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Abstract

We introduce a special class of convex rational polyhedral cones which
allows to construct generalized Calabi-Yau varieties of dimension (d+2(r−1)),
where r is a positive integer and d is the dimension of critical string vacua
with cenral charge c = 3d. It is conjectured that the natural combinatorial
duality satisfied by these cones corresponds to the mirror involution. Using the
theory of toric varieties, we show that our conjecture includes as special cases
all already known examples of mirror pairs proposed by physicists and agrees
with previous conjectures of the authors concerning explicit constructions of
mirror manifolds. In particular we obtain a mathematical framework which
explains the construction of mirrors of rigid Calabi-Yau manifolds.
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1 Introduction

This paper is devoted to the problem of finding an appropriate mathematical

framework which explains explicit constructions of mirror pairs of Calabi-Yau man-

ifolds. In this context, the existence of rigid Calabi-Yau manifolds furnish a funda-

mental obstruction to a mathematical formulation of mirror symmetry motivated by

a natural involution in N = 2 superconformal field theories. In recent works [16, 17],

Schimmrigk came to the conclusion that the class of Calabi-Yau manifolds is not

appropriate setting for mirror symmetry. For every positive integer r, Schimmrigk

has proposed a new class of Kähler manifolds of dimension (d+2(r−1)) which gen-

eralizes the class of d-dimensional Calabi-Yau varieties. Although the first Chern

class of generalized Calabi-Yau manifolds does not vanish for r > 1, it is possible to

derive from these manifold the massless spectrum of critical string vacua. Typical

examples of the generalized Calabi-Yau manifolds are obtained from quasi-smooth

hypersurfaces of degree w in weighted projective spaces

P(w1, . . . , wd+2r)

where the degree w and the weights w1, . . . , wd+2r are related by the condition:

w1 + · · ·+ wd+2r = rw.

Schimmrigk has shown that some classes of usual d-dimensional Calabi-Yau man-

ifolds V which can be described as complete intersections of r hypersurfaces in

products of r copies of weighted projective spaces naturally give rise to generalized

Calabi-Yau manifolds M of dimension (d − 2(r − 1)) embedded as hypersurface in

some higher-dimensional weighted projective space. Moreover, the correspondence

V 7→M induces the canonical inculison of the Hodge (p, q)-spaces

Hp,q(V ) ⊂ Hp+r−1,q+r−1(M).

It is important to remark that not every generalized Calabi-Yau manifold of dimen-

sion (d+ 2(r − 1)) can be obtained by this method from some usual d-dimensional

Calabi-Yau manifold.

In [1, 3, 5] there were proposed a combinatorial approach to the construction of

mirror pairs using theory of toric varieties [7, 13]. The main idea of this approach is

the interpretation of the mirror duality in terms of the classical duality for convex

sets. It is a natural ask whether the same approach can be applied to rigid and

generalized Calabi-Yau manifolds? The main purpose of this paper is to show that

the answer is positive.
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In Section 2, we define a special class of convex rational polyhedral cones which

we call reflexive Gorenstein cones. Every reflexive Gorenstein cone σ canonically

defines the projective toric Fano variety Pσ together with the ample invertible sheaf

OPσ(1) on it such that some r-tensor power of OPσ(1) is isomorphic to the an-

ticanonical sheaf of Pσ (in particular Pσ has only Gorenstein singularities). The

zeros of global sections of OPσ(1) are generalized Calabi-Yau manifolds. For special

simplicial reflexive Gorenstein cones, we obtain generalized Calabi-Yau manifolds

considered by Schimmrigk. The class of reflexive Gorenstein cones of fixed dimen-

sion admits a natural involution σ → σ̌ which we conjecture to correspond the mirror

involution in N = 2 superconformal theories. The rest of the paper is devoted to

arguments which confirm this conjecture.

In Section 3, we give a general overview for the method of reduction of complete

intersections in toric varieties to hypersurfaces in higher dimensional toric varieties.

This method allows to construct reflexive Gorenstein cones and generalized Calabi-

Yau manifolds from usual Calabi-Yau complete intersections in Gorenstein toric

Fano varieties. The relation between Hodge structures of Calabi-Yau complete in-

tersections and the corresponding generalized Calabi-Yau manifolds enable to use

results from [2] to determine variations of Hodge structure for Calabi-Yau complete

intersections in toric varieties.

