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ON EQUATIONS OF FAKE PROJECTIVE PLANES WITH
AUTOMORPHISM GROUP OF ORDER 21

LEV BORISOV

Abstract. We study Dolgachev elliptic surfaces with a double and a
triple fiber and find explicit equations of two new pairs of fake projective
plane with 21 automorphisms, thus finishing the task of finding explicit
equations of fake projective planes with this automorphism group. This
includes, in particular, the fake projective plane discovered by J. Keum.

1. Introduction

Theory of fake projective planes originated with the famous example of
D. Mumford [Mu79] of a surface of general type with the same Hodge num-
bers as the usual projective plane CP2. By the nature of the construction,
it did not yield any explicit equations of it. Over the subsequent decades,
work by multiple authors (see for instance [AK17, I88, Ke06, Ke08, KK02,
Kl03, PY07, PY10]) produced additional examples and general results and
culminated in the classification of all fake projective planes by D. Cartwright
and T. Steger [CS11, CS11+]. These surfaces are classified as free quotients
of the complex two-dimensional ball B2 = {(z1, z2), |z1|2 + |z2|2 < 1} by cer-
tain discrete arithmetic subgroups. There are exactly 50 conjugate pairs of
such surfaces, separated into 28 classes. This extremely useful classification
does not lead to any polynomial equations either, since there are no known
methods for constructing explicit automorphic forms for these groups.

Over the last several years, the author of this paper has been involved
in multiple collaborations with the goal of discovering explicit polynomial
equations that define fake projective planes and related surfaces, [BK19,
BY18, BF20, BBF20]. This paper is a continuation of such efforts, origi-
nally aimed at finding the equations of the Mumford’s fake projective plane.
While this goal is still elusive, we find equations of the fake projective plane
constructed by Keum in [Ke06], which is commensurable to the Mumford’s
surface. We also find another interesting fake projective plane in the process.
As always, new approaches had to be developed for the case at hand.

It is not surprising that most of the currently computed fake projective
planes have nontrivial automorphism groups, as this provides some avenues
for exploration, and this paper continues the trend. According to the classi-
fication of Cartwright and Steger, the maximum order of the automorphism
group of a fake projective plane is 21. There are three conjugate pairs of
fake projective planes with the automorphism group of this size, and in all
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2 LEV BORISOV

three cases the group is the semi-direct product of a normal subgroup C7

and a non-normal subgroup C3. Specifically, here are the planes, with their
name in the CS classification and brief comments.

• (a = 7, p = 2, ∅,D327) is the first example of the fake projective
plane for which explicit equations were found, see [BK19]. There
are two other conjugate pairs of FPPs in its class.

• (a = 7, p = 2, {7},D327) is the surface constructed by J. Keum
in [Ke06]. It has three more pairs of FPPs in its class, including
Mumford’s fake projective plane.

• (C20, p = 2, ∅,D327) is the last of the three surfaces which does not
seem to be implicated in any other construction. There are no other
pairs in its class.

In all three cases, the quotient of P2
fake by the subgroup C7 of its auto-

morphism group has a minimal resolution Y with rather peculiar geometry,
see [Ke06, Ke08]. The quotient has three singular points of type 1

7
(1, 3),

which are permuted by the residual C3 action of the automorphism group
of P2

fake. The minimum resolution Y of P2
fake/C7 has three disjoint chains

of three lines with self-intersections −3,−2,−2 which we denote by

S − B − C, S1 − B1 − C1, S2 − B2 − C2.

Here − indicates a transversal intersection point. In addition, Y is fibered
over CP1, with generic fibers of genus one, two multiple fibers, three nodal
fibers and one fiber of type I9 (a ring of nine CP1 with self-intersection (−2)
each) with components

A − B − C − A1 − B1 − C1 − A2 − B2 − C2 − A.

The residual automorphism group C3 preserves the fibration structure and
acts by sending A → A1 → A2 → A and similarly for S, B and C curves.

The multiplicites of the multiple fibers in the case of (a = 7, p = 2, ∅,D327)
are 2 and 4, and they are 2 and 3 in the other two cases, which are the focus
of this paper. In particular, in the cases of interest, the curves S, S1 and
S2 are 6-sections of the fibration. The two special fibers 3F2 and 2F3 have
multiplicity 3 and 2 respectively. The reductions F2 and F3 are linearly
equivalent to 2F and 3F with F = KY and the generic fiber is equivalent
to 6F .

The first idea of this paper is to consider the ring
⊕

a,b≥0

H0(Y,O(aF + bS)).

It has a double grading and we can derive a formula for the graded dimension

∑

a,b≥0

dimH0(Y,O(aF + bS)) tasb =
1 + 2st4 + 2st5 + s2t9

(1− t2)(1− t3)(1 − s)(1− st3)
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which is suggestive of a free module structure over the subring generated by
the variables u0, u1, v1, v2 with weights (0, 2), (0, 3), (1, 0), (1, 3) respectively.
The appropriate GIT quotient is a birational model Y0 of Y that collapses
all of the curves that intersect F and S trivially. These are the curves
C,B1, C1, B2, C2, and the image of the special fiber in Y0 becomes

(1.1) A − B − ∗ − A1 − ∗∗ − A2 − ∗∗ − A

so that the intersection point of (the images of) B and A1 is a simple node
and intersection of A2 with both A and A1 are 1

3
(1, 2) singularities. The

construction of the new fake projective planes then proceeds as follows.

Step 1. We construct a nine-parameter family of (2, 3)-Dolgachev sur-
faces with a rational six-section S. A general member of this family has
twelve distinct singular nodal fibers, in addition to the double and triple
fibers. The defining equations of the family are nine quadrics of weights
3× (8, 2), 3× (9, 2) and 3× (10, 2) in the variables of weight

(2, 0), (3, 0), (0, 1), (3, 1), (4, 1), (4, 1), (5, 1), (5, 1).

The idea is to postulate the above free module structure and the weights
of the quadratic relations and to use the associativity conditions of the ring
to solve for the coefficients of the quadrics. It entails solving a system of
over 1600 equations with 92 unknowns, which is done by an ad hoc method
utilizing Mathematica software system.

Step 2. We construct seven-, five- and two-parameter subfamilies with
additional conditions on the special fiber. Respectively, we require the spe-
cial fiber to contain a line, two disjoint lines, two disjoint lines with two
nodes on one and one node on the other. In particular, a generic element of
the two-parameter family has the special fiber

A − B − ∗ − A1 − ∗ − A2 − ∗ − A

in the sense that the intersection points of B with A1 and A2 with A and
A1 are nodes.

Step 3. We find a finite-field reduction of the surface Y0 by looking
through the parameter choices over a finite field and checking whether the
resulting surfaces have worse than nodal singularities at two special points
on the curve A2. The smallest prime for which we were able to find such
surfaces was 79.

Step 4. We proceed by successively solving the (hard to write) conditions
on being more singular at the intersection points of A-curves for parame-
ters modulo powers of 79. We then recognize the parameters as algebraic
numbers and construct Y0 over a number field of degree 12. We make a
coordinate change to realize Y0 over the number field Q(

√
−7).

Step 5. We study Y0 to find its geometric features, such as the curves S1

and S2 and the birational action of C3. We find the degree seven extension
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of the field of rational functions of Y0 that gives P2
fake and calculate the bi-

canonical linear system of the latter. We then realize P2
fake as an intersection

of 84 cubic equations in CP9, following the blueprint of [BK19].

Step 6. We identify the fake projective plane as (C20, p = 2, ∅,D327) by
exhibiting too many torsion line bundles for it to be (a = 7, p = 2, {7},D327).
The method is to find non-reduced C3-invariant elements of |2KP2

fake
|modulo

a prime (this time it is 29) by an exhaustive search, and then lift them to
powers of the said prime and finally the algebraic numbers. We also use one
of the the torsion line bundles to pick a more natural basis of H0(P2

fake, 2K)
so that its equations have smaller coefficients. Finally, we verify that it is
indeed a fake projective plane, as in [BK19].

Step 7. In Step 2, one actually finds two different five-parameter families
of Dolgachev surfaces which contain two disjoint lines in the special fiber.
Unfortunately, for the second family we were unable to reduce the number of
parameters further by considering the condition of having nodes. However,
we are still able to go through steps 3-5 in this case, by brute force approach
to the finite field search. By the process of elimination, the new pair of fake
projective planes is the one constructed in [Ke06].

