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ON THE BETTER BEHAVED VERSION OF THE GKZ

HYPERGEOMETRIC SYSTEM

LEV A. BORISOV AND R. PAUL HORJA

Abstract. We define a version of the generalized hypergeometric
system introduced by Gelfand, Kapranov and Zelevinski (GKZ)
suited for the case when the underlying lattice is replaced by a
finitely generated abelian group. In contrast to the usual GKZ
hypergeometric system, the rank of the better behaved GKZ hy-
pergeometric system is always the expected one. We construct
explicit solutions as Γ–series and as geometric periods in certain
cases.

1. Introduction

Let A = {v1, . . . , vn} be a set of vectors in the lattice N ∼= Zd such
that the elements ofA generate the lattice as an abelian group, and that
there exists a group homomorphism deg : N → Z such that deg(v) = 1
for any element v ∈ A. Let L ⊂ Zn denote the lattice of integral
relations among the elements of A consisting of vectors l = (lj) ∈ Zn

such that l1v1 + . . .+ lnvn = 0.
For any parameter β ∈ N ⊗ C, Gelfand, Kapranov and Zelevinsky

[GKZ1] considered a system of differential equations on the function
Φ(x), x = (x1, . . . , xn) ∈ Cn, consisting of the binomial equations

(

∏

i,li>0

(∂i)
li −

∏

i,li<0

(∂i)
−li

)

Φ = 0, l ∈ L,

and the linear equations

(

n
∑

i=1

µ(vi)xi∂i

)

Φ = µ(β)Φ, for all µ ∈ M = Hom(N,Z).

Gelfand, Kapranov and Zelevinsky showed that this system is holo-
nomic, so the number of solutions at a generic point is finite. Following
Batyrev’s observation [Bat, Section 14] that the periods of a Calabi–
Yau hypersurface in a projective toric variety satisfy a GKZ system, its
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study gained further prominence in connection with mirror symmetry
phenomena and algebra geometric applications.
The rank of the GKZ system (the dimension of its solution set at a

generic point) and the solution set itself have also been the subject of
numerous studies. Its expected dimension is equal to the normalized
volume of the convex hull ∆ of the elements of the set A. However,
if the semigroup generated by the elements of A is not equal to the
integral cone N ∩ K, where K being the cone spanned in N ⊗ R by
the elements of A, then there are non-generic values of β for which the
rank jumps. This rank discrepancy has been thoroughly investigated
by many authors (see, for example, Adolphson [A], Saito, Sturmfels
and Takayama [SST], Cattani, Dickenstein and Sturmfels [CDS]) and
a quite definitive explanation for it has been obtained in the work of
Matusevich, Miller and Walther [MMW].
In the present work, we propose a better behaved version of the GKZ

system whose space of solutions always has the expected number of
solutions. We frame the definition in a context where the lattice is
replaced by a finitely generated abelian group N, and the set A is
replaced by an n-tuple A = (v1, . . . , vn) of elements of N, with possible
repetitions. Given a parameter β in N ⊗ C, the better behaved GKZ
system consists of the equations

∂iΦc = Φc+vi, for all c ∈ K, i ∈ {1, . . . , n}
and the linear equations

n
∑

i=1

µ(vi)xi∂iΦc = µ(β − c)Φc, for all µ ∈ M, c ∈ K.

A solution to the better behaved GKZ system is then a sequence of
functions of n variables

(

Φc(x1, . . . , xn)
)

c∈K , where K is the preimage
under the map N → N ⊗R of the cone KR generated by the images of
the elements vi in N ⊗ R.
When N is a lattice and A is a finite subset subject to the the hyper-

plane condition, the better behaved GKZ equations on Φ0 imply the
usual GKZ equations on that function. The generalization presented
in our work fits in the general context of ideas where the usual com-
binatorial framework of toric geometry is extended from toric varieties
and their fans to that of toric Deligne-Mumford stacks and stacky fans
provided in the work of Borisov, Chen and Smith [BCS].
We now briefly discuss the content of this paper. In section 2, we give

the precise definition to the better behaved GKZ system. In section
3, we give identifications for the spaces of solutions as the logarithmic
Jacobian rings (Definition 3.3). As a byproduct, we prove that the
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spaces of solutions have indeed the expected dimensions, namely the
product of the normalized volume of the polytope ∆ and the torsion
order of the abelian group N.
In section 4, we construct a complete system of linearly independent

Γ–series solutions to the better behaved GKZ system. The construc-
tion is accomplished in two steps. We first show how to pursue the
construction in the presence of torsion in N, and then, for β ∈ N, we
explicitly give the Γ–series construction for the better behaved GKZ
with no torsion. This second part of the construction uses the “shadow
modules” Kβ (Definition 4.4) associated to the cone K and the param-
eter β ∈ N. For the usual GKZ, Γ–series solutions have been obtained
in the book by Saito, Sturmfels and Takayama [SST] in the general
case, and by Hosono, Lian and Yau [HLY] and Stienstra [S] in the case
of unimodular triangulations.
In the last section, we obtain integral representations for the solu-

tions to the better behaved GKZ in the case β = 0 as periods of middle
dimensional cycles in algebraic tori. The results are implicit in the work
of Batyrev [Bat] in the usual GKZ case and offer a potential method
for studying the integral structure on the solution space to the better
behaved GKZ as an image of the integral structure on the homology
of the complement of a hypersurface in the algebraic torus.
Acknowledgements. Upon learning about our construction, in a

letter to one of the authors, Alan Adolphson [A1] informed us that he
obtained a similar definition for a generalization of the GKZ system in
the case of a lattice N. We would like to thank Vladimir Retakh for a
useful reference.

