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Abstract

We propose a combinatorical duality for lattice polyhedra which conjec-
turally gives rise to the pairs of mirror symmetric families of Calabi-Yau
complete intersections in toric Fano varieties with Gorenstein singularities.
Our construction is a generalization of the polar duality proposed by Batyrev

for the case of hypersurfaces.

1 Introduction

Mirror Symmetry discovered by physicists for Calabi-Yau manifolds still remains
a surprizing puzzle for mathematicians. Some insight on this phenomenon was
received from the investigation of Mirror Symmetry for some examples of Calabi-
Yau varieties which admit simple birational models embedded in toric varieties. In
this context, Calabi-Yau manifolds obtained by the resolution of singularities of
complete intersections in toric varieties are the most general examples.

In the paper of Batyrev and van Straten [2], there was proposed a method for
conjectural construction of mirror families for Calabi-Yau complete intersections in
toric varieities. Unfortunately, their method fails to provide such a nice duality as
it is in the case of hypersurfaces [1]. The purpose of these notes is to propose
a generalized duality which conjecturally gives rise to the mirror involution for

complete intersections.



I am pleased to thank prof. Batyrev who has edited my original notes.

2 Basic definitions and notations

Let M and N = Hom(M, Z) be dual free abelian groups of rank d, Mg and Ng

be their real scalar extensions and
<','> : MRXNRHR

be the canonical pairing. For any convex polyhedron P in Mg (or in Ngr), we denote

its set of vertices by P°.

Definition 2.1 Let P be a d-dimensional convex polyhedron in Mg such that P

contains zero point 0 € Mg in its interior. Then
Pr={yeNr|(z,y) > -1}
is called polar, or dual polyhedron.

Definition 2.2 A convex polyhedron P in My is called a lattice polyhedron if P° C
M C M.

Definition 2.3 (cf. [1]) Let A be a d-dimensional lattice polyhedron in Mg such
that A contains 0 in its interior. Then A is called reflezive if A* is also a lattice

polyhedron.

Definition 2.4 Let P be a d-dimensional convex polyhedron in Mg such that P
contains zero point 0 € Mg in its interior. We define the d-dimensional fan 3[P] as

the union of the zero-dimensional cone {0} together with the set of all cones
ol0] = {0} U{x € Mg | Ax € 0 for some A € R}

supporting faces 6 of P.
Next four definitions of this section play the main role in our construction.

Definition 2.5 Let A € Mg be a reflexive polyhedron. Put E = {ey,...,e,} = A°.
A representation of £ = F; U ---U E, as the union of disjoint subsets Ej, ..., E, is
called nef-partition of E if there exist integral convex ¥[A]-piecewise linear functions

©1,...,¢, on Mg such that p;(e;) =1 if e; € E;, and ¢;(e;) = 0 otherwise.



Remark 2.6 The term nef-partition is motivated by the fact that such a partition
induces a representation of the anticanonical divisor —K on the Gorenstein toric

Fano variety Pa~ as the sum of r Cartier divisors which are nef.

Definition 2.7 Let F = E;U---UFE, be a nef-partition. Define r convex polyhedra
Ai,..., A, C Mg as

A, =Conv({0}UE), i=1,...,r

Remark 2.8 From Definition 2.7 we immediately obtain that A; N A; = {0} if
i# j7and A =Conv(A;U---UA,).

Definition 2.9 Let F = E,U---UE, be a nef-partition. Define r convex polyhedra
Vl,...,VT C Ng as

Vi={y e Nr|(r,y) > —pi(x)}, i=1,...,7

Remark 2.10 It is obvious that {0} € Vi N ---NV,. By Definition 2.1, one has

A*={y € Nr | (z,y) > —¢(z)},

where ¢ = 1 + -+ - ,.. Therefore V; U--- UV, C A*. Notice that Vq,...,V, are

also lattice polyhedra. This fact follows from the following standard statement.

Proposition 2.11 Let ¥ be any complete fan of cones in Mg, ¢o a conver -

piecewise linear function on Mg. Then

Qo =1y € Nr | (z,9) > —po(2)}

s a conver polyhedron whose vertices are restrictions of pg on cones of maximal

dimension of 3.