In Section 4, we check that the duality between nef-partitions defining Calabi-

Yau complete intersections in Gorenstein toric Fano varieties [5] agree with the

duality between reflexive Gorenstein cones.

In Section 5, we show that the duality for reflexive Gorenstein cones agree also

with the explicit construction of mirrors for rigid Calabi-Yau manifolds.

Acknowledgements. We are grateful to I.V. Dolgachev, H. Esnault, S. Katz,

Yu.I. Manin, D. van Straten, and R. Schimmrigk for helpful discussions.

2 Reflexive Gorenstein cones

Let M and N = Hom(M,Z) be dual free abelian groups of rank d, MR and NR

the real scalar extensions of M and N , 〈∗, ∗〉 : MR×NR → R the natural pairing.

We consider M (resp. N) as a maximal lattice in MR (resp. in NR).

Definition 2.1 Let e1, . . . , ek be elements of M . By a finite rational polyhedral

cone

σ = R≥0〈e1, . . . , ek〉 ⊂MR
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generated by {e1, . . . , ek} we mean the set of all x = λ1e1 + · · · + λkek ∈ MR such

that λi ≥ 0, λi ∈ R (i = 1, . . . , k).

Definition 2.2 Let σ be a finite rational polyhedral cone in MR. Then the dual

cone is the set

σ̌ = {y ∈ NR | 〈x, y〉 ≥ 0 for all x ∈ σ}.

Definition 2.3 If a d-dimensional cone σ ⊂MR satisfies the condition σ∩−σ = 0,

then we can uniquely choose the minimal set of integral generators of σ which is

defined as the set of all primitive M -lattice vectors on 1-dimensional faces of σ. By a

generator of σ we will always mean a primitive M -lattice vector on a 1-dimensional

face one of σ.

Definition 2.4 Let σ be a finite rational polyhedral cone in MR satisfying the

condition σ ∩ −σ = 0. Then the cone σ is called Gorenstein if there exists an

element nσ ∈ N such that 〈e, nσ〉 = 1 for each generator e of σ.

Remark 2.5 If σ ⊂MR is a Gorenstein cone whose dimension equals the dimension

of MR, then the element nσ is uniquely defined.

Definition 2.6 A Gorenstein cone σ ⊂ MR is called reflexive if the dual cone

σ̌ ⊂ NR is also Gorenstein. In this case, the positive integer

rσ = 〈mσ̌, nσ〉

will be called the index of σ (or of σ̌). Since the notion of reflexive Gorenstein cone

strongly depends on the choice of the maximal sublattice M in the d-dimensional

real vector space, we will say that reflexive Gorenstein cones are defined by pairs

(σ,M).

The notions of Gorenstein cones and reflexive Gorenstein cones can be inter-

preted via toric geometry.

Proposition 2.7 Let Aσ = Spec C[σ̌∩N ] be the affine d-dimensional toric variety

associated with a rational polyhedral cone σ. Then σ is a Gorenstein cone if and

only if Aσ has only Gorenstein singularities.

Proof. The statement follows from the characterization of M. Reid for Goren-

stein toric singularities [14]. 2

By a lattice polyhedron in a finite dimensional real vector space U over R we

always mean a convex polyhedron whose vertices belong to some fixed maximal

sublattice in U .
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Definition 2.8 Let σ be a Gorenstein cone. Then

∆σ = {x ∈ σ | 〈x, nσ〉 = 1}

is a (d− 1)-dimensional convex lattice polyhedron which we call the support of σ.

Remark 2.9 Every lattice polyhedron ∆ in a d-dimensional space MR can be con-

sidered as a support of (d + 1)-dimensional Gorenstein cone σ∆ ⊂ MR = R ⊕MR

defined as

σ∆ = {(λ, λx) ∈MR | λ ∈ R≥0, x ∈ ∆}.