2. The usual and the better-behaved versions of the GKZ

hypergeometric system

Throughout this paper, we will use the following notations. We
are given a finitely generated abelian group N , and an n-tuple A =
(v1, . . . , vn) of elements of N . We will denote by M the free abelian
group Hom(N,Z). We will assume that there exists an element deg ∈
M such that deg(vi) = 1 for all i. We will denote by ∆ the convex hull
of the set of vi in N ⊗ R and by KR the cone R≥0∆. We will denote
by K the preimage of KR in N under the natural map π : N → N ⊗R

and by [c], for c ∈ K, the corresponding elements in the semigroup
ring C[K] or its variants that will be used below. We will further
assume that π(vi) span the lattice π(N) as a group. The finite abelian
group tors(N) is the torsion part of N and |tors(N)| its order. For N
torsion-free, we set |tors(N)| = 1.
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The version of the GKZ hypergeometric system associated to a fixed
parameter β ∈ N ⊗ C which will be the central object of study of this
paper is then defined as follows:

Definition 2.1. Consider the following system of partial differential
equations on sequences of functions of n variables

(

Φc(x1, . . . , xn)
)

c∈K :

(1) ∂iΦc = Φc+vi, for all c ∈ K, i ∈ {1, . . . , n}

(2)

n
∑

i=1

µ(vi)xi∂iΦc = µ(β − c)Φc, for all µ ∈ M, c ∈ K.

We will call this system the better behaved GKZ and will denote it by
GKZ(A, K; β).

In order to simplify our notation, we will denote a solution to the
better behaved GKZ by ΦK(x1, . . . , xn). Alternatively, it can be viewed
it as a function in n variables

ΦK(x1, . . . , xn) =
∑

c∈K
Φc(x1, . . . , xn)[c]

with values in the completion C[K]c of the ring C[K].

Remark 2.2. It is clear that one can reformulate the above system
as a system of PDEs on a finite collection of functions of (x1, . . . , xn).
Indeed, the set Kprim of elements v ∈ K such that v − vi 6∈ K for all
i is finite. The functions Φc for c ∈ Kprim then determine the rest of
Φc. In fact, the number of PDEs can also be made finite, in view of
the following. The relations (2) for c ∈ K, together with the relation
(1) implies the relations (2) for c+ vi. Consequently, one only needs to
use (2) for c ∈ Kprim. The relations (1) can then be restated as

(3)
(

n
∏

i=1

∂ki
i

)

Φc1 =
(

n
∏

i=1

∂li
i

)

Φc2

for all ki, li ∈ Z≥0 such that

c1 +
∑

i

kivi = c2 +
∑

i

livi

and c1, c2 ∈ Kprim. To see that (3) follows from a finite number of
relations of this type, note that they correspond to the C-basis of the
module over the polynomial ring C[∂1, . . . , ∂n] which is the kernel of
the natural map

C[Kprim]⊗ C[∂1, . . . , ∂n] → C[K]
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which sends ∂i → [vi]. Since Kprim is finite, this kernel is a Noetherian
module, thus a finite subset of (3) generates the rest.

Remark 2.3. The usual GKZ hypergeometric system coincides with
GKZ(A, K; β) if N has no torsion and vi generate K as a semigroup.
Indeed, then Kprim = {0}, (2) leads to the linear equations of [GKZ1]
and (1) leads to

(

n
∏

i=1

∂ki
i

)

Φ0 =
(

n
∏

i=1

∂li
i

)

Φ0

whenever
∑

i(ki−li)vi = 0, which are the binomial relations of [GKZ1].

Remark 2.4. The n-tuple A of elements of N is allowed to contain
repeated elements. As one can see from the PDEs defining the better-
behaved GKZ system, the effect of having vi = vj for some i 6= j, is
that all functions Φc depend on xi + xj .

Example 2.5. Let N = Z⊕ Z/2Z and A = (v1, v2), with v1 = (1, 0),
v2 = (1, 1). Let β be an element in N ⊗ C ∼= C. The solution space of
the better-behaved GKZ system is isomorphic to the space of pairs of
functions Φ(0,0)(x1, x2),Φ(0,1)(x1, x2) satisfying the equations

∂1Φ(0,0) = ∂2Φ(0,1), ∂2Φ(0,0) = ∂1Φ(0,1),

(x1∂1 + x2∂2)Φ(0,0) = βΦ(0,0), (x1∂1 + x2∂2)Φ(0,1) = βΦ(0,1).

The first pair of equations implies that both functions Φ(0,0) and Φ(0,1)

satisfy the wave equation. It follows that

Φ(0,0)(x1, x2) = a(x1 + x2) + b(x1 − x2),

Φ(0,1)(x1, x2) = a(x1 + x2)− b(x1 − x2),

for some arbitrary functions a, b. The second pair of equations implies
then that

(x1 + x2)a
′(x1 + x2) = βa(x1 + x2), (x1 − x2)b

′(x1 − x2) = βb(x1 − x2).

It follows that a(x1 + x2) = A(x1 + x2)
β and b(x1 − x2) = B(x1 −

x2)
β , for some arbitrary complex constants A,B. Hence the better-

behaved GKZ system has a two-dimensional solution space. Note that
the discriminant locus of the system consists of the reducible curve
x2
1 − x2

2 = 0 in C2.

Definition 2.6. For any subset S of N which is closed under the
additions of vi we can define the system GKZ(A, S; β) as in Definition
2.1, but with c ∈ S rather than c ∈ K.
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Remark 2.7. If N has no torsion, then the usual version of GKZ is
equivalent to GKZ(A, S; β) for S the subsemigroup of K generated by
vi. The fact that GKZ(A, K; β) is better-behaved than the usual GKZ
is then related to the fact that the semigroup algebra C[K] is always
Cohen-Macaulay, whereas C[S] need not be so.

3. Spaces of solutions of the better-behaved GKZ and

the logarithmic Jacobian ring

Let (x1, . . . , xn) ∈ Cn. We introduce a non-degeneracy notion for a
degree one element f =

∑n

i=1 xi[vi] of C[K] which is closely related to
the one used by Batyrev [Bat] in the non-torsion case (see for example
theorem 4.8 in [Bat]).

Definition 3.1. The degree one element f =
∑n

i=1 xi[vi] of C[K] is
said to be non-degenerate if the logarithmic derivatives

∑

i xiµj(vi)[vi]
form a regular sequence in C[K] for a basis µj, 1 ≤ j ≤ rkM, of M.

