r3 = 0. By symmetry in vi’s, we also get that r1 = 0.

Finally, a central element of the form z = r0 + r1v2v3 + r2v3v1 + r3v1v2 ∈ (Cl+)ev cannot ex-
ist because r0 ∈ C[u] is central and that would imply z − r0 is central as well, which contradicts
the conclusion above.

Note that d+⊗ 1 and 1⊗ d− are themselves central elements in C̃l, so A is contained in the center
of C̃l. We can think of SpecA\0 as the base (commutative) space, and with the Clifford algebra it
turns to a non-commutative space. When restricted to A, the elements y± (= d+ ⊗ 1 and 1⊗ d−)

have degree 3, and the N-grading on C̃l corresponds to the C∗
λ-action on SpecA.

Proposition 3.13. The center of C̃l is A.

Proof. Define

A+ := C[u1, u2, u3, y+]/〈y
2
+ − f+〉,

A− := C[u1, u2, u3, y−]/〈y
2
− − f−〉,

then A = A+⊗C[u] A− and A± = Z(Cl±) by Proposition 3.12. For algebras over a field, the center
of the tensor product is the tensor product of the centers, so we can localize at ui’s and pass to
that case:

Z(C̃l) = Z(C̃l ⊗C[u] C(u)) ∩ C[u]

= [Z(Cl+ ⊗C[u] C(u))⊗C(u) Z(Cl− ⊗C[u] C(u))] ∩ C[u]

= Z(Cl+)⊗C[u] Z(Cl−)

= A+ ⊗C[u] A−

= A.

This proposition shows that SpecA is the natural base commutative variety to use when we consider
C̃l, among all other possibilities.

Remark 3.14. Now we see that y± ∈ A should naturally correspond to d± ∈ Cl±. We cannot
embed A in the full Clifford algebra Cl because y+ and y− commute in A, while d+ and d− do not
commute in Cl. This is why we must use the ordinary tensor product C̃l of Cl+ and Cl−.

One definition of a Brauer class is as a sheaf of Azumaya algebras modulo Morita equivalence.
Hence we want to show that C̃l gives rise to a sheaf of Azumaya algebras on Y and Y /Z2. The
definition of Azumaya algebra over a stack is a natural extension from that of a scheme, which we
state here.
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Definition 3.15. An Azumaya algebra A over a stack X is an OX -algebra (of finite presentation
as an OX -module) that is étale locally isomorphic to a matrix algebra sheaf.

Being an Azumaya algebra is a local property, so to check that for an algebraic stack, one just
needs to pull it back to a scheme covering and check it there.

To reduce the number of symbols, we shall use Cl, C̃l, etc. to denote both the algebras them-
selves and the sheaves associated to them on the suitable space.

Proposition 3.16. C̃l is an Azumaya algebra over A.

Proof. First, we look at the diagram of algebra inclusions, in which each small diamond is a tensor
product:

C̃l = Cl+ ⊗ Cl−

Cl+[y−]/ ∼

Azumaya
,,**************

Cl−[y+]/ ∼

Azumaya
--++++++++++++++

Cl+

..-------------
A

Azumaya

//

Azumaya00++++++++++++++++++

Azumaya 11****************** Cl−

22.............

A+ = C[u, y+]/〈y2+ = f+〉

Azumaya
22.............

,,******************

A− = C[u, y−]/〈y2− = f−〉

--++++++++++++++++++

Azumaya
..-------------

C[u]

--+++++++++++++++++

,,*****************

We will prove that the maps labelled by ”Azumaya” give Azumaya algebras below. We use the
fact that:

(i) the pullback of an Azumaya algebra is Azumaya, and

(ii) the tensor product of two Azumaya algebras is also Azumaya.

So in order to show that A→ C̃l is Azumaya, we just need to show it for the maps A+ → Cl+ and
A− → Cl− at the lower left and right. It will be proved in a similar fashion as proposition 3.13 in
Kuznetsov’s paper [14].