Corollary 2.12 The convex functions @1, ..., @, have form
pi(w) = — min(z, y).
In particular, we have

— min_ (z,y) =
LUGAj,yGV?

and

(A, Vi) > =6



Definition 2.13 Define the lattice polyhedron V € Ng as
V =Conv(V,U---UV,).

Remark 2.14 Remark 2.10 shows that V C A*.

3 The combinatorical duality
Proposition 3.1 A*=V; +---+V,.

Proof. The statement follows from the equality >, v; = ¢, from Remark 2.10
and Proposition 2.11. O

Proposition 3.2 V*=A; +--- 4+ A,.

Proof. Let x = x; + -+ 4+ x, be a point of Ay + --- + A, (x; € A;), and
y=My1+- Ny, M+ -+ N =1, \; >0, y; € V;) be a point in V. By 2.12,

(2, y) >Z>\ Tiy Yi) > — Z

=1

Hence A; +---+ A, C V*.
Let y € (A +---+ A,)*. Put

Ai = — min(z, y).

Since 0 € A, all \; are nonnegative. Since (}; A;,y) > —1, we have Y, \; < 1.

Consider the convex function ¢, = >>; \ip;. For all z € Mg, we have

—oy(z ZAZ% < (z,y).

By Proposition 2.11, y is contained in the convex hull of all points in Ng which are

equal to restrictions of ¢, on cones of maximal dimension of ¥[A]. By definition of

¢y, any such a point is a sum »; \;p; where p; € V;. Hence y € V. Thus we have

proved that (A; +---+ A,)* C V. O
Since V and A + -+ + A, are lattice polyhedra, we obtain:

Corollary 3.3 The polyhedron V is reflexive.

Proposition 3.4 Let E' = {¢},...,e}} =V, E/ =V (i =1,...7). Then subsets
Ei,...E. C E' give rise to a nef-partition of E'.
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Proof. First, we prove that V;NV; = {0} for i # j. Assume that e, € V;NV;.
Using 2.12, we obtain that e;) has non-negative values at all vertices eq, ..., e, of A.
On the other hand, €], has zero value at the interior point 0 € A. Hence e}, must be
zero. This means that Ej N Ej = () for i # j.

Let e}, be a vertex of V;. We prove that e, is also a vertex of V. By 2.12, there
exists a vertex e, € A such that (e, e}) = —1. Moreover,

—1 =mi S = I s Y/
min(es, ) g@@ y)

So e, is also a vertex of V.
Define the functions
v, - N — R, i=1,...,r;
Yily) = — min(z,y).

Obviously, t1,...,%, are convex. By 2.12, ¢;(e;) = 1 if ¢, € V;, and ¢;(e,) = 0
otherwise. We prove that restrictions of 1; on cones of X[V] are linear. It is
sufficient to consider restrictions of 1; on cones o[f] of maximal dimension where
0 =Vn{y| (v,y) = —1} isa (d—1)-dimensional face of V corresponding to a vertex
veV =Ai+---+A,. Letv=v1+---+v;+---+v,, where v; denotes a vertex of
A,;. If we take another vertex v} # v; of A;, then the sum v = vy +--- 4+ v/ +-- -+,
represents another vertex of V*. Clearly, (v,y) < (V,y) for any y € o[f], i.e.,
(vi,y) < (v},y). Hence the restriction of ¢; on o[f] is —(v;, y). O
Corollary 3.5

A ={xemgr|(z,y) > -y}, i=1,...,r

Thus we have proved that the set of reflexive polyhedra with nef-partitions has

a natural involution
v (AEy,.. B — (VS B E)D).

On the other hand, every nef-partition of a reflexive polyhedron A defines r base
point free linear systems of numerically effective Cartier divisors | Dy |,...,| D, |
such that the sum D; +...+ D, is the anticanonical divisor on the Gorenstein toric

Fano variety Pa-.

Conjecture 3.6 The duality between nef-partitions of reflexive polyhedra A and V
gives rise to pairs of mirror symmetric families of Calabi- Yau complete intersections

in Gorenstein toric Fano varieties Pa~ and Py-.
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