Proposition 3.2. For a generic choice of f =
∑n

i=1 xi[vi] and any
basis (µj) of M the log-derivatives fj =

∑

i xiµj(vi)[vi] of f give a
regular sequence in C[K]. Equivalently, the Koszul complex induced by
the elements fj

(4) 0 → . . . → ∧2M ⊗ C[K] → M ⊗ C[K] → C[K] → R(f,K) → 0

is exact.

Proof. If N has no torsion, the result is [B, Proposition 3.2]. The
Koszul complex reformulation is standard. If N has torsion, the result
appears to be new, but perhaps not particularly unexpected. In order
to prove it, note that the ring C[K] is the direct sum of |torsN | copies
of C[π(K)], where π : K → K ⊗ R is the natural map. Then the
regularity of the sequence needs to be checked at each individual copy
of C[π(K)] where it follows again from the non-torsion result. �

Definition 3.3. The ring R(f,K) is called the logarithmic Jacobian
ring associated to f and K.

Corollary 3.4. The dimension of the C-vector space R(f,K) is equal
to vol(∆) · |tors(N)|, where vol(∆) is the normalized volume of the
polytope ∆ in N ⊗ R, and |tors(N)| is the order of the torsion part of
N.

Proof. The dimension of the C-vector space R(f,K) is equal to the
product of (rkN−1)!·|tors(N)| and the leading coefficient of the Hilbert
polynomial of the graded ring C[K ⊗Z]. But it is well known that this
leading coefficient is the quotient of the normalized volume of ∆ by
(rkN − 1)!. �
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The complex (4) is graded with finite-dimensional graded compo-
nents. We can dualize it component-wise to get another graded exact
complex with finite-dimensional graded components

(5) 0 → R(f,K)∨ → C[K] → N ⊗ C[K] → ∧2N ⊗ C[K] → . . . → 0

We will naturally identify the (graded) dual of C[K] with itself, since
each graded component of C[K] has a natural basis.
The complex (5) allows us to give the following description of the

vector space R(f,K)∨.

Proposition 3.5. The space R(f,K)∨ is the set of elements
∑

c∈K λc[c]
in C[K] such that the linear equations in N ⊗ C

(6)

n
∑

i=1

xiλc+vivi = 0

hold for all c ∈ K.

Proof. The result follows from the observation that the dual of the
map M ⊗C[K] → C[K] in the Koszul complex (4) is the map C[K] →
N ⊗ C[K] in the dual complex (5) given by

∑

c∈K
λc[c] 7→

∑

c∈K

n
∑

i=1

xiλc+vivi ⊗ [c].

�

Remark 3.6. Note that equations (6) can be solved degree-by-degree
and will have no nontrivial solutions for deg(c) > rkN . Indeed, the
exactness of the complex (5) implies that the Hilbert-Poincaré series of
the kernel of the map C[K] → N ⊗ C[K] is a polynomial of degree at
most rkN.

Let us now consider the solutions to GKZ(A, K; β).

Theorem 3.7. The space of analytic solutions to GKZ(A, K; β) in
a neighborhood of a generic f is isomorphic to the space of elements
∑

c∈K λc[c] in C[K]c such that the linear equations in N ⊗ C

(7)

n
∑

i=1

xiλc+vivi = λc(β − c)

hold for all c ∈ K.

Proof. In one direction, if we have a solution (Φc), c ∈ K, then λc =
Φc(x1, . . . , xn) clearly satisfies (7). In fact, this map from the space of
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solutions of GKZ(A, K; β) to the space of solutions of (7) is clearly in-
jective in view of Taylor’s formula, since knowing all Φc(x1, . . . , xn) im-
plies the knowledge of all the partial derivatives of all Φc at (x1, . . . , xn)
in view of equation (1).
In the other direction, suppose that we have a solution (λc) of (7).

Then equation (1) and Taylor formula force us to have

(8) Φc(z1, . . . , zn) =
∑

(l1,...,ln)∈Zn
≥0

λc+
∑

i livi

n
∏

i=1

(zi − xi)
li

li!

for all c ∈ K. It remains to show that the above series converges abso-
lutely and uniformly in c ∈ K and z in a neighborhood of (x1, . . . , xn).
Observe that it suffices to show uniform convergence for a fixed c ∈
Kprim, since the partial derivative of a Taylor series will converge in the
same neighborhood and Kprim ⊂ K is a finite set. From now on we fix
c = c0.
We claim that there exists a constant C1 ∈ R such that

(9) |λc0+
∑

i livi
| ≤ C

(
∑n

i=1
li)

1 (

n
∑

i=1

li)!

for all nonzero (l1, . . . , ln) ∈ Zn
≥0. This is easily seen to be equivalent

to the existence of a constant C2 ∈ R such that

(10) |λd| ≤ Cdeg d
2 (deg d)!

for all d with sufficiently high deg d.
Define Λk = max

d,deg d=k
|λd|. To prove (10) it suffices to show that there

exists C3 ∈ R such that Λk+1 ≤ C3kΛk for all sufficiently large k.
The ideal I of C[K] generated by logarithmic derivatives of f con-

tains [d] for all d of deg d = rkN + 1. It is easy to see that every d1 of
sufficiently high degree can be written as d1 = d + d2 with d, d2 ∈ K
and deg d = rkN + 1. We can write each [d] of degree rkN + 1 as

[d] =
n

∑

i=1

rkN
∑

j=1

xiµj(vi)[vi]td,j

for some td,j ∈ C[K]deg=rkN and some basis (µ1, . . . , µrkN) of M . Con-
sequently, for each d1 of sufficiently high degree we have that

[d1] =

n
∑

i=1

rkN
∑

j=1

xiµj(vi)[vi]td,j [d2]
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for some d2. By considering the maximum size of the coefficients of td,j
we observe that, for deg d1 = k + 1,

[d1] =
n

∑

i=1

rkN
∑

j=1

∑

d3,deg d3=k

βd3,jxiµj(vi)[d3 + vi]

with
∑

d3,j
|βd3,j | bounded by a constant independent of d1 and k.