As being an Azumaya algebra is a local property, it suffices to check that the fiber of Cl+ at
each point of SpecA+\0 is a matrix algebra. On the algebra level, y+ is sent to d+. For a point
(u, y+) ∈ SpecA+\0 such that y+ .= 0, taking the fiber of Cl+ means fixing u and y+. For fixed u,
the quadratic form q+u is of full rank and it is well-known that fiber Cl(q+u ) is a product of two rank
2 matrix algebras, which comes from its two irreducible Clifford modules classified by the action
of d+, so fixing y+ = d+ means choosing one of the two components. For points of the form (u, 0),
the quadratic form q+u is of corank 1 and the maximal ideal at (u, 0) is generated by y+, so the
fiber of Cl+ is Cl(q+u )/〈d+〉 which is isomorphic to a matrix algebra of rank 2.

Proposition 3.17. The sheaf associated to C̃l on SpecA\0 can be given a C∗
λ-equivariant structure

and a G-equivariant structure, so there are sheaves associated to C̃l on Y and Y /Z2. The two
sheaves on Y and Y /Z2 are also Azumaya algebras.

13



Proof. Note that Y = [ (SpecA\0) /C∗
λ ] and Y /Z2 = [ (SpecA\0) /G ], and for λ ∈ C∗

λ and
(±1,λ) ∈ G = Z2 × C∗

λ we can define the actions

λ · v±i = λv±i and (−1,λ) · v±i = ±λv±i ,

which are compatible with the actions on A and give the associated sheaf the equivariant structures.
By definition, C̃l gives rise to sheaves on Y and Y /Z2, and they are Azumaya algebras because

the condition can be pulled back to SpecA and we know C̃l is Azumaya over SpecA by Proposition
3.16.

The proofs to Theorem 2.8 and 2.12 are completed when we combine Proposition 3.9, 3.10 and
3.17.

4 Brauer-Severi Varieties

There are several formuations of the Brauer group and its elements Brauer classes on a scheme.
One way is to define them as Azumaya algebras under Morita equivalence, which we had done in
the last section; another way is to represent them by twisted sheaves [6], whose projectivizations
are projective bundles that are locally trivial in the étale topology, namely the Brauer-Severi va-
rieties. We will now construct a projective bundle on Y and Y /Z2 and show that it represents

the Azumaya algebra C̃l. This gives us the connection between the Clifford algebra and the base
space. (In contrast, the derived equivalence itself has little relevance to the base space.)

To construct the Brauer class on SpecA\0 as a projective bundle involves several steps:

(1) Construct two P1-bundles on SpecA±\0 from the data of q±.

(2) Construct a P3-bundle on SpecA\0 from the two P1-bundles.

(3) Exhibit an isomorphism from the projectivization of the Clifford module to the P1-bundle.

In the second half of this section, we will also relate the P3-bundle in our case to the P3-bundle
that comes from Kuznetsov’s construction which considers the quadratic form q as a whole.
Recall from section 2 that W parametrizes the quadratic forms q and each q can be decomposed
into q = q+ + q−. Consider the conic fibration C over W\0 whose fiber over a point u ∈ W\0
is the conic {q+u = 0} ⊆ PV+. Because we restrict to a general family of such quadratic forms q,
we can assume C is smooth by Bertini’s Theorem, because C is a hyperplane of degree (1, 2) in
(W\0)×PV+. These are nonsingular conics for u ∈W\ cone(E+) so we have a generic P1-fibration,
while the fibers over u ∈ cone(E+) are pairs of lines. We will present 2 ways to construct a P1-
bundle from it.

First method is the following: take the conic fibration, denoted adj(C), over W\0 whose fiber
over a point u ∈ W\0 is the conic {adj(q+u ) = 0} ⊆ PV ∨

+ in the dual projective space, where
adj(q+u ) denotes the quadratic form whose associated matrix is the adjugate matrix of q+u . The gen-
eral fibers are then dual conics and the fibers over u ∈ E+ become double lines. Over W\ cone(E+),
we have a birational map C → adj(C) arising from the dual curve map. For convenience, denote
the pullback of adj(C) to the ramified double cover SpecA+\0 by

adj(C+) := adj(C)×(W\0) (SpecA+\0).
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Take the normalization P+ of adj(C+), then the composition P+ → SpecA+\0 will be a P1-bundle.

Proposition 4.1. P+ is a P1-bundle over SpecA+\0.