Definition 2.10 [1] A lattice polyhedron is called reflexive if σ∆ is a reflexive

Gorenstein cone of index 1. If ∆ is a reflexive polyhedron, then the support of

the dual reflexive Gorenstein cone σ̌∆ is another reflexive polyhedron ∆∗ which is

called dual to ∆.

Proposition 2.11 A Gorenstein cone σ is reflexive cone of index r if and only r∆σ

is a reflexive polyhedron.

Proof. Let σ ⊂MR be a Gorenstein cone and r a positive integer. Define new

lattices M ′ ⊂MR and N ′ ⊂ NR as follows

M ′ = {x ∈M | 〈x, nσ〉 = 0 (mod r )},

N ′ = N + Zn′σ where n′σ =
1

r
nσ.

Then the lattice N ′ is dual to the lattice M ′ and the pair (σ,M ′) defines again a

Gorenstein cone whose support is r∆σ.

Assume now that the pair (σ̌, N) defines a reflexive Gorenstein cone of index r.

Since mσ̌ ∈ M ′ and 〈mσ̌, e〉 = 1 for every N -integral generator e of σ̌, we obtain

that e is also a N ′-integral generator of σ̌. Thus the pair (σ̌, N ′) defines a reflexive

Gorenstein cone of index 1 = 〈mσ̌, n
′
σ〉. By 2.10, r∆σ is reflexive. Analogous

arguments show the part ”if”. 2

The next statement follows immediately from the equivalent characterizations

of reflexive polyhedra in [1]:

Proposition 2.12 A lattice polyhedron ∆ is reflexive if and only if ∆ is the sup-

port of global sections of the ample anticanonical sheaf on a Gorenstein toric Fano

variety.

Using 2.11 and 2.12, we obtain:

5



Corollary 2.13 Let σ be a Gorenstein cone. We define the degree of an element

m ∈ σ∩M as degm = 〈m,nσ〉. Let Pσ = Proj C[σ∩M ] be the corresponding projec-

tive (d− 1)-dimensional toric variety. Then σ is reflexive Gorenstein cone of index

r if and only if Pσ is a Gorenstein toric Fano variety such that the anticanonical

sheaf on Pσ is isomorphic to OPσ(r) = OPσ(1)⊗r.

By the adjunction formula, one has:

Corollary 2.14 Let σ be a reflexive Gorenstein cone. Then the zeros of a general

global section of OPσ(1) define a (d− 2)-dimensional algebraic variety Z with only

Gorenstein toroidal singularities such that the anticanonical sheaf on Z is OZ(r−1).

Definition 2.15 We call the (d− 2)-dimensional algebraic varieties Z obtained as

zeros of global sections of OPσ(1) (2.14) generalized Calabi-Yau manifolds associated

with the reflexive Gorenstein cone σ.

Example 2.16 Let P(w1, . . . , wd) be a (d − 1)-dimensional weighted projective

spaces whose weights satisfy the condition w1 + · · · + wd = rw0 for some positive

integers r and w0 such that wi divides w0 for all i = 1, . . . , d. Let σ = Rd
≥0 ⊂ Rd be

the positive octant. Define the maximal lattice M ⊂ Rd as

M = {(x1, . . . , xd) ∈ Zd | w1x1 + · · ·+ wdxd = 0 (mod w0)}.

Then the pair (σ,M) defines an example of a reflexive Gorenstein cone of index r. In

this case the associated with σ generalized Calabi-Yau manifolds are hypersurfaces

of degree w0 in P(w1, . . . , wd).

Now we formulate the main conjecture:

Conjecture 2.17 Every pair of d-dimensional dual refelxive Gorenstein cones σ

and σ̌ of index r give rises to a N = 2 superconformal theory with central charge

c = 3(d − 2(r − 1)). Moreover, the superpotentials of the corresponding Landau-

Ginzburg theories define two families of generalized Calabi-Yau manifolds associated

with σ and σ̌ which are exchanged by the mirror involution.

