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Abstract

Let p
(n)
j be the probability that a Hadamard quantum walk, started at site j on the

integer lattice {0, . . . , n}, is absorbed at 0. We give an explicit formula for p
(n)
j . Our

formula proves a conjecture of John Watrous, concerning an empirically observed

linear fractional recurrence relation for the numbers p
(n)
1 .
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1 Introduction

Consider a Hadamard quantum walk on the sites 0, 1, . . . , n, as defined in
[1]. The boundary sites, 0 and n, are absorbing, so any walk is certain to be

absorbed. Let p
(n)
j denote the probability that the walk ends at location 0.

The main result of this paper is an explicit formula for this probability. Let
A = 2 +

√
2, and B = 2−

√
2. We will prove that when n ≥ 1 and 1 ≤ j ≤ n,

we have

p
(n)
j =

√
2

4

(An−j − Bn−j)(Aj−1 + Bj−1)

An−1 + Bn−1
, (1.1)
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In particular, when j = 1,

p
(n)
1 =

√
2

2

An−1 − Bn−1

An−1 + Bn−1
, (1.2)

and this satisfies the recurrence relation

p
(n)
1 =

1 + 2p
(n−1)
1

2 + 2p
(n−1)
1

. (1.3)

This recurrence relation, conjectured by Watrous from numerical data, appears
in [1]. It is a consequence of (1.2) that

lim
n→∞

p
(n)
1 =

1√
2
,

a result that was proved with some effort in [1].

The absorption probability values are interrelated in many interesting ways.
In the two-dimensional table of p

(n)
j , there is a linear fractional recurrence re-

lation, similar to (1.3), for each column and each diagonal. This “numerology”
was first observed empirically, and then led us to conjecture (1.1). There is
also a linear recurrence relation common to all rows: if 1 ≤ j ≤ n−3, we have

p
(n)
j − 7p

(n)
j+1 + 7p

(n)
j+2 − p

(n)
j+3 = 0.

Two other relations, which we discuss later, have combinatorial interpreta-
tions.

It is interesting to consider the implications of (1.1) for starting sites in the

“interior” of the lattice. For j = αn, α fixed and n → ∞, p
(n)
j will be close to

the limit
√

2
4

= 0.35355... . Thus, from the interior region, the probabilities for
absorption at the left and right are almost constant, approximately 35% and
65%. On the other hand, for the classical random walk, with equal probability
of moving left and right, the probability that the walk, starting from j, is
absorbed at the left, decreases linearly with j, from 1 at the left barrier to 0 at
the right barrier. (One proof of this appears in [3].) This gives another example
of the idea that quantum walks “spread out” more evenly than classical walks
do.

2 Some Generating Functions.

Our work will be based on the path count generating function approach which
was employed in [1] and [2].
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Recall that for our walk, each site j has two states, corresponding to the walker
facing left and facing right. The one-step evolution matrix is a Hadamard
transformation, i.e. starting from state |n, R〉 the particle can go next to

|n + 1, R〉 with amplitude 1/
√

2

|n − 1, L〉 w. a. 1/
√

2

and from |n, L〉 it can go to

|n + 1, R〉 w.a. 1/
√

2

|n − 1, L〉 w.a. − 1/
√

2

The initial state of the particle is |j, R〉, with 0 < j < n.

We define the path count generating function to be

f
(n)
j (z) =

∑

m≥1

(

∑

P

σ(P )

)

zm (2.1)

where the m-th sum is over paths P of length m that are absorbed at the left

(0) state, and the sign, σ(P ), is (−1) # of LL blocks . In computing the sign,
overlaps count, for example, the sign of LLL is +1.

The probability of absorption at 0 is given by the formula

p
(n)
j =

1

2πi

∫

|z|=1/
√

2
|f (n)

j (z)|2z−1dz, (2.2)

In [1] it was shown that

f
(2)
1 = z (2.3)

and for n > 1,

f
(n)
1 = z

1 − 2zf
(n−1)
1

1 − zf
(n−1)
1

. (2.4)

We now complement this with another recurrence relation that allows (2.1) to
be computed for j > 1. Observe that any path from j that is absorbed at 0
must go through 1. Hence any such absorbed path breaks up into: a) a path
from j to 1 reaching 1 only once; and b) a path from 1 to 0. Part a) is of the
same shape as a path from j − 1 to 0 on a lattice with absorption at n − 1,
and part b) is just a path from 1 to 0. The path of part b), if it immediately
moves left, must be preceded by an L move, so we must correct the sign for
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this case (and this case only). This gives

f
(n)
j = f

(n−1)
j−1

(

f
(n)
1 − 2z

)