Proof. To see this, restrict to a Zariski neighborhood U of a point u0 lying over cone(E+) in
SpecA+\0. The quadratic forms can be simultaneously diagonalized to have the form (abusing
notations):

q+u =




a(u) 0 0
0 b(u) 0
0 0 ε(u)





where ε(u0) = 0 and a(u), b(u) .= 0 for u ∈ U , i.e. a and b are units in C[U ]. Its adjugate matrix is

adj(q+u ) =




b(u)ε(u) 0 0

0 a(u)ε(u) 0
0 0 a(u)b(u)





so at u0 it is

adj(q+u0
) =




0 0 0
0 0 0
0 0 a(u0)b(u0)





and in the coordinates x+1 , x
+
2 , x

+
3 of V+ the fiber is the double line (x+3 )

2 = 0.

Now we verify that the normalization is smooth. By picking complementary coordinates u1, u2 to
the local coordinate ε, we identify the coordinate ring C[U ] with C[u1, u2, ε]. The coordinate ring
of adj(C) over U is thus

C[U ][y+, x
+
1 , x

+
2 , x

+
3 ]/〈 y

2
+ − abε, bε(x+1 )

2 + aε(x+2 )
2 + ab(x+3 )

3 〉.

In which we see that (
x+3
y+

)2

=
(x+3 )

2

(abε)2
= −

(x+1 )
2

a2b
−

(x+2 )
2

ab2

belongs to the coordinate ring but x+3 /y+ does not. We adjoin x̃3
+ = x+3 /y+ and show that the

resultant ring

C[U ][y+, x
+
1 , x

+
2 , x̃3

+]

/〈
y2+ − abε,

(x+1 )
2

a2b
+

(x+2 )
2

ab2
+ (x̃3

+)2
〉

is regular. Taking partial derivatives of the relations w.r.t. u1, u2, ε, y+, x
+
1 , x

+
2 , x̃3

+ to zero we
get [

−ε∂(ab)∂u1
−ε∂(ab)∂u2

−ab− ε∂(ab)∂ε 2y+ 0 0 0

∗ ∗ ∗ 0
2x+

1
a2b

2x+
2

ab2 2x̃3
+

]

Since x+1 , x
+
2 , x̃3

+ are coordinates on PV+ and cannot be all zero, the matrix has rank 1 precisely
when the first row is a multiple of the second row. This forces it to be the zero row, so y+ = 0 and
thus ε = 0 by the relation, but then ab .= 0 in the third entry. So there is no point at which the
matrix has rank 1.

Since all the fibers of P+ are smooth conics given by
(x+

1 )2

a2b +
(x+

2 )2

ab2 + (x̃3
+)2 = 0, we obtain a

P1-bundle.
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In the second method, we start from the pullback

C+ := C ×(W\0) (SpecA+\0)

of C to SpecA+\0, and consider the blowup P1,+ of C+ along its singular locus:

Proposition 4.2. The singular locus of C+ consists of the singular points in the singular fibers
over cone(E+), and the blowup P1,+ of C+ along the singular locus is smooth. Similar statement
holds for C−.

Proof. Observe that C+ is cut out by y2+ − f+ and q+ inside (SpecA+\0) × PV+. Taking partial
derivatives w.r.t. to the variables u1, u2, u3, y+, x

+
1 , x

+
2 , x

+
3 , we have

[
−∂f+

∂u1
−∂f+

∂u2
−∂f+

∂u3
2y+ 0 0 0

∂q+

∂u1

∂q+

∂u2

∂q+

∂u3
0 ∂q+

∂x+
1

∂q+

∂x+
2

∂q+

∂x+
3

]

Note that one of ∂f+
∂ui

must be nonzero because E+ = {f+ = 0} is smooth, and also it is assumed

that C+ = {q+ = 0} is smooth. If y+ .= 0, then the Jacobian must have rank 2. If y+ = 0, then

setting rank ≤ 1 implies that second row is a multiple of the first row, so ∂q+

∂x+
1

= ∂q+

∂x+
2

= ∂q+

∂x+
3

= 0.

So the singular locus of C+ is contained in the singular loci of the singular fibers of C+.

In the other direction, we likewise locally diagonalize q+ as q+ = r1(u)(x
+
1 )

2 + r2(u)(x
+
2 )

2 +
r3(u)(x

+
3 )

2 where r1, r2 are inveritble and r3 is a local coordinate. Pulling back to SpecA+\0,
we have r3 = y2+/r1r2, so we see that C+ is singular when y+ = x+1 = x+2 = 0. (Let u1, u2 be
complementary coordinates to r3, and note that q+ lies in the square of the maximal ideal.) Hence
we have the reverse inclusion.