The paper is organized as follows. Section 2 contains the first two steps
of the construction. Section 3 contains steps 3 and 4. Section 4 describes
steps 5 and 6. In Section 5 we discuss the last step. Finally, in Section 6
we talk about the open problems associated with our construction. We also
have an Appendix 7 in which we put some equations that are too lengthy for
the main body of the paper. However, many of the key formulas are far too
large to even be included into the Appendix. They are collected in [B22+]
instead.

Acknowledgments. This project depended heavily on the use of the
Mathematica software system, with certain steps performed in Magma,
Macaulay2, PARI/GP and C, see [Math, Mag, Mac, Pa]. The author ac-
knowledges the Office of Advanced Research Computing (OARC) at Rut-
gers, The State University of New Jersey for providing access to the Amarel
cluster [Ama] and associated research computing resources that have con-
tributed to the results reported here. The author thanks Sai Kee Yeung for a
useful comment on the first version of the paper. We also thank anonymous
referees for multiple useful remarks.

2. Families of (2, 3) Dolgachev surfaces

We start by studying smooth projective surfaces Y with a genus one
fibration Y → CP1 with the following properties.

• The class of the general fiber is 6F where F is the canonical class of
Y . In particular, F 2 = 0.

• There is a double fiber 2F3 and a triple fiber 3F2. The classes of F2

and F3 are 2F and 3F respectively.
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• There is a rational six-section S with SF = 1 and S2 = −3.
• pg(Y ) = q(Y ) = 0.

Our motivation is that the minimal resolutions of the C7 quotients of fake
projective planes we are interested in satisfy the above, see [Ke08].

As implied in the Introduction, we first compute1 the graded dimension
of the ring

R =
⊕

a,b≥0

H0(Y,O(aF + bS))

in a series of lemmas.

Lemma 2.1. The graded dimension of R0 =
⊕

a≥0
H0(Y,O(aF )) is given

by
∑

a≥0

ta dimH0(Y,O(aF )) =
1

(1− t2)(1− t3)
.

Proof. The ring R0 is freely generated by the elements u0 ∈ H0(Y,O(2F ))
and u1 ∈ H0(Y,O(3F )) whose divisors are F2 and F3 respectively. Indeed,
these generate a subring of R0 and we will show that there are no other
forms. The subring for a = 0 mod 6 is isomorphic to the homogeneous ring
of the CP1 of the base of the fibration, so it is a polynomial ring in u30 and
u21. If a is odd, then O(aF ) restricts to a nontrivial bundle to F3 (because
the normal bundle of the double fiber is nontrivial), so all global sections of
it vanish on F3 and the corresponding elements in R0 are divisible by u1.
Similarly, if a is not divisible by 3 then all global sections of O(aF ) vanish
on F2 and the elements are divisible by u0. Together, these observations
imply the result. !

Lemma 2.2. The dimension of H0(Y,O(aF + S)) is 1 for a = 0 and is
(a− 1) for a > 0.

Proof. For 0 ≤ a ≤ 2 we have (aF + S)S < 0, so any section of O(aF + S)
must vanish on S, and the statement follows from Lemma 2.1. For a ≥ 3
we have χ(aF + S) = 1

2
(aF + S)((a− 1)F + S) + 1 = a− 1, so it suffices to

show that the invertible sheaf O(aF + S) has no higher cohomology. The
vanishing of H2(Y,O(aF + S)) for all integer a is clear from Serre duality
and the fact that every effective divisor on Y must have a nonnegative
intersection with F . To see the vanishing of H1(Y,O(aF + S)), we run
induction on a. Specifically, consider the long exact sequence below.

0 → H0(Y,O((a− 2)F + S)) → H0(Y,O(aF + S)) → H0(Y, i∗OF2
(aF + S))

→ H1(Y,O((a− 2)F + S)) → H1(Y,O(aF + S)) → H1(Y, i∗OF2
(aF + S))

Since (aF + S)F2 = 2, the last term is 0, so it suffices to prove that
H1(Y,O(aF + S)) = 0 for a ∈ 1, 2, which follows from our computation
of the global sections of these divisors. !

1Technically, we could just conjecture everything, with the justification for it being the
final outcome, but it is worth proving what we can.
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Lemma 2.3. For b ≥ 1 and a ≥ 3b the dimension of H0(Y,O(aF + bS))
for a ≥ 0 and b ≥ 1 is equal to χ(O(aF + bS)) = 1

2
(2ab − b− 3b2 + 2).

Proof. We will prove it by induction on b with the base case provided by
Lemma 2.2. As before, dimH2(Y,O(aF + bS)) = dimH0(Y,O((1 − a)F −
bS)) = 0, so the statement amounts to dimH1(Y,O(aF + bS)) = 0. For the
induction step, the short exact sequence

0 → O(aF + (b− 1)S) → O(aF + bS)) → iS∗O(aF + bS) → 0

leads to

→ H1(Y,O(aF + (b− 1)S) → H1(Y,O(aF + bS)) → H1(S, i∗SO(aF + bS)).

The terms on the left and on the right are zero by the induction hypothesis
and (aF + bS)S = a− 3b ≥ 0. !

The above lemmas allow us to compute the graded dimension of R.

Proposition 2.4.
∑

a,b≥0

dimH0(Y,O(aF + bS)) sbta =
1 + 2st4 + 2st5 + s2t9

(1− t2)(1− t3)(1− s)(1− st3)
.

Proof. We denote dimH0(Y,O(aF + bS)) = ca,b to simplify notation. Since
(aF + bS)S < 0 implies that S is a fixed component of |aF + bS|, we see
that for a < 3b there holds ca,b = ca,b−1. Therefore,

∑

a,b≥0
ca,btasb equals

s
1−s

∑

b≥0(c3b,bt
3b + c3b+1,bt3b+1 + c3b+2,bt3b+2)sb +

∑

b≥0

∑

a≥3b ca,bt
asb.

We then use Lemmas 2.1 and 2.3 to write the above as
s

1−s
(1 + t2) + 1

(1−t2)(1−t3) +
∑

b≥1 s
b
(

s
1−s

(12 (2(3b)b− b− 3b2 + 2)t3b

+ 1
2 (2(3b+ 1)b− b− 3b2 + 2)t3b+1 + 1

2 (2(3b+ 2)b− b − 3b2 + 2)t3b+2)

+
∑

a≥3b
1
2 (2ab− b− 3b2 + 2)ta

)

which is then easily computed by Mathematica.2 !

As a consequence of Proposition 2.4 we conjecture that R has a structure
of a rank six graded free module over the ring

C[u0, u1, v1, v2]

generated by the sections u0, u1, v1 and v2 of O(2F ), O(3F ), O(S) and
O(3F + S) respectively. Note that while u0, u1, v1 are defined uniquely up
to scaling, the section v2 can also be changed by adding a scalar multiple of
u1v1. We denote the generators of the module at weights (4, 1) and (5, 1)
by v3, v4, v5, v6. We conjecture that the generator at degree (9, 2) is equal
to v3v5. It can likely be proved that the ring R is Gorenstein, which would
then imply that such choice is possible, but we just take it as a sensible
guess.

2It is, of course, computable by hand, but this seems to be a fool’s errand given sub-
sequent use of various software.
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We will consider polynomial relations on u0, . . . , v6. By looking at the
graded dimension of R we observe that these variables must satisfy three
linearly independent relations of degree (8, 2), three linearly independent re-
lations of degree (9, 2) and three relations of degree (10, 2), which are linearly
independent together with u0 multiplies of the (8, 2) relations. We will refer
to these relations as quadrics (in vi). In general, genus one curves of degree
6 in P5 can be written as an intersection of nine degree two polynomials
and we expect that for most values of u0 and u1 these quadrics describe the
corresponding fiber of Y → CP1.

