
ar
X

iv
:1

60
6.

09
08

5v
1 

 [
m

at
h-

ph
] 

 2
9 

Ju
n 

20
16

Optimality of the relaxed polar factors by a characterization

of the set of real square roots of real symmetric matrices

Lev Borisov 1, Andreas Fischle 2, and Patrizio Neff 3

June 30, 2016

Abstract

We consider the problem to determine the optimal rotations R ∈ SO(n) which minimize

W : SO(n) → R
+
0 , W (R ;D) := ‖sym(RD − 1)‖2

for a given diagonal matrix D := diag(d1, . . . , dn) ∈ R
n×n. The function W subject to mini-

mization is the reduced form of the Cosserat shear-stretch energy, which, in its general form,
is a contribution in any geometrically nonlinear, isotropic and quadratic Cosserat micropolar
(extended) continuum model. We characterize the critical points of the energy W (R ;D),
determine the global minimizers and the global minimum. This proves the correctness of
previously obtained formulae for the optimal Cosserat rotations in dimensions two and three.
The key to the proof is a characterization of the entire set of (possibly non-symmetric) real
matrix square roots of (possibly non-positive definite) real symmetric matrices which does not
seem to be known in the literature.
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1 Introduction

1.1 The problem

We consider the optimality problem for rotations R ∈ SO(n) parametrized by a diagonal matrix
D := diag(d1, . . . , dn) ∈ Diag(n) as stated in the following

Problem 1.1. Let

W : SO(n) × Diag(n) → R
+
0 , W (R ;D) := ‖sym(RD − 1)‖2 . (1.1)

Compute the set of energy-minimizing rotations

rpolar(D) := argmin
R∈ SO(n)

W (R ;D) = argmin
R∈ SO(n)

‖sym(RD − 1)‖2 ⊆ SO(n) . (1.2)

We use the notation sym(X) := 1
2 (X +XT ), skew(X) := 1

2 (X −XT ), dev(X) := X − 1
n
tr [X ] · 1,〈

X, Y
〉
:= tr

[
XTY

]
and we denote the induced Frobenius matrix norm by ‖X‖2 :=

〈
X, X

〉
=∑

1≤i,j≤n X2
ij . We call a rotation R ∈ SO(n) optimal for given D ∈ Diag(n) if it is a global

minimizer for the energy W (R ;D) defined in (1.1). Technically, the decisive point in the solution of
this minimization is the characterization of the set of rotations R ∈ SO(n) satisfying the particular
symmetric square condition

(RD − 1)2 ∈ Sym(n)

which is equivalent to the Euler-Lagrange equations of (1.1).

1.2 Motivation and previous results

The optimality problem which we consider here is a distinguished special case to which a more
general optimality problem arising in the context of Cosserat theory in solid mechanics can be
reduced, see [5–8, 28] for preliminary work. Problem 1.1 is the key step which determines the
optimal Cosserat rotations which minimize the Cosserat shear-stretch energy in the general case

Wµ,µc
(R ;F ) := µ

∥∥∥sym(R
T
F − 1)

∥∥∥
2

+ µc

∥∥∥skew(RT
F − 1)

∥∥∥
2

. (1.3)

The two arguments for the Cosserat shear-stretch energy Wµ,µc
: SO(n) × GL+(n) → R

+
0 are

the deformation gradient field F := ∇ϕ : Ω → GL+(n) and the Cosserat microrotation field
R : Ω → SO(n) evaluated at a given point of a body Ω which is subjected to an admissible
deformation mapping ϕ : Ω ⊂ R

n → R
n. The two weights µ > 0 and µc ≥ 0 can be interpreted

as material parameters; the Lamé shear modulus µ > 0 from linear elasticity and the so-called
Cosserat couple modulus µc ≥ 0, see [25] for a discussion.