, 2 ≤ j < n. (2.5)

Here are few of these functions.

f
(3)
1 =

z(2z2 − 1)

(z − 1)(z + 1)
, f

(3)
2 =

z2

(z − 1)(z + 1)
;

f
(4)
1 =

z(4z4 − 3z2 + 1)

2z4 − 2z2 + 1
, f

(4)
2 =

z2(2z2 − 1)

2z4 − 2z2 + 1
, f

(4)
3 =

z3

2z4 − 2z2 + 1
;

f
(5)
1 =

z(2z2 − 1)(4z4 − 2z2 + 1)

(2z3 + z2 − z − 1)(2z3 − z2 − z + 1)
, f

(5)
2 =

z2(4z4 − 3z2 + 1)

(2z3 + z2 − z − 1)(2z3 − z2 − z + 1)
,

f
(5)
3 =

z3(2z2 − 1)

(2z3 + z2 − z − 1)(2z3 − z2 − z + 1)
, f

(5)
4 =

z4

(2z3 + z2 − z − 1)(2z3 − z2 − z + 1)
.

We note that for each n, the f
(n)
j have the same denominator. This can be

proved as follows. We first observe that the power series for fj begins with ±zj ,
so that fj = zju, with u(0) 6= 0,∞. In particular, we have f1 = za(z)/b(z),
where a and b are polynomials. Next, we group paths according to the location
of the first R move and find the relation

fj = zfj+1 +
j
∑

k=2

(−)kzkfj+2−k + (−)j−1zj ,

valid for 1 ≤ j < n − 1. From this it follows that bfj+1 is a polynomial, using
induction on j.

It is interesting that the path sign is essentially the same as the Rudin-Shapiro
coefficient. This coefficient an is determined by the parity of the number of
“11” blocks in the binary notation of the positive integer n. The Rudin-Shapiro
coefficient has many applications, including the solution of extremal problems
in classical Fourier analysis. For a survey of this topic, see [4].

3 Some Combinatorial Results.

It is interesting to see how much can be determined by purely combinato-
rial arguments, without relying on integration. We begin with two interesting
relations.

Theorem 3.1 We have
p

(n)
1 + p

(n)
n−1 = 1.

That is, in any row, the outer entries sum to 1.
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Proof. Let P be a path that starts from 1 and is absorbed at n. Its complement
P̄ , obtained by interchanging L and R, is a path that starts at n − 1 and is
absorbed at 0. We note that P must begin and end with R moves. Let P
contain ℓ L moves, r R moves, and have k occurrences of RL. Then the sign
of P is (−1)ℓ−k. However,

k = # of RL in P̄ = # of LR in P̄ ,

since P̄ begins and ends with L moves. Therefore we have

σ(P ) = (−1)ℓ−k, σ(P̄ ) = (−1)r−k,

which implies

σ(P )σ(P̄ ) = (−1)ℓ+r = (−1)r−ℓ = (−1)n−1.

This tells us that if we complement all paths, the probability is unchanged,
since it is a sum of squares of quantities (signed path counts) that individually
change only by a sign. So

1 − p
(n)
1 = Pr[ a walk from 1 is absorbed at n ]

= Pr[ a walk from n − 1 is absorbed at 0 ] = p
(n)
n−1.

2

If we let q
(n)
j = 1 − p

(n)
j be the probability that the walk reaches site n, then

Theorem 3.1 looks like an “obvious” symmetry relation that should also hold
for j > 1. However, this is not so. (See Table 1 at the end of this paper.)

Theorem 3.2 We have
2p

(n)
1 = p

(n)
2 + 1.

In words, doubling the first number in any row is the same as increasing the
second by 1.

Proof. Observe that
f

(n)
1 (z) = z + zf

(n)
2 (z).

Now take the Hadamard square of both sides, and evaluate at 1/2. The two

terms in the right side do not interfere because f
(n)
2 (z) is a multiple of z2. 2

For n = 2, 3, the absorption probabilities can be obtained by combinatorial
reasoning, without any integration. First, for n = 2, we have

p
(2)
1 = 1/2,

since there are only two possible paths, each absorbed after one step. To
compute p

(3)
1 , observe that for t = 1, 3, 5, . . ., there is precisely one path that
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reaches site 0 after t steps. Therefore, the signs are irrelevant, and we have

p
(3)
1 =

1

2
+

1

8
+

1

32
+ · · · =

2

3
.

