Towards the Mirror Symmetry for Calabi-Yau Complete Intersections in Gorenstein Toric Fano Varieties

Lev A. Borisov
Department of Mathematics
University of Michigan
Ann Arbor, Michigan 48109-1003
e-mail: Lev.Borisov@math.lsa.umich.edu

Abstract

We propose a combinatorical duality for lattice polyhedra which conjecturally gives rise to the pairs of mirror symmetric families of Calabi-Yau complete intersections in toric Fano varieties with Gorenstein singularities. Our construction is a generalization of the polar duality proposed by Batyrev for the case of hypersurfaces.

1 Introduction

Mirror Symmetry discovered by physicists for Calabi-Yau manifolds still remains a surprizing puzzle for mathematicians. Some insight on this phenomenon was received from the investigation of Mirror Symmetry for some examples of CalabiYau varieties which admit simple birational models embedded in toric varieties. In this context, Calabi-Yau manifolds obtained by the resolution of singularities of complete intersections in toric varieties are the most general examples.

In the paper of Batyrev and van Straten [2], there was proposed a method for conjectural construction of mirror families for Calabi-Yau complete intersections in toric varieities. Unfortunately, their method fails to provide such a nice duality as it is in the case of hypersurfaces [1]. The purpose of these notes is to propose a generalized duality which conjecturally gives rise to the mirror involution for complete intersections.

I am pleased to thank prof. Batyrev who has edited my original notes.

2 Basic definitions and notations

Let M and $N=\operatorname{Hom}(M, \mathbf{Z})$ be dual free abelian groups of rank $d, M_{\mathbf{R}}$ and $N_{\mathbf{R}}$ be their real scalar extensions and

$$
\langle\cdot, \cdot\rangle: M_{\mathbf{R}} \times N_{\mathbf{R}} \rightarrow \mathbf{R}
$$

be the canonical pairing. For any convex polyhedron P in $M_{\mathbf{R}}$ (or in $N_{\mathbf{R}}$), we denote its set of vertices by P^{0}.

Definition 2.1 Let P be a d-dimensional convex polyhedron in $M_{\mathbf{R}}$ such that P contains zero point $0 \in M_{\mathbf{R}}$ in its interior. Then

$$
P^{*}=\left\{y \in N_{\mathbf{R}} \mid\langle x, y\rangle \geq-1\right\}
$$

is called polar, or dual polyhedron.
Definition 2.2 A convex polyhedron P in $M_{\mathbf{R}}$ is called a lattice polyhedron if $P^{0} \subset$ $M \subset M_{\mathbf{R}}$.

Definition 2.3 (cf. [1]) Let Δ be a d-dimensional lattice polyhedron in $M_{\mathbf{R}}$ such that Δ contains 0 in its interior. Then Δ is called reflexive if Δ^{*} is also a lattice polyhedron.

Definition 2.4 Let P be a d-dimensional convex polyhedron in $M_{\mathbf{R}}$ such that P contains zero point $0 \in M_{\mathbf{R}}$ in its interior. We define the d-dimensional fan $\Sigma[P]$ as the union of the zero-dimensional cone $\{0\}$ together with the set of all cones

$$
\sigma[\theta]=\{0\} \cup\left\{x \in M_{\mathbf{R}} \mid \lambda x \in \theta \text { for some } \lambda \in \mathbf{R}_{>0}\right\}
$$

supporting faces θ of P.

Next four definitions of this section play the main role in our construction.

Definition 2.5 Let $\Delta \in M_{\mathbf{R}}$ be a reflexive polyhedron. Put $E=\left\{e_{1}, \ldots, e_{n}\right\}=\Delta^{0}$. A representation of $E=E_{1} \cup \cdots \cup E_{r}$ as the union of disjoint subsets E_{1}, \ldots, E_{r} is called nef-partition of E if there exist integral convex $\Sigma[\Delta]$-piecewise linear functions $\varphi_{1}, \ldots, \varphi_{r}$ on $M_{\mathbf{R}}$ such that $\varphi_{i}\left(e_{j}\right)=1$ if $e_{j} \in E_{i}$, and $\varphi_{i}\left(e_{j}\right)=0$ otherwise.

Remark 2.6 The term nef-partition is motivated by the fact that such a partition induces a representation of the anticanonical divisor $-K$ on the Gorenstein toric Fano variety $\mathbf{P}_{\Delta^{*}}$ as the sum of r Cartier divisors which are nef.

Definition 2.7 Let $E=E_{1} \cup \cdots \cup E_{r}$ be a nef-partition. Define r convex polyhedra $\Delta_{1}, \ldots, \Delta_{r} \subset M_{\mathbf{R}}$ as

$$
\Delta_{i}=\operatorname{Conv}\left(\{0\} \cup E_{i}\right), i=1, \ldots, r .
$$

Remark 2.8 From Definition 2.7 we immediately obtain that $\Delta_{i} \cap \Delta_{j}=\{0\}$ if $i \neq j$ and $\Delta=\operatorname{Conv}\left(\Delta_{1} \cup \cdots \cup \Delta_{r}\right)$.