We then set up the possible quadrics with undetermined coefficients, tak-
ing care to undo multiple symmetries of the construction. For example, we
make sure that the coefficients of the (8, 2) quadrics in v23, v3v4, v

2
4 are the

standard basis vectors, and similarly for (9, 2) and (10, 2) quadrics. We as-
sume that (v3, v4) and (v5, v6) are dual to each other in the socle pairing of
R/〈u0, u1, v1, v2〉. We can also make additional assumptions on the coeffi-
cients in view of the possible changes of vi such as v2 → αv2 + βu1v1. The
one such assumption which appears crucial to the success of the method is
to require that the coefficients of the first (8, 2) quadric at v3v1u20 an v4v1u20
are 1 and 0, the coefficients of the second quadric at these monomials are
both 0 and the coefficients of the third quadric are 0 and 1 respectively. It
can be shown that a generic collection of the quadrics can be manipulated
into this form by appropriate linear changes of v3, v4 together with adding
multiples of u20v1 to them. However, there are six ways of doing so, which
means that while we expect Y0 to be defined over a quadratic imaginary
field, we can not expect the coefficients of these quadrics to be this simple.

Once the quadrics are written down, one can compute the multiplication
table for the generators of R as a free module over C[u0, u1, v1, v2] and
then set up the associativity relations as equations on the coefficients of the
quadrics, see [B22+, DolgachevSurfaces.nb]. The associativity relations led
to over 1600 equations in 92 variables. Fortunately, some of these equations
were quite simple, but still the task appeared daunting. We were able to
use the Mathematica “Solve” command to eventually reduce to nine free
parameters. The basic idea was to try to solve the easier equations first, with
either byte count or the number of terms used as measure of complexity. The
drawback of this technique is that one can at best hope to recover rational
parameterizations by a subset of the set of variables, but we were fortunate
in this case. The resulting equations are presented in (7.1) in the Appendix.
The variables di are the parameters and the variables u0, u1, v1, . . . , v6 are
the coordinates.

Having found the equations of a nine-parameter family, we then tried to
impose additional geometric conditions on it. We postulated without loss of
generality that the I9 fiber of Y occurs at u30 = u21 (or simply u0 = u1 = 1
if one wants to dehomogenize). We know from the work of Keum [Ke08]
that possible intersections of S with (A,A1, A2) fall into cases (2, 2, 1) and
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(1, 1, 3), so in either setting the image of the I9 fiber in Y0 should have two
disjoint lines. We first solved for the condition that equations (7.1) vanish
on one line, by parameterizing the said line. This gave a seven-parameter
family and we used its explicit description to put in a condition of having
two such lines, taking care not to get the degenerate cases where the lines
intersect. We used Mathematica to solve for one variable at a time, and then
plugged the results into the remaining equations. Our choices were guided
by the desire to keep the size of the equations manageable. There was a lot
of trial and error involved and even in the best case the computations took
a long time. Due to an unfortunate mistake on the author’s part (accidental
deletion of a key file), some of the intermediate steps were lost, however,
the final five-parameter answer survived and is explicitly written in [B22+,
DolgachevSurfaces.nb].

The general member of this five parameter family has a double and a triple
fiber at u1 = 0 and u0 = 0 respectively and a special fiber at u30 = u21 which
has the following configuration of curves A, B, A1, A2 and their intersection
points p1, . . . , p4.

special fiber

at u30 = u21

p3

p2

p1

p4

A

B

A2

A1

Here, A2 and B are the two disjoint lines in the special fiber and the
degrees of A and A1 are 2.

Our next step was to impose the conditions that Y0 is singular at p1, p3
and p4, as would be expected by the geometry of the surface. One immedi-
ate technical difficulty was that the points p1 and p2 were not defined over
the parameter space. However, we were able to make a change of variables,
similar to a rational parametrization of a plane conic, to resolve this diffi-
culty. We also made a simple coordinate change to simplify the formulas
somewhat, see [B22+, DolgachevSurfaces.nb] for details.

The conditions of being singular at each pi were computed as follows. We
looked at the Jacobian matrix of the quadrics at pi and computed its minors.
We then computed the greatest common factor of these minors, which left
us with large, but manageable expressions in parameters t1, . . . , t5. An ad
hoc manipulation of the equations and the parameters allowed us to replace



FAKE PROJECTIVE PLANES WITH 21 AUTOMORPHISMS 9

ti by s1, . . . , s5 and then solve for s1 and s5. The polynomial equation on
the remaining parameters s2, s3 and s4 has several factors, with all but one
of them leading to undesirable degeneracies. We were left with a polynomial
with integer coefficients of degree 3, 13 and 12 in s2, s3 and s4 respectively.
It is about 130Kb long in its expanded form and thus is not worth trying
to write down explicitly in the paper, see [B22+, DolgachevSurfaces.nb]. It
appears that the resulting two-dimensional parameter space is not rational,
but it was simple enough for our purposes.

3. Finding the special Dolgachev surface

This section describes how we found the surface Y0. We expected that
Y0 has 1

3
(1, 2) singularities at p3 and p4, and it would be reasonable to try

to encode these in terms of s2, s3 and s4 subject to the large polynomial
equation. Unfortunately, this direct approach was not computationally fea-
sible, as equations ballooned to hundreds of Mbytes in length. So we used
an alternative method of finite field reduction. Specifically, we wanted to
find a reduction of Y0 modulo a prime p and then lift it first to p-adics and
then to a number field.

We looked at various primes p and parameters (s2, s3, s4) ∈ F3
p, with p

chosen so that
√
−7 exists in Fp, as it appeared likely that we would need

this in the field of definition. For each triple of parameters we first checked
whether it fits the polynomial relation that defines the parameter space.
Then we used Magma to compute the structure of singularities at p3 and p4
(we have lengthy but explicit formulas for pi in terms of the parameters).
If both singularities looked right, then we took note of the values of the
parameters. For one reason or another, we had to go to p = 79 before any
suitable examples were found! However, at p = 79 there were six possible
solutions, see [B22+, Search79].

(s2, s3, s4) ∈ {(14, 47, 52), (15, 65, 27), (19, 32, 14),
(44, 14, 32), (58, 27, 65), (72, 52, 47)}

It was then an interesting challenge to lift these solutions to powers of
79. By solving for v5 and v6 one can reduce the problem to codimension
two. Then it is possible to encode the condition of having worse than nodal
singularity as a certain polynomial in terms of first and second derivatives
of the defining equations. Then we endeavored to have these polynomials
produce values that are zero modulo higher and higher powers of 79, as we
are adjusting our parameters si to a more accurate p-adic approximation. Of
course, we also have to keep the defining polynomial of the family zero to the
appropriate power of 79. The resulting code is messy, but not particularly
slow, and we were able to compute the values of si up to 79101 in reasonable
amount of time.

Once a p-adic approximation was found, it was then routine to find “sim-
ple” algebraic numbers that give these parameters si. As in [BF20, BBF20]
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we used a lattice reduction algorithm to find a small linear combination of
powers of si modulo 79101 and 79101 itself. This suggested that these are
algebraic numbers of degree 12. By looking at the standard polynomial, we
indeed found 12 possible triples (s2, s3, s4). Perhaps not surprisingly, our
finite field search only picked up the six cases that correspond to the simple
roots of the reduction of the defining polynomial of s2

1048576+ 9633792s2 + 47179776s22 + 156022272s32 + 376708864s42
+693988960s52+ 1003433368s62 + 1148276192s72 + 1023247890s82
+681835980s92+ 317640295s102 + 91989513s112 + 12492403s122

modulo 79.

Since we expected that Y0 can be defined over a quadratic field, as is
the FPP it came from, we wanted to find a coordinate change in vi to see
it. Specifically, we aimed to get the points pi to have simple coordinates.
As it is a lot faster in Mathematica, this was done numerically and then
the coefficients were approximated by algebraic numbers. The resulting
equations (7.2) are listed in the Appendix where we use wi to denote new
variables, with u0 and u1 not affected by the coordinate change.

4. Construction and identification of the fake projective
plane

This section describes how we found the fake projective plane (up to
conjugation) and identified it as (C20, p = 2, ∅,D327). The relevant calcula-
tions are contained in the Mathematica file SevenfoldCover.nb and Magma
files Torsion and CheckSmoothness, as well as Macaulay2 file CheckFPP in
[B22+].

We know that S is cut out by w1 = 0, but it takes a bit of an effort to find
equations of S1 and S2. The first idea is that since (4F + S)S = 4− 3 = 1,
the sections w3 and w4 are linear on S. Thus, points on S can be param-
eterized by t = w4

w3
. This is true for any member of the nine-dimensional

family of Dolgachev surfaces (7.1). So we know both the equation and the
parameterization of S and we would like to do the same for S1 and S2.