Cosserat theory is a model class in nonlinear solid mechanics which explicitly introduces an addi-
tional field of rotations, an approach which is also commonly referred to as a micropolar continuum
theory; see [3] for an introduction including extensive references. This type of models dates back to
the original work of the Cosserat brothers [2]. In a hyperelastic approach, the Cosserat shear-stretch
energy density Wµ,µc

(R ;F ) is a contribution to the total elastically stored energy in the varia-
tional formulation for any geometrically nonlinear, isotropic and quadratic Cosserat-micropolar
continuum model, see [2, 4] and [22]. Historically, the Cosserat brothers themselves were laying
foundations regarding the physically necessary invariance requirements for a micropolar continuum
theory. For example, they proved that the energy density W in such a theory must be a function
of the first Cosserat deformation tensor U := RTF . They never proposed a specific expression for
the local energy density W = W (U) in order to model specific materials. The chosen quadratic
ansatz for Wµ,µc

(U) which we are interested in, is motivated by a direct extension of the quadratic
energy in the linear theory of Cosserat models, see, e.g. [19, 29, 30].

Let us introduce the polar factor Rp(F ) ∈ SO(n) which is obtained from the right polar decomposi-

tion F = Rp(F )U(F ) of the deformation gradient F ∈ GL+(n). Here, U(F ) :=
√
FTF ∈ PSym(n)

denotes the positive definite symmetric right Biot-stretch tensor. Furthermore, we recall that the
singular values νi, i = 1, . . . , n, of the deformation gradient F ∈ GL+(n) are defined as the eigen-
values of U ∈ PSym(n).
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Our original motivation to characterize the energy-minimizing rotations in Problem 1.1 was a study
of strain energy densities related to certain distance problems in nonlinear continuum mechanics.
For example, one may consider the following euclidean distance function

dist2euclid(F, SO(3)) := min
R∈SO(3)

‖F −R‖2 . (1.4)

Conceptually, this distance function locally measures the distance of a diffeomorphism ϕ : Ω →
ϕ(Ω) to the subgroup of isometric embeddings of the body Ω into R

3. The required invariance
properties for isotropy are automatically satisfied. Furthermore, this is consistent with the require-
ment that a global isometry of a body Ω ⊂ R

3 (i.e., a rigid body motion) does not produce any
deformation energy, because in that case F = ∇(Rx+ b) = R ∈ SO(3) which implies

∫

Ω

dist2euclid(F, SO(3)) dV = 0 .

Variations on this general theme lead to the study of corresponding minimization problems on
SO(n) which have been the subject of multiple contributions, see, e.g., [5–7, 20, 27, 32]. Note
that in classical nonlinear continuum models, the local rotation of the specimen at a point is not
explicitly accounted for in the strain energy, due to the requirement of frame-indifference. Thus,
in a classical theory, the local rotation of the specimen induced by a deformation mapping ϕ is
always given by the continuum rotation Rp(∇ϕ).

In strong contrast, in Cosserat theory and other generalized continuum theories (so-called complex
materials) with rotational degrees of freedom, the local rotation R : Ω → SO(3) of the material
appears explicitly. Accordingly, in such a theory, the computation of locally energy-minimizing
rotations provides geometrical insight into the qualitative mechanical behavior of a particular
constitutive model.

The first result in this area apparently dates back to 1940 when Grioli [13] proved the following
remarkable variational characterization of the orthogonal factor Rp(F ):

argmin
R∈ SO(3)

∥∥∥RT
F − 1

∥∥∥
2

= {Rp(F )} , and (1.5)

min
R∈ SO(3)

∥∥∥RT
F − 1

∥∥∥
2

= WBiot(F ) := ‖U(F )− 1‖2 . (1.6)

Grioli’s result implies that Rp(F ) is optimal for the Cosserat strain energy minimized in (1.5).
Hence, this strain energy can be expected to produce a microrotation field approximating the
continuum rotation R ≈ Rp(∇ϕ) and realizing the Biot-energy. In other words, the corresponding
Cosserat boundary value problem can be expected to behave essentially in the same way as a
classical nonlinear Biot-model and the actual impact of the additional field of microrotations R
seems rather limited. In order to introduce non-classical effects, one has to look further.