Remark 2.18 By 2.10, the duality between reflexive Gorenstein cones is equiva-

lent to the duality between the supporting reflexive polyhedra. This shows that

Conjecture 2.17 includes the one of [1].
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3 From complete intersections to hypersurfaces

In this section we discuss the general procedure which ascribes to a complete

intersection in toric variety a hypersurface in another toric variety. This method is

essentially due to Danilov and Khovanskǐi [8] (see also [9, 18]). Then we show that

the hypersurfaces that arise in this way give rise to reflexive Gorenstein cones if

and only if the original complete intersection is Calabi-Yau variety (Prop. 3.6). We

also discuss when the the reflexive Gorenstein cones come from some Calabi-Yau

complete intersections.

Let M be a free abelian group of rank d, MR the real scalar extension of M .

Let ∆1, . . . ,∆r ⊂MR be lattice polyhedra supporting global sections of semi-ample

invertible sheavesOX(D1), . . . ,OX(Dr) on a d-dimensional toric variety X. Without

loss of generality we will always assume that dim ∆1 + · · ·+ ∆r = d. Let Zr be the

standard r-dimensional lattice, Rr its real scalar extension. We put M = Zr ⊕M ,

d = d+ r, and define the cone σ ⊂MR as

σ = {(λ1, . . . , λr, λ1x1 + · · ·+ λrxr) ∈MR | λi ∈ R≥0, xi ∈ ∆i, i = 1, . . . r}.

Then σ is a d-dimensional Gorenstein cone, where nσ is an element of the dual

lattice N defined uniquely by the conditions

〈x, nσ〉 = 0 for x ∈MR ⊂MR;

〈ei, nσ〉 = 1 for i = 1, . . . , r,

where {e1, . . . , er} is the standard basis of Zr ⊂M .

Remark 3.1 The supporting polyhedron ∆σ coincides with the (d−1)-dimensional

polyhedron ∆1 ∗ · · · ∗∆r considered by Danilov and Khovanskǐi ([8] §6).

Proposition 3.2 Denote by Y the (d − 1)-dimensional toric variety which is the

toric Pr−1-bundle over X :

Y = P(OX(D1)⊕ · · · ⊕ OX(Dr)).

Let OY (−1) be the Grothendieck tautological sheaf on Y . Then OY (1) is semi-ample,

and Pσ is the birational image of the toric morphism

α : Y → Pσ

defined by global sections of OY (1). In particular the polyhedron ∆σ supports the

global sections of OY (1).
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Proof. Let π : Y → X be the canonical projection. Since π agrees with the

torus actions on X and Y , we obtain the natural torus action on OY (1). Since

π∗OY (1) = OX(D1)⊕ · · · ⊕ OX(Dr)

is the direct sum of sheaves generated by global sections, OY (1) is also generated

by global sections; i.e., OY (1) is semi-ample. In order to determine the polyhedron

supporting the global sections of OY (1), it suffices to compute the (d + r − 1)-

dimensional torus action on

H0(OY (1)) ∼= H0(OX(D1)⊕ · · · ⊕ OX(Dr)).

The latter is trivial, since we know the (r − 1)-dimensional torus action on homo-

geneous coordinates in Pr−1 and the d-dimensional torus action on H0(OX(Di))

(i = 1, . . . , r) defined by the lattice points in the polyhedron ∆i. 2

Corollary 3.3 Every global section s of OY (1) defines uniquely global sections si

of OX(Di) such that

π∗(s) = (s1, . . . , sr) ∈ H0(OX(D1))⊕ · · · ⊕H0(OX(Dr)),

and vise versa, every r-tuple of sections si ∈ H0(OX(Di)) (i = 1, . . . , r) defines a

global section s ∈ H0(OY (1)).

Corollary 3.4 Let s ∈ H0(OY (1)) and si ∈ H0(OX(Di)) (i = 1, . . . , r) be global

sections as in 3.3. Denote by Vs the hypersurface in Y defined by s = 0, and by Vsi
(i = 1, . . . , r) the hypersurfaces in Y defined by si = 0. Then Y \Vs is locally trivial

in Zariski topology Cr−1-bundle over

X \
r⋂
i=1

Vfi .