It follows from the intersection form considerations [B22+, Intersection-
Forms.nb] that S2 is cut out by an equation of bidegree (8, 1) which also
passes through A and A2 with multiplicities one and three respectively. We
pick multiple points on A and A2 and encode the relevant conditions on the
(8, 1) polynomial to find it to be

(4.1)
u40w1 +

1

149
(−124 − 9 i

√
7)u0u21w1 +

1

8344
(−553 + 509 i

√
7)u0u1w2

+ 1

149
(20− 37 i

√
7)u20w3 +

1

596
(−155 + 175 i

√
7)u20w4

+ 1

8344
(3255 + 1093 i

√
7)u1w5 +

1

2086
(−763− 369 i

√
7)u1w6.

We also needed to compute the parametric equation of S2. After some of
the more straightforward approaches failed to finish, we did the following.
For a given value of the parameter t on S we can compute the corresponding
point p(t) on S and six points of S2 in the same fiber of genus one fibration.
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One of these points is the image p1(t) of p(t) under the predicted order three
birational automorphism of Y0. If t is an integer, then this point on S2 has to
be defined over Q(i

√
7) which allows us to distinguish p1(t) from five others.

After normalization w1 = 1, the coordinates of p1(t) are polynomial in t of
degree at most 5, and we use several values of t to find their coefficients.
The resulting parameterization is given in (7.3) in the Appendix.

One could follow a similar approach to find S1 which has a degree (10, 1)
equation vanish on it, but we chose to use the group law of the elliptic fibers
instead. Indeed, we know that for a given value of t the points p(t), p1(t)
and p2(t) satisfy p(t) + p1(t) = 2p2(t) under the group law of the fiber with
any choice of origin. This allows us to find p1(t) and then compute the
parameterization (7.4). We then find the degree (10, 1) polynomial
(4.2)
u50w1 − u20u

2
1w1 +

1

7112
(−1897 − 3 i

√
7)u20u1w2) +

1

254
(−3 + 17 i

√
7)u30w3

+ 1

254
(39 + 33 i

√
7)u21w3 +

1

508
(−71− 21 i

√
7)u30w4 +

1

254
(−71− 21 i

√
7)u21w4

+ 1

7112
(6559 + 509 i

√
7)u0u1w5 +

1

1778
(−1435 − 81 i

√
7)u0u1w6

that vanishes on S1.

We then computed the order three birational automorphism by postulat-
ing its general form and using the parametrization of S, S1 and S2 to find
the coefficients. It can be viewed as an order three automorphism of a genus
one curve defined over C(u0, u1). The formulas for the automorphism are in
(7.5).

We were then ready to compute the equations of the sevenfold cover of
Y . The method was essentially the same as that of [BK19] but we briefly
describe it here for the benefit of the reader. We know that the seven-fold
Galois cover P2

fake → Y is ramified at S,B,C, S1, B1, C1, S2, B2, C2. We
consider the rational function

(4.3)
f1,10f2

1,8

u70(u
3
0 − u21)

2w3
1

where f1,8 and f1,10 are given in (4.1) and (4.2) respectively. Its divisor
is supported on the special curves, with all but the nine S, . . . , C2 curves
above having multiplicity divisible by 7. So the function field of P2

fake is
obtained from that of Y by adding the seventh root of the function (4.3).
We then compute ten sections of the bicanonical linear system on P2

fake by
projecting them to Y and realizing them as sections of various line bundles
on Y0. Care is taken to have the action of the automorphism group look
nice in these coordinates. Specifically, we have ten variables P0, . . . , P9 on
which the order seven element acts by

g7(P0, . . . , P9) = (P0, ζ7P1, ζ
2
7P2, ζ

4
7P3, ζ

3
7P4, ζ

6
7P5, ζ

5
7P6, ζ

3
7P7, ζ

6
7P8, ζ

5
7P9)

and order three element acts by

g3(P0, . . . , P9) = (P0, P2, P3, P1, P5, P6, P4, P8, P9, P7).
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See [B22+, SevenfoldCover.nb] for more details.

Having constructed a fake projective plane with 21 automorphisms, we
want to try to identify it in accordance with the Cartwright-Steger classifi-
cation. Since the Dolgachev surface it is built from has a double and a triple
fiber, there are two possibilities: the Keum’s surface (a = 7, p = 2, {7},D327)
and (C20, p = 2, ∅,D327). In the former case, the torsion in the Picard group
is C3

2 , with the automorphism group G acting transitively on seven nontriv-
ial elements. Therefore, for every cyclic subgroup of order three in G there
should be a unique G-invariant torsion element on P2

fake. This naturally
lead to us trying to construct such torsion classes.

If L is a torsion class in the Picard group of a fake projective plane,
then H0(P2

fake,K + L) is one-dimensional, see for example [GKS16]. If L
is furthermore a two-torsion element, then the square of the corresponding
section is in H0(P2

fake, 2K). In the other direction, two-torsion elements of
the Picard group can be constructed from sections of 2K which give non-
reduced curves. Additional condition of C3 invariance means that we should
consider sections

(4.4) a0P0 + a1(P1 + P2 + P3) + a2(P4 + P5 + P6) + a3(P7 + P8 + P9)

up to scaling.

We looked at the finite field reduction of P2
fake to look for such ai. Specif-

ically, p = 29 was the smallest prime that both had
√
−7 in it and had the

expected Hilbert polynomial of the reduction of P2
fake. We then ran through

all possible ai with a0 = 1 and used Magma to check if the resulting scheme
is non-reduced, see [B22+, Torsion]. We got three solutions, which was
already a likely indicator that the P2

fake is not (a = 7, p = 2, {7},D327)

but rather is (C20, p = 2, ∅,D327) which has a larger torsion subgroup C6
2

in its Picard group. However, we needed to ascertain it by lifting to the
characteristic zero.

The lifting procedure was pretty typical of such approach: we lifted the ai
in (4.4) to mod pk for large enough k and then guessed the algebraic num-
bers that could give these reductions. It is worth mentioning how exactly
we did the lifting. We found via Magma several points on the non-reduced
linear cut of the reduction of P2

fake modulo p, then at each point we found

two linearly independent tangent vectors in P9(F29) which are orthogonal
to the gradients of all 84 cubic polynomials and the linear polynomial (4.4).
We lifted these vectors to small integers and then were successively adjusting
them so that the aforementioned orthogonality held modulo higher powers
of p. At each stage we modified the points, the tangent vectors and the
polynomial (4.4) to the next power of p; this amounted to solving a system
of linear equations modulo p which was not time-consuming. Afterwards,
we identified the corresponding algebraic numbers.
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One of the solutions was the linear polynomial

(4.5)
P0 +

1

2
(1 + i

√
7)(P1 + P2 + P3) + (−122 + 2 i

√
7)(P4 + P5 + P6)

+1

7
(84 − 4 i

√
7)(P7 + P8 +P9)

and the other two were defined over a degree four number field. For each
of these equations we then verified that the resulting cuts are non-reduced.3

We note that the resulting two-torsion line bundles are not C7 invariant,
so we have established at least 21 nontrivial two-torsion elements of the
Picard group which indicates that our surface is (up to complex conjugation)
(C20, p = 2, ∅,D327).

Last but not least, we used the description of the above non-reduced linear
cut to find a more pleasant basis for H0(P2

fake, 2K), see [B22+, Sevenfold-
Cover.nb]. Namely we used a coordinate change from Pi to Qi in which the
aforementioned non-reduced cut (4.5) becomes

Q0 +Q1 +Q2 +Q3 +Q7 +Q8 +Q9.

This allowed us to find a model of it with smaller coefficients of the 84
equations, which we recorded in [B22+, EqsFPPwithrrQ]. We then went
through the verification procedure developed in [BK19] to make sure that
the scheme cut out by the 84 cubic relations in 10 variables is indeed a
fake projective plane in its bicanonical embedding, see [B22+, CheckFPP,
CheckSmoothness]. The smoothness calculation was performed by looking
at three specific minors which are nonzero at the C7 invariant points of
P2
fake. Each minor took a few hours to compute on our hardware.