Following [7], one can simplify (1.5) by exploiting isotropy of the energy. As it turns out, it
is sufficient to consider rotations relative to given Rp(F ) ∈ SO(3). In this relative picture the
deformation gradient F is represented by a diagonal matrix D := diag(d1, d2, d3) where the entries
di = νi > 0 coincide with the singular values of F ∈ GL+(3). Grioli’s theorem then takes the
following form

argmin
R∈ SO(3)

‖RD − 1‖2 = {1} , and (1.7)

min
R∈ SO(3)

‖RD − 1‖2 = ‖D − 1‖2 . (1.8)

This result generalizes to arbitrary dimension n and we refer to it as Grioli’s theorem for absolute
and relative optimal rotations, respectively.

One possible extension of the quadratic strain energy density (1.7) is to weight the euclidean
distance with respect to the orthogonal symmetric and skew-symmetric contributions which gives

µ ‖sym(RD − 1)‖2 + µc ‖skew(RD − 1)‖2 . (1.9)

This contribution naturally appears in any quadratic geometrically nonlinear Cosserat strain en-
ergy; cf., e.g., [23]. A non-trivial parameter reduction described in [6] shows that the corresponding
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energy-minimizing rotations can be determined by the solution of our Problem 1.1. As an aside,
one may also consider the expression where the quadratic volumetric contribution has been singled
out and weighted independently by the bulk modulus κ, i.e.,

µ ‖dev sym(RD − 1)‖2 + µc ‖skew(RD − 1)‖2 +
κ

2
(tr [(RD − 1)])

2
. (1.10)

Since a quadratic volume contribution seems not very attractive in comparison with an exact
volume contribution of the form Wvol(det[F ]), we have abstained from investigating the formula-
tion (1.10).

Similar optimality questions can also be formulated for a logarithmic non-symmetric microstretch
tensor log(RD) for which we consider

Wlog(R ;D) := µ ‖dev sym log(RD)‖2 + µc ‖skew log(RD)‖2 +
κ

2
(tr [log(RD)])

2
. (1.11)

Technicalities aside, one can show that the corresponding minimization problem satisfies

argmin
R∈ SO(n)

Wlog(R ;D) = {1} , and (1.12)

min
R∈SO(n)

Wlog(R ;D) = µ ‖dev logD‖2 + κ

2
(tr [logD])

2
, (1.13)

see [1, 20, 32] for some essential details. This result has been shown to be closely related to a
family of geodesic distances from F ∈ GL+(3) to the subgroup SO(3) which induce Hencky-type
strain energies [26]. We summarize that the minimization problem for the euclidean distance
measure (1.7) and the minimization problem for the logarithmic energy (1.12) share a remarkable
property: the identity 1 ∈ SO(n) is always uniquely optimal for any diagonal positive definite
D > 0. Equivalently, the polar decomposition Rp(F ) is always the optimal absolute rotation.
In strong contrast, the quadratic energy density (1.9) also admits non-classical optimal solutions,
see [6, 7, 28] (and [8] for a visualization in the context of an idealized nanoindenation). More
precisely, one can choose the parameters µ and µc such that

argmin
R∈ SO(n)

(
µ ‖sym(RD − 1)‖2 + µc ‖skew(RD − 1)‖2

)
6= {1} . (1.14)

In the absolute picture this implies that the corresponding optimal absolute rotations rpolarµ,µc
(F )

strictly deviate from the continuum rotation Rp(∇ϕ). Note that the quadratic stored energy
density (1.10) can be obtained from the logarithmic one (1.11) by linearization of log(RD) =
RD − 1+ h.o.t. with respect to U := RD.