Equation (7) implies then that
∑

d3,j

βd3,jλd3µj(β − d3) =
∑

i,d3,j

βd3,jxiλd3+viµj(vi) = λd1 .

Since
∑

d3,j
|βd3,j| is bounded by a constant, |λd3 | is bounded by Λk and

µ(β − d3) is bounded by a constant times k, we get |λd1 | ≤ C3kΛk as
required.
This allows us to establish estimates (10) and (9). Since the multi-

nomial coefficients
(
∑n

i=1 li)!
∏n

i=1 li!

are bounded by n
∑n

i=1
li , the terms of the series (8) are bounded by

∏n

i=1(nC1)
li |zi − xi|li . By making |zi − xi| sufficiently small, the abso-

lute convergence is obtained by comparing to a product of convergent
geometric series. �

Having identified the space of solutions of GKZ(A, K; β) in a neigh-
borhood of (x1, . . . , xn) with the space of solutions of the equations
(7), we can now consider a natural filtration on it. We define the
subspaces Fk of the space of solutions of GKZ(A, K; β) in a neigh-
borhood of a generic (x1, . . . , xn) to be characterized by the fact that
Φc(x1, . . . , xn) = 0 for all c with deg c < k. We have that F0 ⊇ F1 ⊇
F2 ⊇ · · · .
Theorem 3.8. The quotient Fk/Fk+1 is naturally isomorphic to the
dual of the degree k component of R(f,K).

Proof. The essential observation is that the equations (7) satisfied by
the elements λc can be solved recursively in the degree of c. Indeed,
suppose that we have found λd, deg d ≤ k, which satisfy (7) for all c,
deg c ≤ k−1. In order to check that a solution exists for all d of degree
k + 1, we need to check that

∑

c,deg c=k λc(β − c)[c] sits in the degree k

component of the image of the map C[K]c → N⊗C[K]c of the complex
(5). Since this is an exact complex, it suffices to check that it is in the
kernel of the map

N ⊗ C[K]c → ∧2N ⊗ C[K]c.
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of (5). The coefficient of its image at [c1] is given by the element of
∧2N ⊗ C[K]c

n
∑

i=1

xiλc1+vivi ∧ (β − c1) = λc1(β − c1) ∧ (β − c1) = 0.

Observe that as we are solving recursively the equations (7), the
ambiguity at each step is precisely an element of the corresponding
component of R(f,K)∨, which leads to the result. �

Corollary 3.9. The space of solutions to the true GKZ system is of
the same dimension as R(f,K).

Remark 3.10. The same argument applies with obvious modifications
when one replaces K by its interior.

Remark 3.11. The argument of this section is likely philosophically
the same as the general arguments used in the theory of holonomic
D-modules, but it has an advantage of being self-contained.

4. Gamma series solutions to the better behaved GKZ

system

A standard way of obtaining solutions for the GKZ hypergeometric
system is given by a Γ-series. We will adopt the same approach to our
current situation.
We first analyze the role of played by the torsion part of the finitely

generated abelian group N and by the possible repetitions that may
appear in the n-tupleA. Let {w1, . . . , wm} ⊂ N⊗R be the set consisting
of the elements π(vi), 1 ≤ i ≤ n, in N ⊗R where π : N → N ⊗R is the
natural map. For each j, 1 ≤ j ≤ m, let Ij be the set of indices i with
π(vi) = wj.
Let ρ : N → C× be a multiplicative group character. Define the map

pρ : C
n → Cm by

(11) pρ(x1, . . . , xn) := (
∑

i∈I1

ρ(vi)xi, . . . ,
∑

i∈Im

ρ(vi)xi).

To a sequence of functions (Ψw(z1, . . . , zm))w∈π(K), we associate a se-
quence of functions (Φc(x1, . . . , xn))c∈K such that, for any c ∈ K,

(12) Φc(x1, . . . , xn) := ρ(c)Ψπ(c)(pρ(x1, . . . , xn)).

What makes this definition useful is the following result.

Proposition 4.1. For any character ρ ∈ Hom(N,C×), if the function

Ψπ(K)(z1, . . . , zm) =
∑

w∈p(K)

Ψw(z1, . . . , zm)[w],
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is a solution on an open set U ⊂ Cm to the better behaved GKZ associ-
ated to β ∈ N⊗C defined by {w1, . . . , wm} in π(N), then the associated
function

ΦK(x1, . . . , xn) =
∑

c∈K
Φc(x1, . . . , xn)[c],

is a solution on the open set p−1
ρ (U) ⊂ Cn to the better behaved GKZ

associated to β ∈ N ⊗ C defined by (v1, . . . , vn) in N.

Proof. For any c ∈ N, equation (12) implies that given some vi ∈ N
and wj ∈ π(N) such that π(vi) = wj we have that

∂iΦc(x, . . . , xn) = ρ(c+ vi)∂jΨπ(c)(
∑

i∈I1

ρ(vi)xi, . . . ,
∑

i∈Im
ρ(vi)xi).

Since the functions Ψw, w ∈ π(K), are solutions to the better behaved
GKZ in π(N), and π(c)+wj = π(c)+π(vi) = π(c+vi), we obtain indeed
that ∂iΦc(x, . . . , xn) = Φc+vi . Similarly, for any µ ∈ M = Hom(N,Z) =
Hom(π(N),Z), we have that

n
∑

i=1

µ(vi)xi∂iΦc(x1, . . . , xn)

= ρ(c)

m
∑

j=1

µ(wj)
(

∑

i∈Ij

ρ(vi)xi

)

∂jΨπ(c)(
∑

i∈I1

ρ(vi)xi, . . . ,
∑

i∈Im
ρ(vi)xi)

= µ(β − c)Φc(x1, . . . , xn).