5. Constructing the fake projective plane of Keum

While looking for Dolgachev surfaces with two disjoint lines, we have
found a 5-parameter subfamily of Dolgachev surfaces with two disjoint lines
in the special fiber with the intersections of S with A, A1 and A2 given
by (1, 1, 3). This makes it is provably different from the family in Step 2.
This family was noticeably harder to work with. It was not even entirely
straightforward to find the intersection points of the components of the
special fiber. In particular, conditions of being singular at the three of
these points were far too complicated to simplify. The details are in [B22+,
SecondFamily.nb]

To find a member of this family with additional singularities (1.1), we
used a brute force approach. Namely, we ran a search over the parameter
space F5

p for small p, computed the intersection points of the components
of the special fiber and checked to see if the tangent space at the three
points of interest had the correct dimension. This was too time-consuming
in Mathematica so we used lower level languages. We first tried PARI/GP

3This verification was only done numerically rather than symbolically, but it is suffi-
ciently convincing for our purposes. An interested reader is welcome to try their hand at
verifying it symbolically.
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and then eventually C [B22+, finitefieldnodes.c]. Clearly, this is very easy
to parallelize, and we ran multiple computations at a time on the Amarel
cluster [Ama]. This allowed us to reduce the set of possible parameters to
roughly p2. For each of these we used Mathematica to check if there are
worse-than-nodal singularities at the two expected points.

The first successful prime was p = 53. We proceeded to lift the solu-
tion to the p-adics, as described in Section 3. We computed the seven-fold
cover along the lines of Section 4, see [B22+, FindingKeumFPP.nb]. We
do not write down the parametric equations or the C3 symmetry, but do
list the equations in (7.6) for the record, also available at [B22+, Quadric-
sWforKeum]. The field extension needed to construct the cyclic cover was
obtained by adding the seventh root of
(

4u40w1 − 4u0u
2
1w1 + (18− 6i

√
7)u0u1w2 − (3− i

√
7)u20w3 + (5 + 3i

√
7)u20w4

+ (−1− 3i
√
7)u1w5 + (−19− 7i

√
7)u1w6

) (

− 66u20u1w2 + (8 + 4i
√
7)u30w3

+ (−2 + 10i
√
7)u21w3 + (−31 + i

√
7)u30w4 + (−34− 6i

√
7)u21w4

+ (−17− 3i
√
7)u0u1w5 + (142 − 6i

√
7)u0u1w6

)2
/(u140 w3

1)

We verified that the resulting equations give a fake projective plane by
the same method. By elimination, it must be the one constructed by Keum
in [Ke06]. We did not try to simplify the equations of the Keum’s FPP
using the torsion elements in its Picard group, even though it must be pos-
sible to do. The plan is to have an undergraduate researcher to try to use
our approach to simplify equations of this and other known fake projective
planes.

6. Open problems

The construction of the this paper raises several interesting questions.

One can try to apply our approach to computing order two elements of the
Picard group of the fake projective plane (C20, p = 2, ∅,D327) to other fake
projective planes. It is important to have at least a C3 symmetry, otherwise
the finite field search may take too long. One can even try to do it with
C3-invariant elements of higher order by looking for reducible linear cuts in
the bicanonical embedding, although it is less clear how to do the lifting in
this case.

It is hoped that the knowledge of Keum’s FPP will allow one to find ex-
plicit equations of Mumford’s FPP. This appears to boil down to finding
a degree 7 non-Galois cover of the quotient of P2

Keum
by its C3 automor-

phism group, with the Galois group of the corresponding splitting field be-
ing PSL(2, 7). Perhaps the key to this is understanding such covers for the
fibers of the map Y → P1. In fact, the triple fiber leads one to look for such
degree 7 covers C → E of a genus 7 curve C which are ramified over two
explicitly known points on an explicitly known genus one curve E. This is
currently work in progress.
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7. Appendix

Equations of the nine-parameter family of Dolgachev surfaces.
(7.1)
d2d5d9u0u2

1v
2
1 + d2d3d29u0u2

1v
2
1 − d2d6d29u0u2

1v
2
1 + d3d9u0u1v1v2 + d2d4d9u0u1v1v2

+d2d5d9u0u1v1v2 + 2d2d3d29u0u1v1v2 − 2d2d6d29u0u1v1v2 + d3d9u0v22 + d2d4d9u0v22
+d2d3d29u0v22 − d2d6d29u0v22 + d2u2

0v1v3 + d2v23 − d2d9u1v1v5 − v2v5 − d2d9v2v5
+d2d9u1v1v6 + d2d9v2v6,−d2d5d9u0u2

1v
2
1 − d2d3d8d9u0u2

1v
2
1 + d2d6d8d9u0u2

1v
2
1

−d3d8u0u1v1v2 − d2d4d9u0u1v1v2 − d2d5d9u0u1v1v2 − d2d3d7d9u0u1v1v2
+d2d6d7d9u0u1v1v2 − d2d3d8d9u0u1v1v2 + d2d6d8d9u0u1v1v2 − d3d7u0v22
−d2d4d9u0v22 − d2d3d7d9u0v22 + d2d6d7d9u0v22 + d2v3v4 + d2d9u1v1v5 + d2d9v2v5
−d2d9u1v1v6 − d2d9v2v6, d2d5d9u0u2

1v
2
1 + d2d3d8d9u0u2

1v
2
1 − d2d6d8d9u0u2

1v
2
1

+d1d9u0u1v1v2 + d2d4d9u0u1v1v2 + d2d5d9u0u1v1v2 + d2d3d7d9u0u1v1v2
−d2d6d7d9u0u1v1v2 + d2d3d8d9u0u1v1v2 − d2d6d8d9u0u1v1v2 + d1d9u0v22
+d2d4d9u0v22 + d2d3d7d9u0v22 − d2d6d7d9u0v22 + d2u2

0v1v4 + d2v24 − d2d9u1v1v5
−d2d9v2v5 + d2d8u1v1v6 + d2d7v2v6, d3u3

0v1v2 + d2u2
1v1v2 + d2u1v22

+d2d3d9u0u1v1v4 − d2d6d9u0u1v1v4 + d3u0v2v4 + d2d3d9u0v2v4 − d2d6d9u0v2v4
+d2v3v6,−d2d5d9u3

0u1v21 + d2d6d8d9u3
0u1v21 − d2d3d29u

3
0u1v21 + d22d8d9u

3
1v

2
1

−d22d
2
9u

3
1v

2
1 − d2d4d9u3

0v1v2 + d2d6d7d9u3
0v1v2 − d2d3d29u

3
0v1v2 + d2d8u2

1v1v2
+d22d7d9u

2
1v1v2 + d22d8d9u

2
1v1v2 − 2d22d

2
9u

2
1v1v2 + d2d7u1v22 + d22d7d9u1v22

−d22d
2
9u1v22 − d2d5d9u0u1v1v3 + d2d6d8d9u0u1v1v3 − d1d2d29u0u1v1v3 − d1d9u0v2v3

−d2d4d9u0v2v3 + d2d6d7d9u0v2v3 − d1d2d29u0v2v3 − d2d5d9u0u1v1v4
−d2d4d9u0v2v4 + d2d9u2

0v1v5 + d2d9v3v5 − d2d9u2
0v1v6 − d2d9v4v6,−d3d8u3

0u1v21
+d3d9u3

0u1v21 − d2d8u3
1v

2
1 + d2d9u3

1v
2
1 − d3d7u3

0v1v2 + d3d9u3
0v1v2 − d2d7u2

1v1v2
−d2d8u2

1v1v2 + 2d2d9u2
1v1v2 − d2d7u1v22 + d2d9u1v22 − d3d8u0u1v1v3 + d1d9u0u1v1v3

−d3d7u0v2v3 + d1d9u0v2v3 + v4v5, d2d3d9u5
0v

2
1 + d22d9u

2
0u

2
1v

2
1 − d2d3d5d8d9u2

0u
2
1v

2
1

+d1d2d5d29u
2
0u

2
1v

2
1 + d22d9u

2
0u1v1v2 − d2d3d5d7d9u2

0u1v1v2 − d2d3d4d8d9u2
0u1v1v2

+d1d2d4d29u
2
0u1v1v2 + d1d2d5d29u

2
0u1v1v2 − d2d3d4d7d9u2

0v
2
2 + d1d2d4d29u

2
0v

2
2

+d1d2d9u3
0v1v3 + d22d8u

2
1v1v3 + d22d7u1v2v3 + d2d3d9u3

0v1v4 + d22d9u
2
1v1v4

+d22d9u1v2v4 − d2d5d9u0u1v1v5 + d2d6d8d9u0u1v1v5 − d1d2d29u0u1v1v5
−d1d9u0v2v5 − d2d4d9u0v2v5 + d2d6d7d9u0v2v5 − d1d2d29u0v2v5 + d2d9v25
−d2d3d8d9u0u1v1v6 + d1d2d29u0u1v1v6 − d2d3d7d9u0v2v6 + d1d2d29u0v2v6,
d2d3u5