1.3 Technical approach and results

Let us now consider the quadratic formulation

µ ‖sym(RD − 1)‖2 + µc ‖skew(RD − 1)‖2 (1.15)

in more detail. The choice of values for the weights (material parameters) µ > 0 and µc ≥ 0 can be
seen to be of crucial importance for the corresponding minimization problem. In fact, one observes
two qualitatively different scenarios connected by a bifurcation criterion [6, 7]. In the classical
parameter range µc ≥ µ > 0, we reccover a variational characterization of the polar factor Rp(F )
as the unique rotation minimizing (1.3) for arbitrary n ≥ 2. We refer to this characterization as
the generalized Grioli’s theorem, see [13, 31], or [6, Cor. 2.4, p. 5]. Due to the optimality of Rp(F )
stated in Grioli’s theorem, we have motivated the notation rpolarµ,µc

(F ) for the optimal Cosserat
rotations and refer to this set of rotations as the relaxed polar factors of F with weights µ and µc.

Let us now restrict our attention to the non-classical parameter range µ > µc > 0. Surprisingly,
this entire range can be reduced to a single non-classical limit case (µ, µc) = (1, 0), see [6]. The
Cosserat shear-stretch energy W1,0(R ;F ) can then be rewritten in terms of a relative rotation
R ∈ SO(n) which acts relative to the polar factor Rp(F ). In this second reduction step, the
parameter F ∈ GL+(n) is replaced by a diagonal matrix D = diag(ν1, . . . , νn), where νi > 0,
i = 1, . . . , n, denote the singular values of the deformation gradient F ∈ GL+(n). Carrying out
the beforementioned simplifications, we arrive at Problem 1.1.
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Explicit formulae for the critical points and the global minimizers rpolar±µ,µc
(F ) for the general

form of the quadratic Cosserat shear-stretch energy Wµ,µc
(R ;F ) in dimension n = 2 have been

presented in [6]. The corresponding minimal energy levels were also provided. In dimension n = 3,
the following explicit formulae for the solutions to Problem 1.1 were obtained using computer
algebra [7, Corollary 2.7]:

Corollary 1.2 (Energy-minimizing relative rotations for (µ, µc) = (1, 0)). Let D = diag(d1, d2, d3)
such that d1 > d2 > d3 > 0. Then the solutions to Problem 1.1 are given by the energy-minimizing
relative rotations

rpolar(D) =








cosα − sinα 0
sinα cosα 0
0 0 1







 , (1.16)

where α ∈ [−π, π] is an optimal rotation angle satisfying

α =

{
0 , if d1 + d2 ≤ 2 ,

± arccos( 2
d1+d2

) , if d1 + d2 ≥ 2 .
(1.17)

In particular, for d1 + d2 ≤ 2, we have rpolar(D) = {1}.

The validation of the formulae (1.16) and (1.17) in [7] was based on brute force stochastic mini-
mization, since a proof of optimality was out of reach. With the present contribution, we close this
gap in n = 3 and generalize the previously obtained formulae rpolar±1,0(F ) from [7, 8] to arbitrary
dimension n. Note that the parameter transformation proved in [6] allows to recover the general
solution in the non-classical parameter range rpolar±µ,µc

(F ) from rpolar±1,0(F ) by a rescaling of the
deformation gradient, but we shall not detail this here.

Let us now turn towards the techniques which lie at the heart of these new results. The Euler-
Lagrange equations for W (R ;D) have been derived in [7] and previously in [28]. They characterize
the critical points as the solutions of a quadratic matrix equation on the manifold of rotations
SO(n). The key insight for the present development is a new approach to the analysis of the
particular condition

(RD − 1)2 ∈ Sym(n) . (1.18)