Remark 3.5 The statement in 3.4 implies the isomorphism

H i
c(X \

r⋂
i=1

Vfi)
∼= H i+2r−2

c (Y \ Vs)

which sends the (p, q)-component in cohomology with compact supports of X \⋂r
i=1 Vfi to (p+r−1, q+r−1)-component in the cohomology with compact supports

of Y \ Vs. The relation between Hodge structures of the complements to the higher

dimensional hypersurfaces and to the complete intersections was used for estimations

of the Hodge type of algebraic subvarieties [9] and in the proof of weak global

Torelli theorem [18]. One can consider 3.4 also as a version of the Lagrange method

proposed by Danilov and Khovanskǐi ([8], §6) for affine hypersurfaces.
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Proposition 3.6 The cone σ ⊂ MR is a reflexive Gorenstein cone of index r if

and only if OX(D1 + · · ·+Dr) is isomorphic to the anticanonical sheaf on X.

Proof. Standard calculations show that the canonical sheaf KY on Y is isomor-

phic to the tensor product

OY (−r)⊗ π∗KX ⊗ π∗Λr(OX(D1)⊕ · · · ⊕ OX(Dr)).

Since

Λr(OX(D1)⊕ · · · ⊕ OX(Dr)) ∼= OX(D1 + · · ·+Dr),

we have

K−1
Y
∼= OY (r)⊗ π∗K−1

X ⊗ π∗OX(−D1 − · · · −Dr).

Assume that OX(D1 + · · ·+Dr) is isomorphic to the anticanonical sheaf K−1
X on

X. Then OY (r) is isomorphic to the anticanonical sheaf on Y . Therefore, by 2.13

and 3.2, σ is reflexive.

The ”only if” part is left to reader. 2

The following example of the reduction of Calabi-Yau complete intersections to

a higher-dimensional generalized Calabi-Yau manifolds is due to Schimmrigk [17].

Example 3.7 Let k, l be two positive integers. Define V as a Calabi-Yau complete

intersection of two hypersurfaces in Pk ×Pl having bidegrees (k + 1, 1) and (0, l +

1). Then the corresponding generalized Calabi-Yau manifolds associated with the

reflexive Gorenstein cone of index 2 are hypersurfaces of degree (k + 1)l in the

(k + l − 1)-dimensional weighted projective space

P((l − 1), . . . , (l − 1)︸ ︷︷ ︸
k+1

, (k + 1), . . . , (k + 1)︸ ︷︷ ︸
l+1

).

Definition 3.8 A d-dimensional reflexive Gorenstein cone σ ⊂ MR is called split

if there exist two lattice polyhedra ∆1,∆2 ⊂MR of dimension d = d− 2 such that

σ ∼= {(λ1, λ2, λ1x1 + λ2x2) ∈MR | λi ∈ R≥0, xi ∈ ∆i, i = 1, 2}.

Definition 3.9 A d-dimensional reflexive Gorenstein cone σ ⊂ MR of index r

is called completely split if there exist r lattice polyhedra ∆1, . . . ,∆r ⊂ MR of

dimension d = d− r such that

σ ∼= {(λ1, . . . , λr, λ1x1 + · · ·+ λrxr) ∈MR | λi ∈ R≥0, xi ∈ ∆i, i = 1, . . . r}.
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Remark 3.10 Cones that come from Calabi-Yau complete intersections are com-

pletely split. On the other hand, every splitting of the reflexive Gorenstein cone gives

rise to the family of complete intersections. However it’s not clear whether there

exist reflexive Gorenstein cones that could be split in several essentially different

ways, so that they come from different Calabi-Yau varieties.

There exist simple examples of reflexive Gorenstein cones of index r > 1 which

are not split (and hence are not completely split):

Example 3.11 Let σ = Rd
≥0 ⊂ Rd be the positive octant. Assume that d = kr

where k, r are positive integers and k, r > 1. Define the lattice M as

M = {(x1, . . . , xd) ∈ Zd | x1 + · · ·+ xd = 0 mod k}.

Then the pair (σ,M) defines a reflexive Gorenstein cone of index r which is not split.

Indeed, if there were two (d− 2)-dimensional polyhedra ∆1,∆2 having the property

described in 3.8, then for any two vertices v1 ∈ ∆, v2 ∈ ∆2 we could find two

generators e1 = (1, 0, v1), e2 = (0, 1, v2) of the cone σ such that the segment [e1, e2]

would have no interior M -lattice points. On the other hand, it is clear that for

any two generators of σ the segment [e1, e2] always contains k− 1 interior M -lattice

points.