�

Let G denote the torsion part ofN. Since G is finite abelian group, we
have that Hom(G,Cx) ≃ G. Assume that G has order k, and let (ρg)g∈G
be the corresponding set of independent characters in Hom(G,Cx) ≃ G.
When there is no torsion, we set |G| = 1 and ρ1 = 1. The characters
ρg can be easily extended to become multiplicative characters of N by
imposing that they take the value 1 on the free part of N, after a choice
of splitting. Under this convention, we will view the characters ρg as
elements in Hom(N,Cx). As in formula (11), for each g ∈ G, we define
the linear surjective maps pg : C

n → Cm by

pg(x1, . . . , xn) := (
∑

i∈I1

ρg(vi)xi, . . . ,
∑

i∈Im

ρg(vi)xi).

Let U ⊂ Cm a nonempty open set in Cm with the property that
there exists an open set V in Rm such that

U = {(z1, . . . , zm) : (log |z1|, . . . , log |zm|) ∈ V,

(arg z1, . . . , arg zm) ∈ (−π, π)× . . .× (−π, π)}(13)
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for a choice of the argument functions (arg z1, . . . , arg zm) ∈ Rm. For
such a set U ⊂ Cm, we have that:

Lemma 4.2. ∩g∈G p−1
g (U) 6= ∅.

Proof. For each set of indices Ij, choose exactly one ij ∈ Ij and a
complex number xij such that

(log |xi1 |, . . . , log |xim |) ∈ V \ {0}
and, for all j, 1 ≤ j ≤ m,

arg xij + π < 2π/|G|.
From (13), we see that arg(ρg(vij )xij ) ∈ (−π, π), for any g ∈ G and
1 ≤ j ≤ m, hence

(ρg(vi1)xi1 , . . . , ρg(vim)xim) ∈ U,

for any g ∈ G. By continuity, it is now possible to choose all the
other complex numbers xi, 1 ≤ i ≤ n, for those indices i different from
any of the ij’s, in a small enough neighborhood of the origin in the
complex plane such that pg(x1, . . . , xn) ∈ U, for any g ∈ G. The lemma
follows. �

Theorem 4.3. Let Ψλ
π(K), λ ∈ Λ, be a set of linearly independent ana-

lytic solutions on an open set U ⊂ Cm satisfying condition (13) to the
better behaved GKZ associated to β ∈ N ⊗ C defined by (w1, . . . , wm)

in π(N). The associated set of |Λ| · |G| functions Φλ,g
K , λ ∈ Λ, g ∈ G, is

a set of linearly independent analytic solutions on the non-empty open
set p−1

1 (U) ∩ . . . ∩ p−1
m (U) ⊂ Cn to the better behaved GKZ associated

to β ∈ N ⊗ C defined by (v1, . . . , vn) in N.

Proof. Assume that there exists constants αλ,g such that
∑

λ∈Λ,g∈G
αλ,gΦ

λ,g
c (x) = 0,

for any c ∈ K, x ∈ ∩g∈G p−1
g (U). It follows that

∑

λ∈Λ,g∈G
αλ,gρg(c+ ch)Ψ

λ
π(c)(pg(x)) = 0,

for any c ∈ K, x ∈ ∩g∈G p−1
g (U), and ch ∈ K such that π(ch) = 0.

For each fixed c ∈ K, we have |G| linear relations indexed by h ∈ G.
The orthogonality relations for the characters of the representations of
the finite group G imply that

∑

λ∈Λ
αλ,gΨ

λ
π(c)(pg(x)) = 0,
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for any g ∈ G, c ∈ K and x ∈ ∩g∈G p−1
g (U). The linear independence

of the analytic functions Ψλ
π(K), λ ∈ Λ, in U shows that αλ,g are all

zero. �

The previous discussion clarifies the construction of solutions in the
presence of torsion and repetitions, so for the rest of this section we
will assume that N is a lattice isomorphic to Zd and that the elements
in the n-tuple A = (v1, . . . , vn) form a set.
We are assuming that β ∈ N. Consider a regular triangulation of

the polytope ∆ = Conv(A) with all the vertices among the elements
of A and let Σ be the induced simplicial fan supported on the cone
K = R≥0. If σ1 and σ2 are cones of Σ, we will use the notation σ1 ≺ σ2

to indicate that the cone σ1 is a subcone of σ2. For any c ∈ K, we
denote by σ(c) the minimal cone of the fan containing c.
We define the partial semigroup ring C[K,Σ] to be the complex

vector space with a basis given by the symbols [c] for all c ∈ K and
the multiplication defined such that [c1] · [c2] = [c1 + c2], whenever the
images of c1 and c2 under the map N → N ⊗R belong to a cone of the
fan Σ, and [c1] · [c2] = 0, otherwise.

Definition 4.4. For any β ∈ N, we define the shadow Kβ of K with
respect to β to be the subset of lattice points c ∈ K such that c+ ǫβ ∈
KR for all sufficiently small ǫ > 0.

If β ∈ K, then Kβ = K, and if β ∈ −K◦, then Kβ = K◦. Note that
Kβ−c ⊂ Kβ for any c ∈ K.
Let C[Kβ,Σ] be the ideal in C[K,Σ] generated by [c], for all c in Kβ.

The arguments used by Borisov [B] essentially show that the following
theorem holds:

Proposition 4.5. The ring C[K,Σ] and the module C[Kβ,Σ] (over
C[K,Σ]) are Cohen-Macaulay of dimension d. Moreover, for any basis
(µ1, . . . , µd) of M = Hom(N,Z), the elements

Zj =
∑

i,R≥0vi∈Σ
µj(vi)[vi]

form a regular sequence in C[K,Σ] (and hence in C[Kβ,Σ]).

Corollary 4.6. The quotients

C[K,Σ]/ZC[K,Σ] := C[K,Σ]/(Z1, . . . , Zd)C[K,Σ]

and

C[Kβ,Σ]/ZC[Kβ,Σ] := C[Kβ,Σ]/(Z1, . . . , Zd)C[Kβ,Σ]
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have dimension equal to the normalized volume of ∆.

For any cone σ ∈ Σ, we define the finite set Box(σ) of elements in N
as the set

{c0 : c0 =
n

∑

i=1

qivi, 0 ≤ qi < 1, qi = 0, if R≥0vi is not a ray of σ}.

