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Abstract

We propose a combinatorical duality for lattice polyhedra which conjec-
turally gives rise to the pairs of mirror symmetric families of Calabi-Yau
complete intersections in toric Fano varieties with Gorenstein singularities.
Our construction is a generalization of the polar duality proposed by Batyrev
for the case of hypersurfaces.

1 Introduction

Mirror Symmetry discovered by physicists for Calabi-Yau manifolds still remains

a surprizing puzzle for mathematicians. Some insight on this phenomenon was

received from the investigation of Mirror Symmetry for some examples of Calabi-

Yau varieties which admit simple birational models embedded in toric varieties. In

this context, Calabi-Yau manifolds obtained by the resolution of singularities of

complete intersections in toric varieties are the most general examples.

In the paper of Batyrev and van Straten [2], there was proposed a method for

conjectural construction of mirror families for Calabi-Yau complete intersections in

toric varieities. Unfortunately, their method fails to provide such a nice duality as

it is in the case of hypersurfaces [1]. The purpose of these notes is to propose

a generalized duality which conjecturally gives rise to the mirror involution for

complete intersections.
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I am pleased to thank prof. Batyrev who has edited my original notes.

2 Basic definitions and notations

Let M and N = Hom(M,Z) be dual free abelian groups of rank d, MR and NR

be their real scalar extensions and

〈·, ·〉 : MR ×NR → R

be the canonical pairing. For any convex polyhedron P in MR (or in NR), we denote

its set of vertices by P 0.

Definition 2.1 Let P be a d-dimensional convex polyhedron in MR such that P

contains zero point 0 ∈MR in its interior. Then

P ∗ = {y ∈ NR | 〈x, y〉 ≥ −1}

is called polar, or dual polyhedron.

Definition 2.2 A convex polyhedron P in MR is called a lattice polyhedron if P 0 ⊂
M ⊂MR.

Definition 2.3 (cf. [1]) Let ∆ be a d-dimensional lattice polyhedron in MR such

that ∆ contains 0 in its interior. Then ∆ is called reflexive if ∆∗ is also a lattice

polyhedron.

Definition 2.4 Let P be a d-dimensional convex polyhedron in MR such that P

contains zero point 0 ∈MR in its interior. We define the d-dimensional fan Σ[P ] as

the union of the zero-dimensional cone {0} together with the set of all cones

σ[θ] = {0} ∪ {x ∈MR | λx ∈ θ for some λ ∈ R>0}

supporting faces θ of P .

Next four definitions of this section play the main role in our construction.

Definition 2.5 Let ∆ ∈MR be a reflexive polyhedron. Put E = {e1, . . . , en} = ∆0.

A representation of E = E1 ∪ · · · ∪Er as the union of disjoint subsets E1, . . . , Er is

called nef-partition of E if there exist integral convex Σ[∆]-piecewise linear functions

ϕ1, . . . , ϕr on MR such that ϕi(ej) = 1 if ej ∈ Ei, and ϕi(ej) = 0 otherwise.
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Remark 2.6 The term nef-partition is motivated by the fact that such a partition

induces a representation of the anticanonical divisor −K on the Gorenstein toric

Fano variety P∆∗ as the sum of r Cartier divisors which are nef.

Definition 2.7 Let E = E1∪· · ·∪Er be a nef-partition. Define r convex polyhedra

∆1, . . . ,∆r ⊂MR as

∆i = Conv({0} ∪ Ei), i = 1, . . . , r.

Remark 2.8 From Definition 2.7 we immediately obtain that ∆i ∩ ∆j = {0} if

i 6= j and ∆ = Conv(∆1 ∪ · · · ∪∆r).

Definition 2.9 Let E = E1∪· · ·∪Er be a nef-partition. Define r convex polyhedra

∇1, . . . ,∇r ⊂ NR as

∇i = {y ∈ NR | 〈x, y〉 ≥ −ϕi(x)}, i = 1, . . . , r.

Remark 2.10 It is obvious that {0} ∈ ∇1 ∩ · · · ∩ ∇r. By Definition 2.1, one has

∆∗ = {y ∈ NR | 〈x, y〉 ≥ −ϕ(x)},

where ϕ = ϕ1 + · · ·ϕr. Therefore ∇1 ∪ · · · ∪ ∇r ⊂ ∆∗. Notice that ∇1, . . . ,∇r are

also lattice polyhedra. This fact follows from the following standard statement.

Proposition 2.11 Let Σ be any complete fan of cones in MR, ϕ0 a convex Σ-

piecewise linear function on MR. Then

Q0 = {y ∈ NR | 〈x, y〉 ≥ −ϕ0(x)}

is a convex polyhedron whose vertices are restrictions of ϕ0 on cones of maximal

dimension of Σ.

Corollary 2.12 The convex functions ϕ1, . . . , ϕr have form

ϕi(x) = −min
y∈∇i
〈x, y〉.

In particular, we have

− min
x∈∆0

j , y∈∇
0
i

〈x, y〉 = δj i

and

〈∆j,∇i〉 ≥ −δj i.
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Definition 2.13 Define the lattice polyhedron ∇ ∈ NR as

∇ = Conv(∇1 ∪ · · · ∪ ∇r).