0v
2
1 + d22u

2
0u

2
1v

2
1 + d2d23d8d9u

2
0u

2
1v

2
1 − d2d3d6d8d9u2

0u
2
1v

2
1 − d1d2d3d29u

2
0u

2
1v

2
1

+d1d2d6d29u
2
0u

2
1v

2
1 + d22u

2
0u1v1v2 + d23d8u

2
0u1v1v2 − d1d3d9u2

0u1v1v2
+d2d23d7d9u

2
0u1v1v2 − d2d3d6d7d9u2

0u1v1v2 + d2d23d8d9u
2
0u1v1v2

−d2d3d6d8d9u2
0u1v1v2 − 2d1d2d3d29u

2
0u1v1v2 + 2d1d2d6d29u

2
0u1v1v2 + d23d7u

2
0v

2
2

−d1d3d9u2
0v

2
2 + d2d23d7d9u

2
0v

2
2 − d2d3d6d7d9u2

0v
2
2 − d1d2d3d29u

2
0v

2
2

+d1d2d6d29u
2
0v

2
2 + d2d3u3

0v1v3 + d22u
2
1v1v3 + d22u1v2v3 + d2d3u3

0v1v4 + d22u
2
1v1v4

+d22u1v2v4 + d2v5v6, d22d3d9u
5
0v

2
1 + d32d9u

2
0u

2
1v

2
1 − d22d3d5d

2
9u

2
0u

2
1v

2
1

+d22d5d6d
2
9u

2
0u

2
1v

2
1 + d22d3d6d8d

2
9u

2
0u

2
1v

2
1 − d22d

2
6d8d

2
9u

2
0u

2
1v

2
1 − d1d22d3d

3
9u

2
0u

2
1v

2
1

+d1d22d6d
3
9u

2
0u

2
1v

2
1 + d32d9u

2
0u1v1v2 − d2d3d5d9u2

0u1v1v2 + d2d3d6d8d9u2
0u1v1v2

−2d1d2d3d29u
2
0u1v1v2 − d22d3d4d

2
9u

2
0u1v1v2 − d22d3d5d

2
9u

2
0u1v1v2

+d1d2d6d29u
2
0u1v1v2 + d22d4d6d

2
9u

2
0u1v1v2 + d22d5d6d

2
9u

2
0u1v1v2

+d22d3d6d7d
2
9u

2
0u1v1v2 − d22d

2
6d7d

2
9u

2
0u1v1v2 + d22d3d6d8d

2
9u

2
0u1v1v2

−d22d
2
6d8d

2
9u

2
0u1v1v2 − 2d1d22d3d

3
9u

2
0u1v1v2 + 2d1d22d6d

3
9u

2
0u1v1v2 − d1d3d9u2

0v
2
2

−d2d3d4d9u2
0v

2
2 + d2d3d6d7d9u2

0v
2
2 − 2d1d2d3d29u

2
0v

2
2 − d22d3d4d

2
9u

2
0v

2
2 + d1d2d6d29u

2
0v

2
2

+d22d4d6d
2
9u

2
0v

2
2 + d22d3d6d7d

2
9u

2
0v

2
2 − d22d

2
6d7d

2
9u

2
0v

2
2 − d1d22d3d

3
9u

2
0v

2
2 + d1d22d6d

3
9u

2
0v

2
2

+d22d3d9u
3
0v1v3 + d32d9u

2
1v1v3 + d32d9u1v2v3 + d22d6d9u

3
0v1v4 + d32d9u

2
1v1v4 + d22u1v2v4

+d32d9u1v2v4 + d22d3d
2
9u0u1v1v5 − d22d6d

2
9u0u1v1v5 + d2d3d9u0v2v5 + d22d3d

2
9u0v2v5

−d22d6d
2
9u0v2v5 + d22d5d9u0u1v1v6 + d22d4d9u0v2v6 + d22d9v

2
6
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Equations of Y0 in the case of (C20, p = 2, ∅,D327).
(7.2)