Remark 3.12 In Section 5 we consider an example of a 3d-dimensional cone re-

flexive Gorenstein cone σ which is completely split, but the dual cone σ̌ is not split.

4 Complete intersections and nef-partitions

There is an important class of reflexive Gorenstein cones σ such that both σ and

σ̌ are completely split. These cones correspond to so called nef-partitions introduced

in [5].

We use notations from the previous section and assume that X is a Gorenstein

Fano toric variety. Let T ⊂ X be the dense open torus orbit, E1, . . . , Ek irreducible

components of X \ T . Then O(E1 + · · · + Ek) is is naturally isomorphic to the

anticanonical sheaf K−1
X on X. Denote by I the set {1, . . . , k}. Put E =

∑
i∈I Ei.

Definition 4.1 The decomposition of the index set I into a disjoint union of r sets

Ij, j = 1, . . . , r is called a nef-partition if all Dj =
∑
i∈Ij Ei are semi-ample Cartier

divisors on X. By abuse of notations, we will call by nef-partition also the set of

convex lattice polyhedra Π = {∆1, . . . ,∆r} such that ∆i is the support of global

sections of O(Di) i = 1, . . . , r.
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Definition 4.2 Let Π = {∆1, . . . ,∆r} be a nef-partition, Σ is the fan inNR defining

the Gorenstein toric variety X. For every Ei (i = 1, . . . , k), we denote by ei the

primitive N -lattice generator of the 1-dimensional cone of Σ corresponding to the

divisor Ei. Define the lattice polyhedron ∇j (j = 1, . . . , r) as the convex hull

∇i = Conv({0} ∪
⋃
j∈Ji
{ej}).

Remark 4.3 Since Di =
∑
j∈Ji Ei defines a convex piecewise linear function ψi such

that ψi(ej) = 1 if j ∈ Ji and ψi(ej) = 0 otherwise, we can define ∆1, . . . ,∆r as

∆i = {x ∈MR | 〈x, y〉 ≥ −ψi(y)}, i = 1, . . . , r.

In the sequel, we will always assume this definition which immediately implies that

all polyedra ∆1, . . . ,∆r contain 0 ∈MR.

The main result of [5] is the following:

Theorem 4.4 The set Π∗ = {∇1, . . . ,∇r} is also a nef-partition. In other words,

there exist another d-dimensional Gorenstein toric Fano variety X∗ which compacti-

fies the dual torus T ∗ and the index set J∗ = {1, . . . , l} for the irreducible components

E∗1 , . . . , E
∗
l of X∗ \ T ∗ such that the ∇i is the support of global sections of the semi-

ample sheaf O(D∗i ) = O(
∑
j∈J∗i E

∗
i ) (i = 1, . . . , r) where J∗1 ∪ · · · ∪ J∗r is a splitting

of I∗ into a disjoint union.

The combinatorial involution on Π 7→ Π∗ is conjectured to give rise to the mirror

symmetry for the families of Calabi-Yau complete intersections in X and X∗. Some

results which confirm this conjecture are obtained in [4].

On the other hand, once we have

K−1
X = OX(D1 + · · ·+Dr)

and

K−1
X∗ = OX∗(D∗1 + · · ·+D∗r)

we can follow the procedure of the previous section and get two reflexive d-dimen-

sional Gorenstein cone σ ⊂MR and σ∗ ⊂ NR.

The purpose of this section is to relate the involution for nef-partitions [5] to the

involution for reflexive Gorenstein cones.

First we recall one property of dual nef-partitions:
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Proposition 4.5 [5] Let x ∈ ∆i, y ∈ ∇j. Then

〈x, y〉 ≥ −1 if i = j,

〈x, y〉 ≥ 0 if i 6= j.

The main statement is contained in the following theorem.

Theorem 4.6 Assume that the canonical pairing 〈·, ·〉 : M × N → Z is extended

to the pairing between M = Zr ⊕M and N = Zr ⊕N as

〈(a1, . . . , ar,m), (b1, . . . , br, n)〉 =
r∑
i=1

aibi + 〈m,n〉.