Remark 2.14 Remark 2.10 shows that ∇ ⊂ ∆∗.

3 The combinatorical duality

Proposition 3.1 ∆∗ = ∇1 + · · ·+∇r.

Proof. The statement follows from the equality
∑
i ϕi = ϕ, from Remark 2.10

and Proposition 2.11. 2

Proposition 3.2 ∇∗ = ∆1 + · · ·+ ∆r.

Proof. Let x = x1 + · · · + xr be a point of ∆1 + · · · + ∆r (xi ∈ ∆i), and

y = λ1y1 + · · ·λryr, (λ1 + · · ·+ λr = 1, λi ≥ 0, yi ∈ ∇i) be a point in ∇. By 2.12,

〈x, y〉 ≥
r∑
i=1

λi〈xi, yi〉 ≥ −
r∑
i=1

λi = −1.

Hence ∆1 + · · ·+ ∆r ⊂ ∇∗.
Let y ∈ (∆1 + · · ·+ ∆r)

∗. Put

λi = −min
x∈∆i

〈x, y〉.

Since 0 ∈ ∆i, all λi are nonnegative. Since 〈∑i ∆i, y〉 ≥ −1, we have
∑
i λi ≤ 1.

Consider the convex function ϕy =
∑
i λiϕi. For all x ∈MR, we have

−ϕy(x) =
r∑
i=1

λiϕi(x) ≤ 〈x, y〉.

By Proposition 2.11, y is contained in the convex hull of all points in NR which are

equal to restrictions of ϕy on cones of maximal dimension of Σ[∆]. By definition of

ϕy, any such a point is a sum
∑
i λipi where pi ∈ ∇i. Hence y ∈ ∇. Thus we have

proved that (∆1 + · · ·+ ∆r)
∗ ⊂ ∇. 2

Since ∇ and ∆1 + · · ·+ ∆r are lattice polyhedra, we obtain:

Corollary 3.3 The polyhedron ∇ is reflexive.

Proposition 3.4 Let E ′ = {e′1, . . . , e′k} = ∇0, E ′i = ∇0
i (i = 1, . . . r). Then subsets

E ′1, . . . E
′
r ⊂ E ′ give rise to a nef-partition of E ′.
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Proof. First, we prove that ∇i∩∇j = {0} for i 6= j. Assume that e′p ∈ ∇i∩∇j.

Using 2.12, we obtain that e′p has non-negative values at all vertices e1, . . . , en of ∆.

On the other hand, e′p has zero value at the interior point 0 ∈ ∆. Hence e′p must be

zero. This means that E ′i ∩ E ′j = ∅ for i 6= j.

Let e′p be a vertex of ∇i. We prove that e′p is also a vertex of ∇. By 2.12, there

exists a vertex es ∈ ∆0
j such that 〈es, e′p〉 = −1. Moreover,

−1 = min
y∈∇
〈es, y〉 = min

y∈∇0
i

〈es, y〉.

So e′p is also a vertex of ∇.

Define the functions

ψi : NR → R, i = 1, . . . , r;

ψi(y) = −min
x∈∆i

〈x, y〉.

Obviously, ψ1, . . . , ψr are convex. By 2.12, ψi(e
′
p) = 1 if e′p ∈ ∇i, and ψi(e

′
p) = 0

otherwise. We prove that restrictions of ψi on cones of Σ[∇] are linear. It is

sufficient to consider restrictions of ψi on cones σ[θ] of maximal dimension where

θ = ∇∩{y | 〈v, y〉 = −1} is a (d−1)-dimensional face of∇ corresponding to a vertex

v ∈ ∇∗ = ∆1 + · · ·+ ∆r. Let v = v1 + · · ·+vi+ · · ·+vr, where vi denotes a vertex of

∆i. If we take another vertex v′i 6= vi of ∆i, then the sum v = v1 + · · ·+ v′i + · · ·+ vr

represents another vertex of ∇∗. Clearly, 〈v, y〉 ≤ 〈v′, y〉 for any y ∈ σ[θ], i.e.,

〈vi, y〉 ≤ 〈v′i, y〉. Hence the restriction of ψi on σ[θ] is −〈vi, y〉. 2

Corollary 3.5

∆i = {x ∈ mR | 〈x, y〉 ≥ −ψi(y)}, i = 1, . . . , r.

Thus we have proved that the set of reflexive polyhedra with nef-partitions has

a natural involution

ı : (∆;E1, . . . , Er)→ (∇;E ′1, . . . , E
′
r).

On the other hand, every nef-partition of a reflexive polyhedron ∆ defines r base

point free linear systems of numerically effective Cartier divisors | D1 |, . . . , | Dr |
such that the sum D1 + . . .+Dr is the anticanonical divisor on the Gorenstein toric

Fano variety P∆∗ .

Conjecture 3.6 The duality between nef-partitions of reflexive polyhedra ∆ and ∇
gives rise to pairs of mirror symmetric families of Calabi-Yau complete intersections

in Gorenstein toric Fano varieties P∆∗ and P∇∗.
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