Realizing that this is a symmetric square condition

(X(R))
2
= S ∈ Sym(n), where X(R) := RD − 1 ∈ R

n×n , (1.19)

one might suspect that the critical points of W (R ;D) are connected to real matrix square roots
of real symmetric matrices. And indeed, the structure of the set of critical points of W (R ,D) can
be revealed quite elegantly by a specific characterization of the set of real matrix square roots of
real symmetric matrices. Note that this characterization, which is similar in spirit to the standard
representation theorem for orthogonal matrices O(n) as block matrices, seems not to be known
in the literature. In Theorem 2.13 we show that the square roots of interest always admit a
block-diagonal representation. This allows to reduce the problem from arbitrary dimension n > 2
into decoupled one- and two-dimensional subproblems which can then be solved independently. For
example, we shall see that in n=3, for a non-classical minimizer, we have to solve a one-dimensional
and a two-dimensional subproblem. The one-dimensional problem determines the rotation axis
of the optimal rotations, while the two-dimensional subproblem determines the optimal rotation
angles.

There is a large body of work on matrix square roots. Mostly the literature focusses on the unique
symmetric positive definite, the so-called principal matrix square root, of a symmetric positive
definite matrix, see, e.g., the monographs [12, 16–18], or [10] for a compact introduction. Due
to its numerous applications, the numerical approximation of the principal matrix square root
is also an important theme, see, e.g., [14, 15]. For some recent developments and a geometric
approach towards the numerical approximation of square roots, see [33] and references therein.
Given the large body of work on the classical subject of matrix square roots, it may be somewhat
surprising that the characterization stated in Theorem 2.13 seems not to be known. However, the
characterization of the set of matrix square roots of symmetric matrices which we present in Section
2, was originally inspired by the theory of principal angles between linear subspaces, see, e.g., [9]
and was motivated by our specific application.
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The case of optimal rotations for recurring parameter values di, i = 1, 2, 3, in the diagonal pa-
rameter matrix D ∈ Diag(n) has not been treated previously in [7], but is also accessible with
the present approach. Note that this case corresponds to the special case of two or more equal
principal stretches νi which is an important highly symmetric corner case in mechanics.

This paper is structured as follows: after this introduction in Section 1, we present a characteri-
zation of the full set of (possibly non-symmetric) real matrix square roots of (possibly non-positive
definite) real symmetric matrices. More precisely, in Section 2, we construct an orthogonal change
of basis which renders a matrix square root of this type block diagonal with blocks of size one or
two. This block structure allows us to characterize the critical points in Section 3 for arbitrary
dimension n. This leads to a sequence of decoupled one- and two-dimensional subproblems posed,
however, on O(1) and O(2) and we continue with the solution of these subproblems in Section 4.
In Section 5 we extract the globally energy-minimizing optimal Cosserat rotations from the set of
critical points by a comparison of the realized energy levels. It turns out that the optimal rotations
and energy levels are entirely consistent with previous results for n = 2, 3. We end with a short
discussion of the present results in Section 6.

2 Representation of real matrix square roots of symmetric

matrices

In the following sections, we profit from a characterization theorem for real matrix square roots of
real symmetric matrices.

Definition 2.1. We say that X ∈ R
n×n (not necessarily symmetric) is a real square root of a real

symmetric matrix S ∈ Sym(n), if it solves the quadratic matrix equation

X2 = S ∈ Sym(n) .

Remark 2.2. It is insufficient for our purposes to restrict our attention to the unique symmetric
positive definite principal matrix square root of S and we do not require its existence. Rather, we
are interested in the set of all possible real matrix square roots of S. Moreover, we do not assume
that S is positive semi-definite. The results of this section will be eventually applied to the union
of the sets of square roots X as S = X2 ∈ Sym(n) varies, i.e., we are interested in characterizing
matrices X which square to an unspecified symmetric matrix.

Example 2.3. The identity matrix 12 ∈ Sym(2) has infinitely many real roots which are simply
size two involution matrices. They fall into three distinct classes according to their trace.