Let Box(Σ) ⊂ N be the union of the sets Box(σ) for all the maximal
dimensional cones σ ∈ Σ. If c0 ∈ Box(Σ), we denote by σ(c0) the
smallest cone of Σ that contains c0, and let γi(c0), 1 ≤ i ≤ n, be the
rational numbers such that

n
∑

i=1

γi(c0)vi = c0,

with γi(c0) = 0 for those j such that vi does not generate a ray of σ(c0).

Definition 4.7. For each c ∈ K, we define the set L(c0, c) ⊂ Qn of
collections l = (li)1≤i≤n such that

n
∑

i=1

livi = β − c

and such that li − γi(c0) are integers.

The assumption that the elements ofA generate the latticeN implies
that β − c0 − c can be written as a linear combination with integer
coefficients of the elements of A, so the set L(c0, c) is a translate in Cn

of the lattice of integral relations L among the elements of A, where

L = {(li)1≤i≤n :
∑

i=1

livi = 0, li ∈ Z for 1 ≤ j ≤ n}.

It is also useful to note that for any distinct elements c0 and c1 in
Box(Σ), the sets L(c0, c) and L(c1, c) are disjoint.

For a given x = (x1, . . . , xn) in (C⋆)n, and c ∈ K, we introduce the
formal C[K,Σ]c–valued Γ–series

(14) Φc(x) :=
∑

c0∈Box(Σ)

[c0]
∑

l∈L(c0,c)

n
∏

i=1

xli+Di

i

Γ(li +Di + 1)
,

where
Di := [vi] if R≥0vi ∈ Σ, and Di := 0, otherwise,

and
xli+Di

i := e(li+Di)(log |xi|+
√
−1 arg xi),

for a choice of (arg x1, . . . , arg xn) ∈ Rn.
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According to [BH, Proposition 2.12], for each c ∈ K, the formal
series Φc(x) induces a well defined map Ψc(x1, . . . , xn) from a non-
empty open set UΣ in Cn to the completion C[K,Σ]c of the graded ring
C[K,Σ]. The aforementioned proposition also states that the set UΣ

satisfies condition (13). This is an important fact required in theorem
4.3 and insures the consistency of our construction for the torsion and
non-torsion cases.

Lemma 4.8. For any c0 ∈ Box(Σ), c ∈ K, l ∈ L(c0, c) and x ∈ Cn,
the product

[c0]

n
∏

i=1

xli+Di

i

Γ(li +Di + 1)

belongs to the shadow module C[Kβ ,Σ].

Proof. Note first that the product is zero, unless there exists a maximal
cone in Σ containing σ(c0] whose rays contain all the vectors vi with
li ∈ Z<0. Assume that the product is not zero. It lies in the ideal of
C[K,Σ] generated by [w] where

w = c0 +
∑

i,li∈Z<0

vi,

so it is enough to show that w ∈ Kβ . For any ǫ > 0 we can write that

w + ǫ(β − c) = w + ǫ

n
∑

i=1

livi

=
∑

i,R≥0vi≺σ(c0)

(γi(c0) + ǫli)vi +
∑

i,li∈Z<0

(1 + ǫli)vi +
∑

i,li∈Z≥0

ǫlivi.

Since γi(c0) > 0 in the first summation, for any sufficiently small ǫ > 0,
we have that w+ ǫ(β − c) ∈ KR. Since c ∈ K, it follows that w+ ǫβ ∈
KR. �

Theorem 4.9. For any linear map

h : C[Kβ,Σ]/(Z1, . . . , Zd)C[Kβ,Σ] → C,

the sequence of functions (h ·Ψc(x1, . . . , xn))c∈K satisfies the better be-
haved GKZ hypergeometric equations on UΣ corresponding to the set A
and parameter β ∈ N.

Proof. For the set of equations (1), note that taking the j-th partial
derivative of the summand over (li)1≤i≤n ∈ L(c0, c) in the series Φc,
replaces it by a summand over (li − δij)1≤i≤n. It is then enough to note
that

L(c0, c)− (δij)1≤i≤n = L(c0, c+ vj).
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For the set of equations (2), our convention thatDj = 0 if R≥0vj /∈ Σ,
implies that

n
∑

i=1

µ(vi)Di =
∑

i,R≥0vi∈Σ
µ(vi)Di,

for any µ ∈ M = Hom(N,Z). Hence

(

− µ(β − c) +
n

∑

i=1

µ(vi)xi∂i
)

Ψc =
(

n
∑

i=1

µ(vi)Di

)

Ψc.

The previous lemma shows that the series Ψc takes values in C[Kβ,Σ],
so the result follows after we observe that

∑n

i=1 µ(vi)Di is a linear
combination of the Zj’s. �

Accordingly, it is convenient to view each Γ–series Ψc(x), c ∈ K, as
a map from the non-empty open set UΣ in Cn to the finite dimensional
vector space C[Kβ,Σ]/(Z1, . . . , Zd)C[Kβ,Σ].

Lemma 4.10. Any w ∈ Kβ determines a unique c0 ∈ Box(Σ) such
that

w =
n

∑

i=1

pivi

with pi − γi(c0) ∈ Z≥0 for all i, and pi = 0 unless vi generates a
one dimensional subcone of σ(w). Moreover, there exists c1 ∈ K and
l ∈ L(c0, c1) such that pi ∈ Z>0 for all i such that li ∈ Z<0.

Proof. Note first that, since σ(w) is the minimal cone containing w, we
can write in a unique way

w = c0 +

n
∑

i=1

mivi =

n
∑

i=1

(γi(c0) +mi)vi, mi ∈ Z≥0,

for some c0 ∈ Box(σ), with γi(c0) = mi = 0 for those i such that vi does
not generate a one dimensional subcone of σ(w). Set pi := γi(c0) +mi.
The definition of Kβ implies that for any w ∈ Kβ, there exists a

cone σ in the fan such that w + ǫβ ∈ σ for any small enough ǫ > 0. In
particular, we have that w ∈ σ(w) ⊂ σ. Let P > 0 be a large enough
positive integer such that, for any c ∈ K, the element Pc belongs to
the semigroup generated by the elements vi generating the cone σ, and
such that c+ β/P ∈ KR. It follows that

Pc =

n
∑

i=1

q′ivi, q′i ∈ Z≥0,
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and

Pc+ β =

n
∑

i=1

q′′i vi, q′′i ∈ Z≥0,

where q′i = q′′i = 0, for those i such that vi does not generate a one
dimensional subcone of σ. Hence

β =

n
∑

i=1

qivi, qi ∈ Z,

with qi = q′′i − q′i. Since w + ǫβ ∈ KR for sufficiently small ǫ > 0, we
conclude that γi(c0) +mi > 0 for all i with qi ∈ Z<0.
Now we choose c1 to be the element in Box(Σ) such that σ(c0) =

σ(c1) and, if c0 6= 0,

c0 + c1 =
∑

i,R≥0vi≺σ(c0)

vi.