Using Theorem 3.1, we find

p
(3)
2 =

1

3
.

4 Proof of the Explicit Formula.

In this section we prove that (1.1) holds. What we would like to do is integrate

(2.2) by residues, and expose the dependence of p
(n)
j on n. With the original

integral, this is probably impossible, since we do not know where the poles
inside the circle of integration actually are. However, we can express p

(n)
j using

the integral of a new rational function, with the same mysterious poles inside,
but with only one pole outside. Since the sum of the residues of any rational
function vanishes, we can just as well evaluate the residue outside the circle,
and this leads to a formula for p

(n)
j .

Let us begin with another formula for the path count generating function. Let
α, β be the two roots of

T 2 − (1 − 2z2)T − z2 = 0.

These will always be used symmetrically so we do not care which is which.
Explicitly,

α, β =
1 − 2z2 ±

√
1 + 4z4

2
.

Also there is a recurrence relation

αk = (1 − 2z2)αk−1 + z2αk−2 (4.1)

and similarly for β.

Lemma 4.1 If 1 ≤ j < n, then

f
(n)
j = zj αn−j − βn−j

αn − βn + 2z2(αn−1 − βn−1)
,

Proof. This can be proved by induction. First, let j = 1 and increase n, using
(2.4). Then, for each n in turn, let j = 2, . . . , n − 1, and use (2.5). 2

It will be convenient to allow let j = n, and define f (n)
n = 0, so that p(n)

n = 0.
This is consistent with the above formula, as well as (2.5).
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As a function of z, fj(n) is odd or even according as j is. We now write

f
(n)
j = zjg

(n)
j , and t = z2. Then,

g
(n)
j (t) =

rn−j

rn − 2trn−1
,

where

rk =
αk − βk

α − β
.

Since rk+2 − (α + β)rk+1 + αβrk = 0, we have r0 = 0, r1 = 1, and

rk+2 − (1 − 2t)rk+1 − trk = 0 (4.2)

Consequently, the rk are polynomials in t.

On the circle |z| = 1/
√

2, we have z̄ = 1/(2z), and t̄ = 1/(4t). Making this
substitution into ḡj, clearing denominators, and observing that αβ = −t, we
get

|g(n)
j |2 = (−)j2jtj

r2
n−j

(rn + 2trn−1)(rn − rn−1)

Since f
(n)
j = zjg

(n)
j , we get from this

p
(n)
j =

(−1)j

2πi

∫

|t|=1/2

tj−1r2
n−j

(rn + 2trn−1)(rn − rn−1)
dt. (4.3)

The next task is to study the poles of the integrand.

Lemma 4.2 The zeroes of rn+1 − rn are inside the circle |t| = 1/2, and the
zeroes of rn+1 + 2trn are outside it.

Proof. The rational function f
(n)
1 is analytic for |z| ≤ 1/

√
2 (this is implicit

in the proof of Lemma 17 of [1]), and this holds for f
(n)
j as well, since it has

the same denominator as f
(n)
1 . The result is a consequence of this and the

computations used to derive (4.3). 2

As a consequence of this lemma, we can choose an ǫ > 0 so that p
(n)
j is given

as in (4.3), but with the contour of integration now |t| = 1/2 − ǫ.

Lemma 4.3 Let n ≥ 2. If 1 ≤ j ≤ n, Hj = tj−1(1 + 2t)rn−j + (−1)j(rj −
rj−1)(rn + 2trn−1) is a polynomial in t, divisible by rn − rn−1.

Proof. The recurrence relation on rj implies that Hj+2 = (1−2t)Hj+1 +Hj , so
it suffices to check the statement for j = 1 and j = 2. It is easy to check that
H1 = rn−1−rn, and the recurrence relation on rn implies that H2 = rn−rn−1.
2
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The above proof has the consequence that Hj/(rn − rn−1) depends on j only.

Theorem 4.4 Let n ≥ 2 and 1 ≤ j ≤ n. Then (1.1) holds.