1
32 (−63 + 259 i

√
7)u40w

2
1 +

1
32 (63− 259 i

√
7)u0u21w

2
1 +

1
64 (21 + 31 i

√
7)u0u1w1w2

+ 1
32 (−1− 3 i

√
7)u0w2

2 +
1
16 (133− 17 i

√
7)u20w1w3 +w2

3 +
1
32 (−217 + 21 i

√
7)u20w1w4

+ 1
64 (77− 57 i

√
7)u1w1w5 +

1
32 (−67 + 23 i

√
7)w2w5 +

1
16 (−49 + 13 i

√
7)u1w1w6

+ 1
8 (9− 5 i

√
7)w2w6,

1
4 (7 + 30 i

√
7)u40w

2
1 +

1
4 (−7− 30 i

√
7)u0u21w

2
1

+ 1
32 (11 + 9 i

√
7)u0u1w1w2 +

1
56 (−7− 5 i

√
7)u0w2

2 +
1
4 (23− 4 i

√
7)u20w1w3

+ 1
16 (−77 + 9 i

√
7)u20w1w4 +w3w4 +

1
32 (51− 7 i

√
7)u1w1w5 +

1
56 (−77 + 41 i

√
7)w2w5

+ 1
8 (−23 + 3 i

√
7)u1w1w6 + 1

14 (7− 9 i
√
7)w2w6, 1

64 (275 + 471 i
√
7)u40w

2
1

+ 1
64 (−275− 471 i

√
7)u0u21w

2
1 +

1
448 (161− 11 i

√
7)u0u1w1w2 +

1
28 (−7− 2 i

√
7)u0w2

2

+ 1
64 (229 + 17 i

√
7)u20w1w3 +

1
4 (−10− 3 i

√
7)u20w1w4 +w2

4 +
1

112 (175− 31 i
√
7)u1w1w5

+ 1
28 (−21 + 22 i

√
7)w2w5 +

1
14 (−42 + 11 i

√
7)u1w1w6 − 5

7 i
√
7w2w6,

1
1472 (2107− 567 i

√
7)u30u1w

2
1 +

1
1472 (−2107 + 567 i

√
7)u31w

2
1 +

1
1472 (−973 + 617 i

√
7)u30w1w2+

1
736 (427− 607 i

√
7)u21w1w2 + 1

736 (−177 + 73 i
√
7)u1w2

2 +
1
16 (−63 + 47 i

√
7)u0u1w1w3+

1
184 (254− 29 i

√
7)u0w2w3 +

1
184 (861− 497 i

√
7)u0u1w1w4 +

1
736 (−1071 + 147 i

√
7)u0w2w4+

1
64 (161− 61 i

√
7)u20w1w5 +

1
368 (−1169 + 413 i

√
7)u20w1w6 +w3w6 +

1
92 (−63− 13 i

√
7)w4w6,

1
736 (2457− 735 i

√
7)u30u1w

2
1 +

1
736 (−2457 + 735 i

√
7)u31w

2
1 +

1
368 (−413 + 201 i

√
7)u30w1w2+

1
92 (119− 70 i

√
7)u21w1w2 + 1

736 (−257 + 139 i
√
7)u1w2

2 +
1
8 (−49 + 23 i

√
7)u0u1w1w3+

1
736 (1565− 167 i

√
7)u0w2w3 + 1

92 (651− 203 i
√
7)u0u1w1w4 + 1

184 (−399 + 71 i
√
7)u0w2w4+

1
16 (105− 37 i

√
7)u20w1w5 +w3w5 +

1
92 (−707 + 171 i

√
7)u20w1w6 +

1
23 (−14− 8 i

√
7)w4w6,

1
5888 (4249− 171 i

√
7)u30u1w

2
1 +

1
5888 (−4249 + 171 i

√
7)u31w

2
1 +

1
2944 (−1551 + 589 i

√
7)u30w1w2+

1
368 (371− 41 i

√
7)u21w1w2 +

1
5888 (−903 + 565 i

√
7)u1w2

2 +
1

128 (−399 + 77 i
√
7)u0u1w1w3

+ 1
5888 (6223− 653 i

√
7)u0w2w3 + 1

184 (707− 33 i
√
7)u0u1w1w4 + 1

736 (−765 + 151 i
√
7)u0w2w4+

1
16 (57− 27 i

√
7)u20w1w5 +w4w5 + 1

368 (−1755 + 433 i
√
7)u20w1w6 + 1

184 (−159− 35 i
√
7)w4w6,

1
32 (245 + 217 i

√
7)u50w

2
1 +

1
32 (−245− 217 i

√
7)u20u

2
1w

2
1 +

1
256 (287− 157 i

√
7)u20u1w1w2

+ 1
256 (−71− 11 i

√
7)u20w

2
2 +

1
32 (119− 21 i

√
7)u30w1w3 +

1
256 (−7 + 181 i

√
7)u21w1w3

+ 1
256 (−121− 53 i

√
7)u1w2w3 +

1
8 (−49− 7 i

√
7)u30w1w4 +

1
32 (119− 21 i

√
7)u21w1w4

+ 1
32 (−7 + 5 i

√
7)u1w2w4 + 1

32 (−343 + 17 i
√
7)u0u1w1w5 + 1

32 (33 + 29 i
√
7)u0w2w5 +w2

5

+ 1
16 (133 + 25 i

√
7)u0u1w1w6 + 1

16 (−17− 13 i
√
7)u0w2w6, 1

16 (98 + 119 i
√
7)u50w

2
1

+ 1
16 (−98− 119 i

√
7)u20u

2
1w

2
1 +

1
32 (28− 29 i

√
7)u20u1w1w2 +

1
64 (−27 + i

√
7)u20w

2
2

+ 1
32 (133 + 77 i

√
7)u30w1w3 +

1
64 (−49 + 19 i

√
7)u21w1w3 +

1
64 (11− 17 i

√
7)u1w2w3

+ 1
32 (−147− 105 i

√
7)u30w1w4 +

1
8 (28− 7 i

√
7)u21w1w4 +

1
8 (−7 + 2 i

√
7)u1w2w4

+ 1
64 (−651− 17 i

√
7)u0u1w1w5 + 1

16 (19 + 13 i
√
7)u0w2w5 + 1

8 (56 + 21 i
√
7)u0u1w1w6

+ 1
16 (−17− 13 i

√
7)u0w2w6 +w5w6,

1
128 (735 + 1057 i

√
7)u50w

2
1

+ 1
128 (−735− 1057 i

√
7)u20u

2
1w

2
1 +

1
256 (273− 333 i

√
7)u20u1w1w2 +

1
32 (−19 + 2 i

√
7)u20w

2
2

+ 1
32 (56 + 175 i

√
7)u30w1w3 +

1
64 (−63 + 13 i

√
7)u21w1w3 +

1
64 (59− 21 i

√
7)u1w2w3

+ 1
128 (49− 749 i

√
7)u30w1w4 +

1
64 (161− 77 i

√
7)u21w1w4 +

1
64 (−105 + 21 i

√
7)u1w2w4

+ 1
256 (−2471− 405 i

√
7)u0u1w1w5 + 1

8 (9 + 7 i
√
7)u0w2w5 + 1

64 (315 + 273 i
√
7)u0u1w1w6

+ 1
16 (−13− 15 i

√
7)u0w2w6 +w2

6
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Parametric equation of S2 in Y0 in the case of (C20, p = 2, ∅,D327).
(7.3)
(u0, u1, w1, w2, w3, w4, w5, w6) =
(

1
2 (5 + 9 i

√
7− 16(1 + i

√
7)t + (13 + 7 i

√
7)t2), 1

2 (−47 + 29 i
√
7 + 84(1− i

√
7)t

+(−14 + 86 i
√
7)t2 + (−21− 31 i

√
7)t3), 1, 12 (3121− 403 i

√
7 + (−9820 + 1052 i

√
7)t

+4(2545− 221 i
√
7)t2 + (−3473 + 237 i

√
7)t3), 1

2 (3505− 2963 i
√
7 + 8(−2259 + 1391 i

√
7)t

+16(2039− 955 i
√
7)t2 + (−24950 + 9054 i

√
7)t3 + 7(985− 277 i

√
7)t4),

4(−1 + t)(−108 + 316 i
√
7 + 32(25− 27 i

√
7)t + (−1239 + 731 i

√
7)t2 + 8(67− 23 i

√
7)t3),

1
2 (2265− 2539 i

√
7 + 8(−2941 + 1523 i

√
7)t + 736(99− 29 i

√
7)t2 + (−99624 + 16264 i

√
7)t3

+48(1323− 95 i
√
7)t4 + (−15479− 5 i

√
7)t5), 1

2 (−1 + t)(4720 + 336 i
√
7− 32(313 + 43 i

√
7)t

+(−952− 40 i
√
7)t2 + 8(1571 + 393 i

√
7)t3 + (−6325− 2047 i

√
7)t4)

)

Parametric equation of S1 in Y0 in the case of (C20, p = 2, ∅,D327).
(7.4)
(u0, u1, w1, w2, w3, w4, w5, w6) =
(

1
2 (5 + 9 i

√
7− 16(1 + i

√
7)t + (13 + 7 i

√
7)t2), 1

2 (−47 + 29 i
√
7 + 84(1− i

√
7)t

+(−14 + 86 i
√
7)t2 + (−21− 31 i

√
7)t3), 1, 12 (1049− 379 i

√
7) + (−908 + 564 i

√
7)t

+(357− 529 i
√
7)t2 + 2(15 + 77 i

√
7)t3, 1

2 (−(1271− 363 i
√
7) + 16(193 + 37 i

√
7)t

+(−5446− 530 i
√
7)t2 + 4096t3 + 1

4 (−4417 + 477 i
√
7)t4,−1105− 77 i

√
7 + 16(261 + 7 i

√
7)t

+(−6096 + 208 i
√
7)t2 + 4(997− 113 i

√
7)t3 + (−965 + 209 i

√
7)t4, 2(−1 + t)(−112 + 48 i

√
7

+8(71 + 11 i
√
7)t + (−944− 400 i

√
7)t2 + 64(13 + 7 i

√
7)t3 + (−369− 179 i

√
7)t4),

1
4 (−1 + t)(16(75 + i

√
7) + 64(21 + 47 i

√
7)t + (−10696− 6232 i

√
7)t2 + 48(275 + 89 i

√
7)t3

+(−5197− 967 i
√
7)t4)

)

(Birational) automorphism of order 3 of Y0 for (C20, p = 2, ∅,D327).
(7.5)

(u0, u1, w1, w2, w3, w4, w5, w6) →
(

u0, u1,
1

1792(u3
0
−u2

1
)
(7(383− 29 i

√
7)u40w1

+u0u1(7(−331 + i
√
7)u1w1 + (−91 + 177 i

√
7)w2) + 7u20(w3 − 99 i

√
7w3 + 40(−1 + 3 i

√
7)w4)

+16u1((77 + 17 i
√
7)w5 + (−77− 25 i

√
7)w6),

1
256(u3

0
−u2

1
)
(u40((2471− 405 i

√
7)u1w1

+16(3 + 7 i
√
7)w2) + u0u21((−2387 + 281 i

√
7)u1w1 + (−325 + 47 i

√
7)w2)

+u2
0u1((1961− 603 i

√
7)w3 + 8(−301 + 71 i

√
7)w4) + 128u30((−1 + i

√
7)w5

+(6− 2 i
√
7)w6) + 16u21((19 + 15 i

√
7)w5 + (−19− 7 i

√
7)w6)),

1
256(u3

0
−u2

1
)
((287 + 131 i

√
7)u60w1

+32u3
1((35 + 11 i

√
7)u1w1 + (−5− i

√
7)w2) + u30u1((−1547− 447 i

√
7)u1w1

+(259 + 87 i
√
7)w2) + 16u0u21((−45 + 7 i

√
7)w3 + 8(7− i

√
7)w4) + u40((673− 579 i

√
7)w3

+8(−133 + 79 i
√
7)w4) + 16u20u1((11 + 7 i

√
7)w5 + 5(w6 − 3 i

√
7w6))),

1
896(u3

0
−u2

1
)
(14(39 + 43 i

√
7)u60w1 + 14u31((291 + 55 i

√
7)u1w1 + 3(−9− 5 i

√
7)w2)