Since (x+1 , x
+
2 , x

+
3 ) .= (0, 0, 0), we see that x+3 .= 0 at the singular points. The form of q+ shows

that we have an A1-singularity along the singular locus. Therefore the blowup P1,+ of the singular
locus is resolution of C+.

Note that for smooth conics in PV+ over W\ cone(E+), there is a natural map of dual conics
mapping a point to the tangent line at that point and it gives a rational map C+ → adj(C+).

fiber-wise it maps to
(

∂q+

∂x+
1
: ∂q+

∂x+
2
: ∂q+

∂x+
3

)
. We claim that it extends to a morphism P1,+ → C+,

hence factor through the normalization P1,+ → P+ → adj(C+). Moreover, let H0 ⊆ C+ denote
the pullback of cone(E+) ⊆ SpecA+\0, which is fiber-wise the singular quadric {q+ = 0}, and
H ⊆ P1,+ be the strict transform of H0 in P1,+, then:

Proposition 4.3. There exists a morphism P1,+ → adj(C+), and fiber-wise it contracts the two
lines in H ⊆ P1,+ into two points.

Proof. Restricting to a Zariski neighborhood U of a point u0 lying over cone(E+) in SpecA+\0, the
quadratic forms can be simultaneously diagonalized to be q+ = r1(u)(x

+
1 )

2+r2(u)(x
+
2 )

2+r3(u)(x
+
3 )

2

where r1, r2 are inveritble and r3 is a local coordinate. In this case the equations of the singular
locus in C+ reduce to

y+ = 0, x+1 = 0, x+2 = 0.
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Since (x+1 , x
+
2 , x

+
3 ) .= (0, 0, 0), we see that x+3 .= 0 at u0 and we can assume it is invertible in U . The

blowup is locally Proj(OC+ + I + I2 + . . . ) where I = 〈y+, x
+
1 , x

+
2 〉 is the ideal sheaf. Let ỹ+, x̃1

+,
x̃2

+ denote the corresponding sections in the degree 1 piece of the Rees algebra OC+ +I+I2+ . . . ,
then the exceptional divisor has equation

(x̃1
+)2 + (x̃2

+)2 + (x+3 )
2(ỹ+)

2 = 0 (see proof of Proposition 4.2.).

Then we see that the map
(

∂q+

∂x+
1
: ∂q+

∂x+
2
: ∂q+

∂x+
3

)
extends to the formula

(
2x̃1

+ : 2x̃2
+ : 2x+3 y+ỹ+

)

to the exceptional divisor in the new coordinates. which is well-defined because the first two com-
ponents cannot be simultaneously 0: if x̃1

+ = x̃2
+ = 0 then ỹ+ = 0 from the equation of the

exceptional divisor, but (ỹ+, x̃1
+, x̃2

+) .= (0, 0, 0).

Next, we see that over a point u ∈ cone(E+) the quadric q+ degenerates to 2 lines passing through
the origin, so the points on q+ has two fixed ratios x̃1

+ : x̃2
+ for a given u. The map sends these

points to (2x̃1
+ : 2x̃2

+ : 0), i.e. fiber-wise H is contracted to 2 points.

Remark 4.4. The two constructions can be summarized in the diagram:

P1,+

blow up
##//

///
///

///
///

blow up

3300
00
00
00
00
00
00
00
00

P+

normalization
((

C+ birational
441111111111111

""2
222

222
22

222

((

adj(C+)

55333
333

333
333

((

SpecA+\0

((
W\0

C
birational

4411111111111111

66$$$$$$$$$$$$$
adj(C)

77////////////

We have described the P1-bundle P+ associated to q+ and E+ on SpecA+\0. Likewise there is
a P1-bundle P− associated to q− and E− on SpecA−\0. We can now construct a P3-bundle on
SpecA\0 from P+ and P−. We denote the pullbacks of P± from SpecA±\0 to SpecA\0 by P ∗

±.