Definition 2.9 Let $E=E_{1} \cup \cdots \cup E_{r}$ be a nef-partition. Define r convex polyhedra $\nabla_{1}, \ldots, \nabla_{r} \subset N_{\mathbf{R}}$ as

$$
\nabla_{i}=\left\{y \in N_{\mathbf{R}} \mid\langle x, y\rangle \geq-\varphi_{i}(x)\right\}, i=1, \ldots, r .
$$

Remark 2.10 It is obvious that $\{0\} \in \nabla_{1} \cap \cdots \cap \nabla_{r}$. By Definition 2.1, one has

$$
\Delta^{*}=\left\{y \in N_{\mathbf{R}} \mid\langle x, y\rangle \geq-\varphi(x)\right\},
$$

where $\varphi=\varphi_{1}+\cdots \varphi_{r}$. Therefore $\nabla_{1} \cup \cdots \cup \nabla_{r} \subset \Delta^{*}$. Notice that $\nabla_{1}, \ldots, \nabla_{r}$ are also lattice polyhedra. This fact follows from the following standard statement.

Proposition 2.11 Let Σ be any complete fan of cones in $M_{\mathbf{R}}, \varphi_{0}$ a convex Σ piecewise linear function on $M_{\mathbf{R}}$. Then

$$
Q_{0}=\left\{y \in N_{\mathbf{R}} \mid\langle x, y\rangle \geq-\varphi_{0}(x)\right\}
$$

is a convex polyhedron whose vertices are restrictions of φ_{0} on cones of maximal dimension of Σ.

Corollary 2.12 The convex functions $\varphi_{1}, \ldots, \varphi_{r}$ have form

$$
\varphi_{i}(x)=-\min _{y \in \nabla_{i}}\langle x, y\rangle .
$$

In particular, we have

$$
-\min _{x \in \Delta_{j}^{0}, y \in \nabla_{i}^{0}}\langle x, y\rangle=\delta_{j i}
$$

and

$$
\left\langle\Delta_{j}, \nabla_{i}\right\rangle \geq-\delta_{j i} .
$$

Definition 2.13 Define the lattice polyhedron $\nabla \in N_{\mathbf{R}}$ as

$$
\nabla=\operatorname{Conv}\left(\nabla_{1} \cup \cdots \cup \nabla_{r}\right) .
$$

Remark 2.14 Remark 2.10 shows that $\nabla \subset \Delta^{*}$.

3 The combinatorical duality

Proposition $3.1 \Delta^{*}=\nabla_{1}+\cdots+\nabla_{r}$.
Proof. The statement follows from the equality $\sum_{i} \varphi_{i}=\varphi$, from Remark 2.10 and Proposition 2.11.

Proposition $3.2 \nabla^{*}=\Delta_{1}+\cdots+\Delta_{r}$.
Proof. Let $x=x_{1}+\cdots+x_{r}$ be a point of $\Delta_{1}+\cdots+\Delta_{r}\left(x_{i} \in \Delta_{i}\right)$, and $y=\lambda_{1} y_{1}+\cdots \lambda_{r} y_{r},\left(\lambda_{1}+\cdots+\lambda_{r}=1, \lambda_{i} \geq 0, y_{i} \in \nabla_{i}\right)$ be a point in ∇. By 2.12,

$$
\langle x, y\rangle \geq \sum_{i=1}^{r} \lambda_{i}\left\langle x_{i}, y_{i}\right\rangle \geq-\sum_{i=1}^{r} \lambda_{i}=-1 .
$$

Hence $\Delta_{1}+\cdots+\Delta_{r} \subset \nabla^{*}$.
Let $y \in\left(\Delta_{1}+\cdots+\Delta_{r}\right)^{*}$. Put

$$
\lambda_{i}=-\min _{x \in \Delta_{i}}\langle x, y\rangle .
$$

Since $0 \in \Delta_{i}$, all λ_{i} are nonnegative. Since $\left\langle\sum_{i} \Delta_{i}, y\right\rangle \geq-1$, we have $\sum_{i} \lambda_{i} \leq 1$. Consider the convex function $\varphi_{y}=\sum_{i} \lambda_{i} \varphi_{i}$. For all $x \in M_{\mathbf{R}}$, we have

$$
-\varphi_{y}(x)=\sum_{i=1}^{r} \lambda_{i} \varphi_{i}(x) \leq\langle x, y\rangle .
$$

By Proposition 2.11, y is contained in the convex hull of all points in $N_{\mathbf{R}}$ which are equal to restrictions of φ_{y} on cones of maximal dimension of $\Sigma[\Delta]$. By definition of φ_{y}, any such a point is a sum $\sum_{i} \lambda_{i} p_{i}$ where $p_{i} \in \nabla_{i}$. Hence $y \in \nabla$. Thus we have proved that $\left(\Delta_{1}+\cdots+\Delta_{r}\right)^{*} \subset \nabla$.