X = 1, X = −1, X ∈
{(

a b
c −a

)
, a2 + b c = 1

}
. (2.1)

Example 2.4. The roots of the negative identity matrix −12 ∈ Sym(2) are given by

X ∈
{(

a b
c −a

)
, a2 + b c = −1

}
. (2.2)

Example 2.5. A negative identity matrix of odd size −1 ∈ Sym(2k− 1) does not have real matrix
square roots, since its determinant is negative.

More generally, let us record a criterion for a 2 × 2 real matrix X ∈ R
2×2 to be a square root of

some real symmetric matrix S ∈ Sym(2) which will be used in Section 4.

Lemma 2.6. A matrix X ∈ R
2×2 is a real matrix square root of a real symmetric matrix S =

X2 ∈ Sym(2) if and only if X ∈ Sym(2) or tr [X ] = 0.

Proof. In dimension n = 2, the Cayley-Hamilton theorem implies that

S = X2 = tr [X ]X − (det[X ])1 .

As the square S = X2 is symmetric, the skew part of the right hand side vanishes

0 = skew(S) = skew(X2) = skew(tr [X ]X − (det[X ])1) = tr [X ] skew(X) .

This finishes the argument. �
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Let S ∈ Sym(n) be a real symmetric matrix. Then S has real eigenvalues λ1 > λ2 > . . . > λm,
m ≤ n. Furthermore, there exists a decomposition of R

n into mutually orthogonal eigenspaces
Eλi

, i = 1, . . . ,m, of S which allows us to write

R
n = Eλ1

⊕⊥ Eλ2
⊕⊥ . . .⊕⊥ Eλm

. (2.3)

Note that the eigenspaces are preserved by S, i.e., SEλ = Eλ, unless λ = 0 in which case E0 = kerS
and hence SE0 = 0 ⊆ E0. This implies in particular that S does not mix its eigenspaces, i.e.,

∀1 ≤ i ≤ m : SEλi
⊆ Eλi

and, equivalently,
∀1 ≤ i 6= j ≤ m : (SEλi

) ∩ Eλj
= 0 .

This implies the existence of a basis of Rn with transition matrix T ∈ GL(n) in which S takes
block diagonal form

T−1ST = S̃ = diag(S̃λ1
, S̃λ2

, . . . , S̃λm
) , S̃λi

∈ R
dimEλi

×dimEλi , i = 1, . . . ,m .

It is a standard result from linear algebra, that in this particular case, each of the blocks S̃λi
,

i = 1, . . . ,m, is a multiple of a suitable identity matrix S̃λi
= λi1 and so S̃ is diagonal. Furthermore,

if we choose an orthogonal basis for each eigenspace Eλi
, individually, the change of basis matrix

T ∈ O(n) is orthogonal and we have

T−1ST = S̃ = diag(λ1, . . . , λ1︸ ︷︷ ︸
dimEλ1

, λ2, . . . , λ2︸ ︷︷ ︸
dimEλ2

, . . . , λm, . . . , λm︸ ︷︷ ︸
dimEλm

) .

Lemma 2.7 (Eigenspaces of S = X2 ∈ Sym(n) are not mixed by X). Let X ∈ R
n×n be a

matrix square root of a symmetric matrix S = X2 ∈ Sym(n) and let Eλi
, i = 1, . . . ,m, denote the

eigenspaces of S. Then X preserves the eigenspaces of S, i.e.,

XEλi
⊆ Eλi

.

Proof. Let v ∈ Eλ, then

S(Xv) = X3v = XSv = Xλv = λ(Xv) . (2.4)

Hence, Xv ∈ Eλ and since v ∈ Eλ was arbitrary, we have XEλ ⊆ Eλ. �

Corollary 2.8. Let S ∈ Sym(n) and T ∈ O(n) such that S̃ = T−1ST is diagonal. Then any real
matrix square root X of S = X2 ∈ Sym(n) is a block matrix of the form

T−1XT = X̃ = diag(X̃λ1
, X̃λ2

, . . . , X̃λm
) , X̃λi

∈ R
dimEλi

×dimEλi , i = 1, . . . ,m . (2.5)

In particular S̃ = X̃2 ∈ Sym(n) and

X̃2
i = S̃i = λi1 .