Proposition 4.5. There exists a Severi-Brauer variety P over SpecA\0 such that P ∗
+ and P ∗

− are
fiber-wise embedded in P via the Segre embedding P1 × P1 ↪−→ P3, and P corresponds to the Brauer
class represented by C̃l.
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Proof. We will exhibit 2 canonical ways to construct the P3-bundle. First we can take the twisted
sheaves P± associated to P± [6] (unique up to twisting of a line bundle). We can then pull back
P± from SpecA±\0 to SpecA\0 to get P∗

+, and their tensor product P∗
+⊗P∗

− is then a twisted
sheaf on SpecA\0 whose fiber is C4, hence its projectivization P ′ becomes a P3-bundle. By [6, 13],

P ′ corresponds to the Brauer class represented by C̃l = Cl∗+⊗Cl∗−. From this description it is not
obvious that we get an algebraic variety because we went through the étale or analytic topology
having twisted sheaves involved, but we observe that fiber-wise P+ and P− are embedded in P ′ via
the Segre embedding P1 × P1 ↪−→ P3, which allows us to show that P ′ is algebraic.

To do that, we make use of the fact that both P± → SpecA±\0 are projective by construction,
so are their pullbacks P ∗

± to SpecA\0, and their fiber product P ∗
+ × P ∗

− there. By definition we
can embed it in a trivial PN -bundle over SpecA\0. Now to every (1, 1)-divisor in the fiber we can
associate its image in PN , which is a closed subscheme in PN . This assignment gives a map from
P ∗
+ × P ∗

− to the Hilbert scheme Hilb(PN ). Since there is a P3-family of (1, 1)-divisor for each fiber,
the closure of the image of P ∗

+ ×P ∗
− in Hilb(PN ) will form an algebraic P3-bundle P ′′. We see that

P ∗
+×P ∗

− → P ′′ is fiber-wise a Segre embedding so it must agree with P ′, as both constructions are
canonical. Hence we obtain the desired algebraic P3-bundle P , which is a Severi-Brauer variety.

Next we will exhibit an explicit relation of the Brauer class C̃l and the P3-bundle P when formulated
via the quadric fibrations. We state here [2, Theorem 1.3.5] that serves as an equivalent definition
of an Azumaya algebra:

Theorem 4.6. Let A be an Azumaya algebra over X, and let α ∈ Br′(X) be the element that
A represents. Then there exists a locally free α-twisted sheaf E of finite rank (not necessarily
unique) such that A is isomorphic to the sheaf of endormorphism algebra of E . Conversely, for
any α ∈ Br′(X) such that there exists a locally free α-twisted sheaf of finite rank, the sheaf of
endormorphism algebra of E is an Azumaya algebra whose class in Br′(X) is α.

So it suffices to show that

Proposition 4.7. P+ is locally isomorphic to the projectivization of an irreducible Clifford module
on SpecA+\ cone(E+). Similar statement holds for P−.

Proof. Let M be an irreducible Cl+-module of rank 2, when Cl+ is considered a sheaf of algebras
on SpecA+\ cone(E+). We want to get an isomorphism PM → P+. Fix m .= 0 of M and consider
Cm ∈ PM , the map V+ → M sending v $→ v · m has a kernel by counting dimension. The
annihilator of m consists of isotropic vectors because 0 = vvm = q+(v, v)m and m .= 0. So for q+

of full rank, the annihilator must be 1-dimensional because {q+ = 0} doesn’t contain any line in
PV+. This gives a natural map PM → {q+ = 0} ⊆ PV+ sending Cm $→ Ann(m). For the inverse,
send Cv ∈ {q+ = 0} ⊆ PV+ to

ker(v) = {m ∈M : v ·m = 0}.

We need to make sure ker(v) is always 1-dimensional to get an element in PM . Since q+ is assumed
of full rank, q+(v, v) .= 0. If ker(v) = M , take v′ .= v in {q+ = 0} ⊆ PV+ and m′ ∈ M linearly
independent with m such that v′m′ = 0, then Ann(m′) contains both v and v′, a contradiction to
dimAnn(m′) = 1. Hence we have a map {q+ = 0}→ PM sending Cv $→ ker(v). It is then evident
that the two maps are inverses to each others.
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Over the points u ∈ W\ cone(E+ ∪ E−), we are in a similar situation as in Kuznetsov’s case for
which the Clifford algebras in the fiber are of full rank, so we can make comparison of the P3-
bundles. First we give a description to the P3-bundle in Kuznetsov’s case: when q is a quadratic
form in PV of full rank, in the quadric {q = 0} ⊆ (W\0) × PV there are two families of rulings,
parametrized by P3, of isotropic subspaces isomorphic to P2’s. These two P3 families naturally form
two P3-bundles P ′ and P ′′ over W\ cone(E+ ∪ E−). Note that P ′ is isomorphic to P ′′.