Proof. Using Lemma 4.3 to rewrite tj−1rn−j , we have for 1 ≤ j ≤ n

p
(n)
j = − 1

2πi

∫

|t|= 1

2
−ǫ

rn−j(rj − rj−1)dt

(1 + 2t)(rn − rn−1)
+

1

2πi

∫

|t|= 1

2
−ǫ

Rj(t)dt

(rn + 2trn−1)(1 + 2t)
,

for some polynomial Rj . The second integral is zero, because all the poles of
the rational function are outside the integration contour. In the first integral,
the integrand

rn−j(rj − rj−1)

(1 + 2t)(rn − rn−1)
,

as a function on the Riemann sphere, has a unique singularity outside the
contour, which is a pole of order 1 at t = −1

2
. Indeed, the degree of rk is k− 1

so the degree of the denominator is two plus the degree of the numerator,
which assures that there is no pole at infinity.

Since the residues of a rational function sum to zero, we get

p
(n)
j = Rest=− 1

2

rn−j(rj − rj−1)

(1 + 2t)(rn − rn−1)
=

1

2

rn−j(rj − rj−1)

(rn − rn−1)

(

−1

2

)

. (4.4)

To derive the explicit formula, observe that α(−1/2) = 2+
√

2
2

and β(−1/2) =
2−

√
2

2
, so (with A, B = 2 ±

√
2)

rk(−
1

2
) =

Ak − Bk

2k+1/2
, (rk − rk−1)(−

1

2
) =

Ak−1 − Bk−1

2k
.

Then, substitute these values into (4.4) and simplify. 2

It is natural to extend our notation so that p
(n)
0 = 1 for n ≥ 2. The explicit

formula does not work there, but the above proof indicates a reason for this.
We could use (4.2) to extend rj to j = −1, but then r−1 would not be a
polynomial, invalidating our arguments.

Using the recurrence relation for rk, we can prove that when n ≥ 1, the
polynomial rn − rn−1 has distinct roots. However, the computations for this
are not very enlightening, so we leave verification of this to the reader.
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5 Remarks.

Initially, we had arrived at the formula (1.1) after numerical calculations that
were done by a different method, which we believe to be of independent in-
terest. In this section, we discuss how these calculations were done. The idea
is to combine numerical approximation of the residues with a bound on the
denomininator.

Suppose we want a value for

p :=
1

2πi

∫

|z|=a
|f(z)|2dz

z
, (5.1)

in which f ∈ Q(z), and a ∈ Q. Let a be large enough that all the poles of f
are inside the circle |z| = a. On this circle, z̄ = a2/z, and if we use this to get
an expression for f̄ , we can bring (5.1) into the form

p =
m1

m2
· 1

2πi

∫

|z|=a

b(z)dz

c(z)d(z)
,

in which m1, m2 ∈ Z, b, c, d ∈ Z[v], and c, d are monic. The zeroes of c and
d are algebraic integers, and we choose notation so that those of c and d are
outside and inside the circle, respectively.

In the cases of interest to us, c and d had distinct roots, so let us make
this simplifying assumption. Then, evaluating (2πi)−1

∫

b(cd)−1dz by residues
produces

∑

ξ

b(ξ)
∏

η(ξ − η)
· 1
∏

ξ′ 6=ξ(ξ − ξ′)
(5.2)

In this expression, ξ and ξ′ range over zeroes of d, and η ranges over zeroes of
c. The denominators are algebraic integers, and

∏

η

(ξ − η) | resultant(c, d) := R;

∏

ξ′ 6=ξ

(ξ − ξ′) | discriminant(d) := D.

Since b has integral coefficients, we conclude that (5.1) is an integral multiple
of ∆−1, where

∆ = m2RD.

In particular (by Galois theory), p is a rational number.

To obtain (5.1) exactly, then, it will suffice to compute the integer δ, and
then evaluate (5.2) using numerical approximations to the zeroes, with enough
accuracy to determine (5.1) to the nearest integer.
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Using this method, we were able to compute absorption probabilities exactly
up to n = 20 in a couple of minutes on a workstation. Straight numerical
integration would have been much slower, and would not have given us exact
results.

We end this paper with a short table of the p
(n)
j . The numerators of p1 are

Sequence A084068 in [5].

TABLE 1. Absorption Probabilities p
(n)
j .

j = 1 2 3 4 5 6 7 8

n = 2 1/2

3 2/3 1/3

4 7/10 4/10 3/10

5 12/17 7/17 6/17 5/17

6 41/58 24/58 21/58 20/58 17/58

7 70/99 41/99 36/99 35/99 34/99 29/99

8 239/338 140/338 123/338 120/338 119/338 116/338 99/338

9 408/577 239/577 210/577 205/577 204/577 203/577 198/577 169/577
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