Remark 2.9. The preceding Corollary 2.8 reduces the subsequent characterization of real matrix
square roots of symmetric matrices formidably, because it shows that it suffices to consider each of
the X-invariant eigenspaces Eλi

, i = 1, . . . ,m, of S individually.

We shortly recall the definition of the orthogonal complement V ⊥ of a linear subspace V ⊆ R
n,

V ⊥ := {w ∈ R
n | w ⊥ V } = {w ∈ R

n | ∀v ∈ V :
〈
v, w

〉
= 0} ,

which induces an orthogonal decomposition of Rn = V ⊕⊥ V ⊥. In what follows, we exploit the
well-known fact that for Y ∈ R

n×n,

Y V ⊥ ⊆ V ⊥ ⇐⇒ Y TV ⊆ V . (2.6)

Indeed, let w ∈ V ⊥, then 0 =
〈
Y w, v

〉
=
〈
w, Y T v

〉
. Since the choice of w ∈ V ⊥ was arbitrary, we

have that Y T v ⊥ V ⊥ which shows Y T v ∈ V , because R
n = V ⊕⊥ V ⊥. The reverse implication is

completely analogous.
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Lemma 2.10 (Block lemma). Let S = λ1 ∈ Sym(n) be a multiple of an identity matrix of size
n ≥ 1. Then any real square root Y ∈ R

n×n of S = Y 2 = λ1 ∈ Sym(n) admits an orthogonal
change of coordinates T ∈ O(n) which renders it block-diagonal

Ỹ := T−1Y T = diag(Ỹ1, Ỹ2, . . . , Ỹr) =




Ỹ1 0 . . . 0

0 Ỹ2
. . .

...
...

. . .
. . . 0

0 . . . 0 Ỹr




. (2.7)

The square blocks Ỹi, i = 1, . . . , r, are either of dimension 1 or 2 and satisfy Ỹ 2
i = λ1.

Proof. The proof proceeds by induction on n. The base case of induction n ∈ {1, 2} holds, since
Y is already block-diagonal with blocks of size one or two. For the induction step let us assume
that the statement holds for matrices of size n− 1 and n− 2.
Our strategy is to prove the existence of a one- or two-dimensional subspace V of Rn such that

both V and its orthogonal complement V ⊥ are left invariant by Y , i.e.,

dimV ∈ {1, 2}, Y V ⊆ V and Y V ⊥ ⊆ V ⊥ . (2.8)

Thus, if we pick an orthonormal basis of V and V ⊥, this is equivalent to the statement that
orthogonal conjugates of Y and Y T are block matrices of the form

Q−1Y Q =

(
Ỹ1 0
0 Z

)
. (2.9)

Since (Q−1Y Q)2 = Q−1Y 2Q = λ1, we get Z2 = λ1, so by the induction assumption there exists
T0 such that

T−1
0 ZT0 =




Z̃1 0 . . . 0

0 Z̃2
. . .

...
...

. . .
. . . 0

0 . . . 0 Z̃s




. (2.10)

Then the orthogonal matrix

T = Q

(
1 0
0 T0

)
∈ O(n) (2.11)

satisfies

T−1Y T =




Ỹ1 0 . . . 0

0 Z̃1
. . .

...
...

. . .
. . . 0

0 . . . 0 Z̃s




, (2.12)

which completes the induction step.

To finish the argument, we have to construct the invariant subspace V of Rn of dimension 1 or 2.