Then the cone σ is dual to σ∗; i.e., the dual nef-partitions in the sense of [5] give

rise to the dual reflexive Gorenstein cones.

Proof. By 4.5, if (a1, . . . , ar,m) ∈ σ and (b1, . . . , br, n) ∈ σ∗, then

〈(a1, . . . , ar,m), (b1, . . . , br, n)〉 ≥ 0.

Therefore σ∗ ⊂ σ̌.

Let (b1, . . . , br, n) ∈ σ̌. Then, for any x ∈ ∆i, one has 〈x, n〉 ≥ −bi (i = 1, . . . , r).

Using the same arguments as in the proof of Prop. 3.2 in [5], we obtain that

n ∈ b1∇1 + · · ·+ br∇r. Therefore σ̌ ⊂ σ∗. 2

Remark 4.7 Several different nef-partitions can give rise to the same reflexive

Gorenstein cone, so the duality for nef-partitions carries more information than that

for the cones. From the geometrical point of view, the nef-partition corresponds to

the family of Calabi-Yau complete intersections together with some special degener-

ation of the family into the union of the strata of dim d− r. It is not yet clear if the

dual family depends upon the degeneration or not, which is related to the question

in Remark 3.10. Of course, there are no such problems in the case of hypersurfaces,

or, equivalently, when the index of the reflexive Gorenstein cones is 1.

5 Mirrors of rigid Calabi-Yau manifolds

All already known constructions of the mirror correspondence for rigid Calabi-

Yau manifolds were originated from the explicit identification of the minimal super-

conformal models of Gepner [10] with the special Landau-Ginzburg superpotentials

12



[12]. This indentification allows to apply the orbifolding modulo some finite symme-

try group [11, 15]. Our purpose is to show that the orbifold-construction of mirrors

of rigid Calabi-Yau varieties agrees with the duality for reflexive Gorenstein cones.

We consider in details the example of the rigid d-dimensional Calabi-Yau man-

ifold associated with the superconformal theory 13d which is the tensor product of

3d copies of the level-1 theories.

Let E0 = C/Z〈1, τ〉 be the unique elliptic curve having an authomorphism of

order 3; i.e., J(E0) = 0, τ = eπi/3 and E0 is isomorphic to the Fermat cubic in P2.

Notice that the action of the group Z/3Z on E0 has exactly 3 fixed points which we

denote by p0, p1, p2. Let

G = {(g1, . . . , gd) ∈ (Z/3Z)d | g1 + · · · gd = 0 (mod d)}.

Then G is the maximal subgroup in (Z/3Z)d whose action on the product X = (E0)d

leaves invariant the holomorphic d-form z1∧· · ·∧ zd. We denote by Z the geometric

quotient X/G considered as a d-dimensional orbifold. Then the mirror involution

in the 13d superconformal theory shows that Z is mirror symmetric to the (3d− 2)-

dimensional Fermat cubic Y ⊂ P3d−1. One sees a geometric confirmation of this

duality from the following statement:

Proposition 5.1 Let Ẑ be a maximal projective crepant partial resolution of quo-

tient singularities of Z [1]. Then

h1,1(Ẑ) = h3d−3,1(Y ).

Proof. Using the standard technique based on the consideration of the Jaco-

bian ring associated with the homogeneous equation of Y , we obtain that a basis

of H3d−3,1(Y ) can be identified with all square-free monomials of degree 3 in 3d

variables. Therefore

h3d−3,1(Y ) =

(
3d

3

)
=
d(3d− 1)(3d− 2)

2
.

On the other hand, there exists exactly d linearly independent G-invariant (1, 1)-

forms on X: dz1 ∧ dz1, . . . , dzd ∧ dzd. Thus, we have h1,1(Z) = d. It remains to

compute the number of exceptional divisors on Ẑ.