Proposition 4.8. P ′ and P ′′ are isomorphic to the projectivizations of the two irreducible modules
of Clev over W\ cone(E+ ∪ E−).

Proof. When restricted to u ∈W\ cone(E+ ∪E−), the rank of the quadratic form is 6, the Clifford
algebra Clev has two irreducible modules M0 and M1 of rank 4, and M = M0⊕M1 is the irreducible
module for Cl. The embedding V ⊆ Cl gives rise to two maps V ⊗M0 → M1 and V ⊗M1 →M0

via the Clifford action of Cl on M .

Fix m .= 0 of M0 and consider Cm ∈ PM0. The map V → M1 sending v $→ v · m has a matrix
of rank 3 and hence a kernel Ann(m) of dimension 3. To see this, we may identify the quadratic
form with a natural pairing on U ⊕ U∨ where U # C3, then the Clifford algebra and modules are
built from wedge products and contractions [8]. Fix bases {v1, v2, v3} for U , {v4, v5, v6} for U∨ and
{v1, v2, v3, v1 ∧ v2 ∧ v3} for M0. Let m = a0 + a1v2 ∧ v3 + a2v3 ∧ v1 + a3v1 ∧ v2. Then the matrix of
m is 



a0 a1
a0 a2

a0 a3
a3 −a2

−a3 a1
a2 −a1





which contains 3× 3 minors of the form a3i so the rank is at least 3, and the columns Ci’s satisfy
the relation a1C1 + a2C2 + a3C3 − a0C4 = 0.

The kernel Ann(m) is an isotropic subspace w.r.t. q because 0 = vvm = q(v, v)m implies q(v, v) = 0.
From here we obtained a map from PM0 → P ′ ∪ P ′′ sending Cm $→ Ann(m). By symmetry, there
is also a map from PM1 → P ′ ∪ P ′′ sending Cm $→ Ann(m).

It follows from the continuity of the map that two m,m′ from the same Mi will be sent to the
same ruling, i.e. to the same P ′ or P ′′.

For the inverse, and send an isotropic subspace PV ′ # P2 in PV to

ker(V ′) = {m ∈M : V ′ ·m = 0 in M}.

Pick a complementary isotropic subspace PV ′′ ⊆ PV from the other ruling of the quadric, then
V = V ′ ⊕ V ′′. We can then identify M0 = (∧V ′′)ev = (∧V ′)odd, M1 = (∧V ′′)odd = (∧V ′)ev (note
that we cannot distinguish M0 and M1 and the codomain of this map depends on the choice of the
roles of V ′ and V ′′), and from this description we see that ker(V ′) = ∧3V ′ ⊆M0 has dimension 1,
hence we get an element in PM0. This gives a map P ′ ∪ P ′′ → PM0. It is then evident that the
two maps are inverses to each others.
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Again from continuity, two V ′, V ′′ from the same ruling will both be sent to the same one of
PM0 or PM1.

Let Y ′ → W\ cone(E+ ∪ E−) be the restriction of the ramified double cover SpecB → W . Then
Y ′ is unramified and we have the following:

Proposition 4.9. P ′ and P ′′ can be combined into one P3-bundle Pd over Y ′.

Proof. The two irreducible modules of Clev are classified by the action of the central element,
which can be one of the two roots y1, y2 of y2 − det(q) = y2 − f+f−. Once we made a choice
of correspondence between P ′, P ′′ and the two modules as in Proposition 4.8, say P ′ ←→ y1 and
P ′′ ←→ y2, we can define the P3-bundle Pd for which the fiber over (u, y1) ∈ SpecB is the fiber of
P ′, and the fiber over (u, y2) is the fiber of P ′′. It is well-defined as we can choose a fixed square
root over an étale neighborhood, showing that it is a P3-bundle in the étale topology.

Let C ′
± denote the quadric fibration {q±u = 0} ⊆ PV± over the unramified double cover Y ′.

Proposition 4.10. There exist embedding of C ′
+×Y ′ C ′

− into Pd such that fiber-wise it is the Segre
embedding P1 × P1 ↪−→ P3.