We can write that

β − c1 =

n
∑

i=1

livi,

where li = qi + γi(c0) − 1, if vi generates a one dimensional subcone
of σ(c0), and li = qi, otherwise. We see that l = (li)1≤i≤n belongs to
L(c0, c1) and has the required properties, so the result follows. �

We now prove the required linear independence result.

Proposition 4.11. If

h : C[Kβ,Σ]/(Z1, . . . , Zd)C[Kβ,Σ] → C,

is a linear map such that h ·Ψc(x) = 0, for all c ∈ K and any x ∈ UΣ,
then h = 0.

Proof. The proof is very similar to the proof of [BH, Proposition 2.19].
We include it here since the context and the notation are slightly
changed. Assume that there exists some x ∈ C[Kβ,Σ]/ZC[Kβ,Σ] such
that h(x) 6= 0. Let R be the largest degree of such an element. Fur-
thermore, we can assume that x has representative [w] mod ZC[Kβ,Σ],
with w ∈ Kβ. According to the previous lemma w determines a unique
c0 ∈ Box(Σ), an element c1 ∈ K, and a relation l ∈ L(c0, c1) such that

(15) w = c0 +
∑

i,li∈Z<0

vi +

n
∑

i=1

nivi

with ni ∈ Z≥0 for those i such that vi generates a one dimensional
subcone in σ(w), and ni = 0 otherwise.
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For each i such that vi generates a cone in Σ, consider the loop
of the form xi(t) = ǫ exp(2π

√
−1 t), xj(t) = ǫ, j 6= i, 0 ≤ t ≤ 1,

with ǫ > 0 a small real positive number. The action of the induced
monodromy operator Ti on the Γ-series Ψc1 is given by exp(Di). Since
Di is nilpotent in C[Kβ,Σ]/ZC[Kβ,Σ], there is a polynomial g(Ti) such
that g(Ti)Ψc1 = DiΨc1, for every i such that vi generates a cone in Σ.
Hence

∏

i

g(Ti)
niΨc1(x) =

∏

i

Dni

i Ψc1(x).

Since h · Ψc(x) = 0 and we have analytically continued Ψc1, we also
have that

h(
∏

i

Dni

i Ψc1(x)) = 0.

The definition of the Γ–series Ψc1(x) and the fact that Di = [vi] are
nilpotent in C[Kβ ,Σ]/ZC[Kβ,Σ] shows that any induced GKZ solution
can be written as the product of a monomial in the variables xi and an
element of C[u−1

k , log uk][[uk]] where uk, 1 ≤ k ≤ n − rankN, invariant
variables under the action of the character torus Hom(L,C×).
Hence, in order to obtain the contradiction it is enough to show

that, for l ∈ L(c0, c1) used in formula (15), the Fourier coefficient of
xl =

∏

xli
i in the expansion of h(

∏

i D
ni

i Ψc1(x)) is non-zero. Indeed,
this coefficient is given by

h(
∏

Dni

i · [c0] ·
∏ 1

Γ(li +Di + 1)
).

Notice that the terms that occur in the expansion of the expression
in the argument of h have degree at least R, while [w] is the only
element of that degree that occurs and its coefficient is nonzero. Since
h([w]) 6= 0, the maximal property of R implies that the coefficient of
xl in the expansion of h(

∏

i D
ni

i Ψc1(x)) is indeed non-zero. This ends
the proof of the linear independence result. �

Since the dimension of the space of solutions to the better behaved
GKZ system is exactly vol(∆), we conclude that the formal Γ–series
produces the expected number of linearly independent analytic solu-
tions to the better behaved GKZ system. More precisely, we have
proved the following theorem.

Theorem 4.12. The map

(C[Kβ,Σ]/(Z1, . . . , Zd)C[Kβ,Σ])
∨ → Sol(UΣ)

f → (f ·Ψc)c∈K
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produces a complete system of vol(∆) linearly independent solutions to
the better behaved GKZ system which are analytic in UΣ.

Remark 4.13. The result of this theorem should be compared with
the results of [BH, Corollary 2.21] which employ the “leading term
module” M(β) associated to the usual GKZ system. The modules
M(β) are useful algebraic tools defined in loc. cit., but the dimensions
of M(β)/ZM(β) are quite hard to control for general values of β. In
contrast, the shadow modules C[Kβ,Σ] are maximal Cohen-Macaulay.
It is possible to show that C[Kβ,Σ] =

∑

c∈K M(β − c).

We summarize the results of this section in the following remark.

Remark 4.14. Let N be a finitely generated abelian group and let
tors(N) denote its torsion part. Assume that A = (v1, . . . , vn) is an
n-tuple of elements in N subject to the conditions detailed at the begin-
ning of section 2, and β ∈ N. Let Σ be a fan supported on KR induced
by a regular triangulation of the convex hull of the elements π(vi) with
all the vertices among the elements π(vi), where π : N → N ⊗R is the
natural map.
Theorems 4.3 and 4.12 provide the explicit construction of a complete

system of vol(∆) · |tors(N)| linearly independent analytic solutions to
the better behaved GKZ system on an non-empty open set UΣ ⊂ Cn.