Let γ1 : Ẑ → Z be the maximal projective crepant partial resolution, γ2 :

X → Z the quotient by G. One easily sees that the γ1-image of an exceptional

divisor D ⊂ Ẑ in Z is either (d−2)-dimensional, or (d−3)-dimensional. In the first
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case, γ1(D) is the γ2-image of a G-invariant codimension-2 subvariety defined by the

conditions zi, zj ∈ {p0, p1, p2} (i 6= j), and the γ1-fiber over general point of γ1(D) is

the exceptional locus of the crepant resolution of the 2-dimensional Hirzebruch-Jung

singularity of type A2, i.e., it consists of two irreducible components. In the second

case, γ1(D) is the γ2-image of a G-invariant codimension-3 subvariety defined by

conditions zi, zj, zk ∈ {p0, p1, p2}, and the γ1-fiber over general point of γ1(D) is an

irreducible surface. Therefore the number of the exceptional divisors equals

2 · 32 ·
(
d

2

)
+ 33 ·

(
d

3

)
.

This immediately implies

h1,1(Ẑ) = d+ 2 · 32 ·
(
d

2

)
+ 33 ·

(
d

3

)
=
d(3d− 1)(3d− 2)

2
.

2

The combinatorial interpretation of the mirror duality between Y and Z is based

on the representation of X and Z as complete intersections in toric varieties. Let

P∆ be the 2-dimesnional toric variety associated with the reflexive polygon ∆ =

Conv{(1, 0), (0, 1), (−1,−1)}. We can also define P∆ in P3 by the equation u3
0 =

u1u2u3.

Proposition 5.2 Let C ⊂ P∆ be a curve defined by an equation λ1u1 + λ2u2 +

λ3u3 = 0. Then C is isomorphic to E0.

Proof. It is sufficient to notice that the mapping

q : P∆ → P∆

(u0, u1, u2, u3) 7→ (e2πi/3u0, u1, u2, u3)

induces an authomorphism of order 3 of C with three fixed points. 2

Corollary 5.3 The d-dimensional variety X is a complete intersection of d nef-

divisors in the 2d-dimensional toric variety (P∆)d.

Corollary 5.4 The mapping q induces the action of (Z/3Z)d on (P∆)d such that

Z becomes a complete intersection in the geometric quotient (P∆)d/G.

Proposition 5.5 Let σ ⊂ R3d be positive octant. Define

M = Z3d + Z(
1

3
, . . . ,

1

3
).

Then the pair (σ,M) defines a 3d-dimensional Gorenstein reflexive cone associated

with Z as a complete intersection in (P∆)d/G.
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Proof. We notice that the 3-dimensional reflexive cone σ∆ can be described as

the positive octant in R3 with respect to the lattice

M = Z3 + Z(
1

3
,
1

3
,
1

3
).

Thus the pair ((σ∆)d,Md) is the 3d-dimensional Gorenstein reflexive cone associated

with X as a complete intersection in (P∆)d. It remains to compute the sublattice

M ⊂Md corresponding to modding out of (P∆)d by G. It is clear that Z3d ⊂M and

Md/M must be isomorphic to G. On the other hand, by construction, M must be

invariant under d-element permutations in Md. These conditions define M uniquely

as Z3d + Z(1/3, . . . , 1/3). 2.

Using 2.16, we have:

Corollary 5.6 Let σ ⊂ R3d be positive octant. Define

N = {(x1, . . . , x3d) ∈ Z3d | x1 + · · ·+ x3d = 0(mod 3).

Then the pair (σ,N) defines the dual to (σ,M) reflexive Gorenstein cone with respect

to the standard scalar product on R3d. In particular, the reflexive Gorenstein pair

(σ,N) corresponds to cubic hypersurfaces in P3d−1.

Remark 5.7 If we choose an intermediate lattice M ′ : M ⊂ M ′ ⊂ Md and the

corresponding dual intermediate lattice N ′ : Nd ⊂ N ′ ⊂ N , then we obtain another

pair of dual reflexive Gorenstein cones. In particular, if d = 3, then one can obtain

a rigid Calabi-Yau 3-fold Z ′ by modding out E0×E0×E0 by the diagonal action of

Z/3Z ⊂ G ∼= (Z/3Z)2. The mirror symmetric generalized Calabi-Yau manifolds are

then obtained as quotients of 7-dimensional cubics by Z/3Z. This particular case

was considered in [6].
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