Proof. For (u, y) ∈ Y ′, p+ ∈ {q+u = 0} ⊆ PV+ and p+ ∈ {q+u = 0} ⊆ PV−, the line ( joining p+ and
p− in PV is isotropic w.r.t. qu:

qu(ap+ + bp−, ap+ + bp−) = qu(ap+, ap+) + 2qu(ap+, bp−) + qu(bp−, bp−) = 0.

The line ( is contained in the two isotropic subspaces of dimension 2 w.r.t. qu. From here we obtain
a globally defined map C ′

+ ×Y ′ C ′
− → Pd by sending ( to the point in the fiber of Pd over (u, y)

which corresponds to the isotropic subspace that contains (. Now we show that étale locally they
are Segre embeddings.

Fix an u. We can model the full rank quadric as qu = x1x2 + x23 − x24 + x5x6 where V+ has
coordinates x1, x2, x3 and V− has coordinates x4, x5, x6. By the change of variables

x1 = z12, x2 = z34, x3 =
z13 − z24

2
, x4 =

z13 + z24
2

, x5 = z14, x6 = z23,

we can identify the quadric as the image z12z34 − z13z24 + z14z23 = 0 of the Plücker embedding
G(2, 4) ↪−→ ∧2C4 # C6 where we use the basis {eij = ei ∧ ej : i < j}. For the Plücker embedding we
can parametrize one P3-family of isotropic subspaces of dimension 2 by

(y1 : y2 : y3 : y4) ∈ P
3 → P Span

{
4∑

i=1

yieij : j = 1, . . . , 4

}

.

Points p+ ∈ {q+u = x1x2 + x23 = 0} can be parametrized by (a0 : a1) ∈ P1 as p+ = (a20 :
−a21 : a0a1 : 0 : 0 : 0). Similarly we let p− = (0 : 0 : 0 : a2a3 : a22 : a23) for (a2 : a3) ∈ P1.
Switching back to the coordinates zij ’s, we have p+ = a20e12 − a21e34 + a0a1e13 − a0a1e24 and
p− = a2a3e13 + a2a3e24 + a22e14 + a23e23. They come from the following matrices in G(2, 4):

(
a0 0 0 a1
0 a0 a1 0

)
and

(
a2 a3 0 0
0 0 a3 a2

)
.
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We are then looking for (y1 : y2 : y3 : y4) whose associated isotropic subspace contains both p+
and p−. In C4, p+ and p− intersect at the line spanned by (a0a2 : a0a3 : a1a3 : a1a2), so they are
contained in a 3-dimensional subspace, which corresponds to an isotropic 2-dimensional subspace
in {qu = 0} ⊆ PV . It can be checked that the subspace corresponding to (y1 : y2 : y3 : y4) = (a0a2 :
a0a3 : a1a3 : a1a2) contains p+ and p−. This formula clearly is the Segre embedding.

The same is true after pulling C ′
+ ×Y ′ C ′

− and Pd back to SpecA\ cone(E+ ∪ E−). Since the
constructions in Proposition 4.5 and 4.10 are both canonical, we see that the restrictions of P in
Proposition 4.5 to SpecA\ cone(E+ ∪E−) and the pullback P ∗

d can be identified. This established
the relation between Kuznetsov’s construction and our construction outside of the ramification
locus cone(E+ ∪ E−).

5 Generalizations and Future Work

We can ask whether some conditions on the root stacks and the Brauer class ensure certain prop-
erties on the Enriques surfaces, and vice versa:

(i) When is the Enriques surface nodal, i.e. contains a nonsingular rational curve?

(ii) How do the elements of the Picard group of the Enriques surface corresponds to (complexes
of) sheaves on the root stack? What are the corresponding auto-equivalences?

(iii) In our setup, the 2 cubic curves come from determinants of 3× 3 matrices. If two quadratic
forms give rise to the same cubic curves, i.e. if the root stacks are identical, is there any
relation to the corresponding Enriques surfaces?

(iv) What can be said about the Enriques surface if the Brauer class is trivial?

(v) Is the orbifold cohomology of the two sides related? There are no twisted sectors in the
Enriques surface, but the root stack should have the cubic curves and their intersection points
as twisted sectors.

In another direction, direct generalizations of the tensor product construction of the Clifford alge-
bras of invariant subspaces to other dimensions can be studied. For example, the double mirror of
a dimension 3 intersection of 4 quadrics in P7 quotient by a larger group of actions.
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