+u3
0u1(56(−89− 21 i

√
7)u1w1 + (693 + 257 i

√
7)w2) + 14u40((185− 139 i

√
7)w3

+8(−33 + 19 i
√
7)w4) + 7u0u21((−467 + 153 i

√
7)w3 + 8(71− 21 i

√
7)w4)

+16u2
0u1((7 + 11 i

√
7)w5 + (21− 31 i

√
7)w6)), 1

256 ((77 + 57 i
√
7)u20u1w1

+16u1((−17− 13 i
√
7)w3 + 16 i

√
7w4) +

32
u3
0
−u2

1

u30(u
2
0(w2 + i

√
7w2)

+(−3− 7 i
√
7)u1w3 + 8 i

√
7u1w4 + (6 + 2 i

√
7)u0w5 + (−4− 4 i

√
7)u0w6)

+u0((11 − 65 i
√
7)u0w2 + 16((−3 + 9 i

√
7)w5 + (15− 13 i

√
7)w6))),

1
32 (u

2
0((7 + 11 i

√
7)u1w1 + (−5− 5 i

√
7)w2) + 4u1(−4(4 + i

√
7)w3 + (7 + 5 i

√
7)w4)

+6(7 + 5 i
√
7)u0w5 + 8(−3− 5 i

√
7)u0w6)

)
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Equations of Y0 in the case of Keum’s FPP.
(7.6)

1
4096 (4439− 677i

√
7)(u30 − u21)u0w

2
1 +

1
256 (−117− 417i

√
7)u0u1w1w2

+ 1
16 (−27− 9i

√
7)u0w2

2 +
1

128 (−193 + 3i
√
7)u20w1w3 +w2

3 +
1

256 (119 + 315i
√
7)u20w1w4

+ 1
32 (−15− 7i

√
7)u1w1w5 +

1
16 (−3 + 15i

√
7)w2w5 +

1
32 (7 + 43i

√
7)u1w1w6

+ 1
8 (21− 9i

√
7)w2w6,

1
2048 (169 + 165i

√
7)(u30 − u21)u0w

2
1 +

1
128 (9 + 21i

√
7)u0u1w1w2

+ 1
16 (−9− 27i

√
7)u0w2

2 +
1
64 (5 + i

√
7)u20w1w3 +

1
128 (−331 + 33i

√
7)u20w1w4 +w3w4

+ 1
8u1w1w5 +

1
16 (−33− 3i

√
7)w2w5 +

1
16 (−27− 7i

√
7)u1w1w6 +

1
8 (45 + 15i

√
7)w2w6,

1
1024 (−57 + 11i

√
7)(u30 − u21)u0w

2
1 +

1
64 (−39− 3i

√
7)u0u1w1w2 + 1

16 (45− 9i
√
7)u0w2

2

+ 1
32 (−3 + i

√
7)u20w1w3 +

1
64 (−39− 27i

√
7)u20w1w4 +w2

4 +
1
16 (−1 + i

√
7)u1w1w5

+ 1
16 (−3− 9i

√
7)w2w5 +

1
8 (9− 3i

√
7)u1w1w6 +

1
8 (−27 + 15i

√
7)w2w6,

1
4096 (−161 + 67i

√
7)u30u1w

2
1 +

1
4096 (161− 67i

√
7)u31w

2
1 +

1
256 (93 + 9i

√
7)u30w1w2

+ 1
512 (−63 + 93i

√
7)u21w1w2 +

1
128 (−81− 45i

√
7)u1w2

2 +
1

256 ((31 + 3i
√
7)u0u1w1w3

+ 1
64 (−33 + 3i

√
7)u0w2w3 + 1

512 (−233 + 27i
√
7)u0u1w1w4 + 1

128 (51− 57i
√
7)u0w2w4

+ 1
64 (11− i

√
7)u20w1w5 +

1
64 (−69− 17i

√
7)u20w1w6 +w3w6 +

1
4 (3 + 3i

√
7)w4w6,

1
4096 (−1663 + 285i

√
7)(u30 − u21)u1w

2
1 +

1
256 (−477− 9i

√
7)u30w1w2

+ 1
512 (−561 + 243i

√
7)u21w1w2 +

1
32 (9− 27i

√
7)u1w2

2 +
1

256 (121 + 53i
√
7)u0u1w1w3

+ 1
16 (−3 + 9i

√
7)u0w2w3 + 1

512 (−1911− 251i
√
7)u0u1w1w4 + 1

32 (21− 63i
√
7)u0w2w4

+ 1
64 (−29 + 23i

√
7)u20w1w5 +w3w5 + 1

64 (203− 65i
√
7)u20w1w6 + 1

4 (7 + 11i
√
7)w4w6,

1
256 (−13 + 7i

√
7)(u30 − u21)u1w

2
1 +

1
8 ((−3− 3i

√
7)u30w1w2 +

1
256 (147 + 39i

√
7)u21w1w2

+ 1
64 (−99 + 9i

√
7)u1w2

2 +
1

128 (−9− 5i
√
7)u0u1w1w3 +

1
32 (−3 + 9i

√
7)u0w2w3

+ 1
256 (−17− 109i

√
7)u0u1w1w4 +

1
64 (105− 27i

√
7)u0w2w4 +

1
32 (−5− i

√
7)u20w1w5

+w4w5 + 1
32 (19 + 7i

√
7)u20w1w6 + 1

2 (−3 + i
√
7)w4w6,

1
32768 (5579 + 3199i

√
7)(u30 − u21)u

2
0w

2
1 +

1
4096 (12009− 1563i

√
7)u20u1w1w2

+ 1
2048 (−3897 + 3339i

√
7)u20w

2
2 +

1
4096 (−1267− 7i

√
7)u30w1w3

+ 1
4096 (317− 1175i

√
7)u21w1w3 +

1
1024 (843 + 1023i

√
7)u1w2w3

+ 1
4096 (49− 1267i

√
7)u30w1w4 +

1
1024 (1267 + 7i

√
7)u21w1w4 +

1
2048 (−8589 + 903i

√
7)u1w2w4

+ 1
512 (141− 135i

√
7)u0u1w1w5 +

(
387 + 87i

√
7)u0w2w5 +w2

5

+ 1
512 (−1043 + 345i

√
7)u0u1w1w6 +

1
256 (147− 729i

√
7)u0w2w6,

1
32768 (623 + 275i

√
7)(u30 − u21)u

2
0w

2
1 +

1
4096 (1227− 129i

√
7)u20u1w1w2

+ 1
2048 (−1359 + 909i

√
7)u20w

2
2 +

1
4096 (315 + 47i

√
7)u30w1w3 + 1

4096 (−221− 137i
√
7)u21w1w3

+ 1
1024 (573 + 105i

√
7)u1w2w3 +

1
4096 (−329 + 315i

√
7)u30w1w4 +

1
256 (31 + 3i

√
7)u21w1w4

+ 1
2048 (−1851 + 465i

√
7)u1w2w4 +

1
512 (−5− 17i

√
7)u0u1w1w5 +

1
256 (−39 + 21i

√
7)u0w2w5

+ 1
512 ((−213 + 95i

√
7)u0u1w1w6 +

1
256 (57− 267i

√
7)u0w2w6 +w5w6,

1
32768 (623 + 275i

√
7)(u30 − u21)u

2
0w

2
1 +

1
4096 (1227− 129i

√
7)u20u1w1w2

+ 1
2048 (135 + 459i

√
7)u20w

2
2 +

1
4096 (161− 67i

√
7)u30w1w3 + 1

4096 (−67− 23i
√
7)u21w1w3

+ 1
!024 (171− 33i

√
7)u1w2w3 +

1
4096 (147 + 295i

√
7)u30w1w4 +

1
1024 (5 + 17i

√
7)u21w1w4

+ 1
2048 (−141 + 135i

√
7)u1w2w4 +

1
512 (−5− 17i

√
7)u0u1w1w5 +

1
256 (27 + 15i

√
7)u0w2w5

+ 1
512 (−213 + 95i

√
7)u0u1w1w6 +

1
256 (−309− 129i

√
7)u0w2w6 +w2

6
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