5. Periods and the better behaved GKZ with β = 0

In this section, we assume that N is a lattice, and, as before, we
denote by ∆ the convex hull of the vectors vi. We will further assume
that vi are all of the lattice points of ∆. We denote by T the algebraic
torus given by Spec(N1) where N1 is the sublattice of N of degree zero
elements. For any degree one element f =

∑

i xit
vi one can consider

the hypersurface Zf ⊆ T given by f/tv = 0 for some (any) choice of
degree one lattice point v. Batyrev [Bat] calculated the homology of
Zf and of the complement T \ Zf . In this section we will show how
these are related to the true GKZ with β = 0.
The key idea is provided by [Bat, Theorem 14.2]. Let d be the

dimension of T , so that N = Zd+1.

Theorem 5.1. For any γ ∈ Hd(T \ Zf ,Z) and any c ∈ K consider

Φ(x1, . . . , xn) =

∫

γ

tc

fdeg c
w

where w is the standard T -invariant d-form on T . Then Φ(x1, . . . , xn)
satisfies the usual GKZ hypergeometric equation with β = −c.
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Proof. See the proof of [Bat, Theorem 14.2]. �

The above theorem allows us to construct solutions to the true GKZ
hypergeometric system from the following data. Let us assume that we
operate in a neighborhood of some nondegenerate x. Consider cycles
γ ∈ Hd(T \Zf ,Z) such that one can pick a branch of ln(f/tv) on it for
some choice of v of degree one, and such that

∫

γ
w = 0.

Proposition 5.2. For all such γ and all c ∈ K, c 6= 0 define

Φc(x1, . . . , xn) =

∫

γ

(−1)deg c−1(deg c− 1)!
tc

fdeg c
w.

Define Φ0(x1, . . . , xn) =
∫

γ
(ln f/tv)w. Then (Φc)c∈K satisfy the better

behaved GKZ equations for β = 0.

Proof. To calculate ∂iΦc, observe that we can differentiate under the
integral. If c 6= 0, we get

∂i(−1)deg c−1(deg c− 1)!
tc

fdeg c
w = (−1)deg c(deg c)!

tc

fdeg c + 1
∂ifw

= (−1)deg c(deg c)!
tc+vi

fdeg c+1
w

so ∂iΦc = Φc+vi . The calculation for c = 0 is similar. The linear
relations (2) in the c 6= 0 case follow from [Bat, Theorem 14.2] and its
proof. The linear relations in c = 0 case can be obtained directly as
follows. Observe that

∑

i

µ(vi)xi∂iΦ0 =

∫

γ

∑

i µ(vi)xit
vi

f
w.

If µ = deg, then the integral reduces to
∫

γ
w = 0, by our assumption on

the cycle γ. Otherwise, we can assume that w = ∧d
j=1

dt
lj

t
lj

with µ(lj) = 0

for j > 1 and µ(l1) = 1. We may assume that vi = v +
∑

j aijlj for
some integers aij . We have

∂

∂tl1
tvi−v = ai1t

−l1tvi−v = µ(vi − v)t−l1tvi−v

We then have
∫

γ

∑

i µ(vi)xit
vi

f
w =

∫

γ

∑

i µ(vi − v)xit
vi

f
w =

∫

γ

tl1
∂

∂tl1
ln(f/tv)w

=

∫

γ

d
(

ln(f/tv) ∧d
j=2

dtlj

tlj

)

= 0.

�
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Remark 5.3. We can use a similar calculation for an arbitrary c in-
stead of reverting to Batyrev’s paper. Namely, for any µ

∑

i

µ(vi)xi∂iΦc + µ(c)Φ(c)

=

∫

γ

(−1)deg c(deg c)!

∑

i µ(vi)xit
c+vi

fdeg c+1
w

−
∫

γ

(−1)deg c(deg c− 1)!

∑

i µ(c)xit
c+vi

fdeg c+1
w

=(−1)deg c(deg c− 1)!

∫

γ

∑

i µ((deg c)vi − c)xit
c+vi

fdeg c+1
w.

As before, we write w = ∧d
j=1

dt
lj

t
lj

with µ(l1) = 1, µ(l≥2) = 0. It remains

to observe that the integrand is up to a constant

d
( tc−(deg c)v

(f/tv)deg c
∧d
j=2

dtlj

tlj

)

because in a calculation similar to c = 0 case we get

−(deg c)µ(vi − v) + µ(c− (deg c)v) = µ(c− (deg c)vi).

The further details are left to the reader.

Corollary 5.4. The solutions to the better behaved GKZ with β = 0
are linear combinations of the solutions obtained by the above proposi-
tion. Moreover, it is effectively a 1-to-1 correspondence and the integral
structure on the homology of T \ Zf produces an integral structure on
the space of solutions to the better behaved GKZ.

In particular, this corollary explains why the monodromy of the bet-
ter behaved GKZ system is integral.

6. Further comments and open problems

The properties of the better behaved version of the GKZ system show
that this system is better suited than the usual GKZ if any type of func-
torial considerations are to be invoked. Although we do not prove it
in this paper, the mirror symmetric identification of the Fourier-Mukai
transform and the analytic continuation formulae for the solutions to
the GKZ system discussed in [BH] continues to hold in the better be-
haved GKZ case. In fact, the context of this paper is more natural since
the rank of the space of local solutions to the better behaved GKZ one
side matches the rank of the orbifold cohomology/stacky K-theory on
the other side. This was not in the case in our previous work. It would
be an interesting problem to study an appropriately defined category



22 LEV A. BORISOV AND R. PAUL HORJA

of better behaved GKZ systems and its functorial properties, part of
which would mirror the properties of category of toric DM stacks. In
the same realm, we expect that, in an appropriate sense, the system
GKZ(A, K; β) is dual to the system GKZ(A, K◦;−β).
More importantly, we believe that the better behaved GKZ system

lends itself to a process of categorification, which as a first step, is ex-
pected to provide a non-commutative categorical resolution of a Goren-
stein toric singularity. Such a categorification will have to pass all the
toric mirror symmetric checks, and, as such, would have a transcen-
dental component which is missing in the algebraic proposals of non-
commutative resolutions currently available in the literature. We hope
to come back to this problem in a future paper.
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