Since ∇ and $\Delta_{1}+\cdots+\Delta_{r}$ are lattice polyhedra, we obtain:
Corollary 3.3 The polyhedron ∇ is reflexive.
Proposition 3.4 Let $E^{\prime}=\left\{e_{1}^{\prime}, \ldots, e_{k}^{\prime}\right\}=\nabla^{0}, E_{i}^{\prime}=\nabla_{i}^{0}(i=1, \ldots r)$. Then subsets $E_{1}^{\prime}, \ldots E_{r}^{\prime} \subset E^{\prime}$ give rise to a nef-partition of E^{\prime}.

Proof. First, we prove that $\nabla_{i} \cap \nabla_{j}=\{0\}$ for $i \neq j$. Assume that $e_{p}^{\prime} \in \nabla_{i} \cap \nabla_{j}$. Using 2.12, we obtain that e_{p}^{\prime} has non-negative values at all vertices e_{1}, \ldots, e_{n} of Δ. On the other hand, e_{p}^{\prime} has zero value at the interior point $0 \in \Delta$. Hence e_{p}^{\prime} must be zero. This means that $E_{i}^{\prime} \cap E_{j}^{\prime}=\emptyset$ for $i \neq j$.

Let e_{p}^{\prime} be a vertex of ∇_{i}. We prove that e_{p}^{\prime} is also a vertex of ∇. By 2.12, there exists a vertex $e_{s} \in \Delta_{j}^{0}$ such that $\left\langle e_{s}, e_{p}^{\prime}\right\rangle=-1$. Moreover,

$$
-1=\min _{y \in \nabla}\left\langle e_{s}, y\right\rangle=\min _{y \in \nabla_{i}^{0}}\left\langle e_{s}, y\right\rangle .
$$

So e_{p}^{\prime} is also a vertex of ∇.
Define the functions

$$
\begin{gathered}
\psi_{i}: N_{\mathbf{R}} \rightarrow \mathbf{R}, i=1, \ldots, r ; \\
\psi_{i}(y)=-\min _{x \in \Delta_{i}}\langle x, y\rangle .
\end{gathered}
$$

Obviously, $\psi_{1}, \ldots, \psi_{r}$ are convex. By 2.12, $\psi_{i}\left(e_{p}^{\prime}\right)=1$ if $e_{p}^{\prime} \in \nabla_{i}$, and $\psi_{i}\left(e_{p}^{\prime}\right)=0$ otherwise. We prove that restrictions of ψ_{i} on cones of $\Sigma[\nabla]$ are linear. It is sufficient to consider restrictions of ψ_{i} on cones $\sigma[\theta]$ of maximal dimension where $\theta=\nabla \cap\{y \mid\langle v, y\rangle=-1\}$ is a $(d-1)$-dimensional face of ∇ corresponding to a vertex $v \in \nabla^{*}=\Delta_{1}+\cdots+\Delta_{r}$. Let $v=v_{1}+\cdots+v_{i}+\cdots+v_{r}$, where v_{i} denotes a vertex of Δ_{i}. If we take another vertex $v_{i}^{\prime} \neq v_{i}$ of Δ_{i}, then the sum $v=v_{1}+\cdots+v_{i}^{\prime}+\cdots+v_{r}$ represents another vertex of ∇^{*}. Clearly, $\langle v, y\rangle \leq\left\langle v^{\prime}, y\right\rangle$ for any $y \in \sigma[\theta]$, i.e., $\left\langle v_{i}, y\right\rangle \leq\left\langle v_{i}^{\prime}, y\right\rangle$. Hence the restriction of ψ_{i} on $\sigma[\theta]$ is $-\left\langle v_{i}, y\right\rangle$.

Corollary 3.5

$$
\Delta_{i}=\left\{x \in m_{\mathbf{R}} \mid\langle x, y\rangle \geq-\psi_{i}(y)\right\}, i=1, \ldots, r .
$$

Thus we have proved that the set of reflexive polyhedra with nef-partitions has a natural involution

$$
\imath:\left(\Delta ; E_{1}, \ldots, E_{r}\right) \rightarrow\left(\nabla ; E_{1}^{\prime}, \ldots, E_{r}^{\prime}\right)
$$

On the other hand, every nef-partition of a reflexive polyhedron Δ defines r base point free linear systems of numerically effective Cartier divisors $\left|D_{1}\right|, \ldots,\left|D_{r}\right|$ such that the sum $D_{1}+\ldots+D_{r}$ is the anticanonical divisor on the Gorenstein toric Fano variety $\mathbf{P}_{\Delta^{*}}$.

Conjecture 3.6 The duality between nef-partitions of reflexive polyhedra Δ and ∇ gives rise to pairs of mirror symmetric families of Calabi-Yau complete intersections in Gorenstein toric Fano varieties $\mathbf{P}_{\Delta^{*}}$ and $\mathbf{P}_{\nabla^{*}}$.

References

[1] V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, Preprint Universität-GHS-Essen, 1992.
[2] V. Batyrev, D. van Straten, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties, Preprint 1993.