Since (Y T )2 = ST = S = λ1, the symmetric matrices Y Y T and Y TY commute

(Y Y T )(Y TY ) = Y (Y T )2Y = Y (λ1)Y = λS = λ2
1 = (Y TY )(Y Y T ). (2.13)

Therefore, the operators Y Y T and Y TY are simultaneously diagonalizable and we can find a
common eigenvector w of both. Let us normalize w so that ‖w‖ = 1 and note that there exist
values α, β ∈ [0,∞) satisfying

Y TY w = αw and Y Y Tw = βw . (2.14)

Our next step is to choose the invariant subspace V . We have to distinguish several cases.
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Case 1: Y w ∈ span ({w}) , Y Tw ∈ span ({w}), in other words, w is an eigenvector of Y and Y T .
We select V = span ({w}) and construct an orthogonal matrix with first column given by q1 = w,
i.e.,

Q = (w|q2| . . . |qn) ∈ O(n) . (2.15)

An associated change of basis for Y and Y T introduces the following zero patterns

Q−1Y Q =




∗ ∗
0
·
· ∗
·
0




and Q−1Y TQ =




∗ ∗
0
·
· ∗
·
0




. (2.16)

Since Q−1Y TQ = (Q−1Y Q)T these matrices are transposes of each other which implies that we
obtain a block matrix of the form

Q−1Y Q =




∗ 0 · · 0
0
·
· ∗
·
0




, (2.17)

which is of the form described in (2.9).

Case 2: Y w ∈ span ({w}) , Y Tw /∈ span ({w}), in other words w is an eigenvector of Y but not of
Y T . Consider the subspace V = span

({
w, Y Tw

})
. Then the image of V under Y satisfies

Y V = span
({

Y w, Y Y Tw
})

⊆ span ({w,w}) ⊆ V (2.18)

Y TV = span
({

Y Tw, (Y T )2w
})

⊆ span
({

Y Tw, λw
})

⊆ V . (2.19)

We now pick an orthonormal basis w1, w2 of V = span ({w1, w2}) = span
({

w, Y Tw
})

and extend
it to an orthogonal matrix

Q = (w1|w2|q3| . . . |qn) ∈ O(n) . (2.20)

Then, similar to Case 1, an associated change of basis for Y and Y T introduces a zero pattern

Q−1Y Q =




∗ ∗ ∗
∗ ∗ ∗
0 0
· ·
· · ∗
· ·
0 0




and Q−1Y TQ =




∗ ∗ ∗
∗ ∗ ∗
0 0
· ·
· · ∗
· ·
0 0




. (2.21)

As before, since Q−1Y TQ = (Q−1Y Q)T the two matrices are transposes of each other which creates
a 2-block in the upper left corner

Q−1Y Q =




∗ ∗ 0 · · · 0
∗ ∗ 0 · · · 0
0 0
· ·
· · ∗
· ·
0 0




, (2.22)

which is of the form described in (2.9).
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Case 3: Y w /∈ span ({w}), in other words w is not an eigenvector of Y . We consider the subspace
V = span ({w, Y w}). The inclusion

Y V = span
({

Y w, Y 2w
})

= span ({Y w, λw}) ⊆ V (2.23)

is immediate. In order to prove the invariance Y TV ⊆ V , we need to consider the following two
subcases:

Case 3a: λ 6= 0. In this case Y and Y T are invertible and so Y TY w = αw with α > 0. This
allows us to express w as follows

(
1

α
Y TY

)
w =

α

α
w = w . (2.24)

We have to compute

Y TV = span
({

Y Tw, Y TY w
})

= span
({

Y Tw,αw
})

. (2.25)

To this end, we expand

Y Tw = Y T

(
1

α
Y TY

)
w =

1

α
(Y 2)TY w =

1

α
STY w =

1

α
Y 3w =

1

α
Y Sw =

λ

α
Y w ∈ V (2.26)

which shows that Y TV ⊆ V .

Case 3b: λ = 0. Consider the product

(
Y TY

) (
Y Y T

)
w = Y TSY Tw = S2w = λ2w = 0 . (2.27)

Since we also have, Y TY w = αw and Y Y Tw = βw, it follows that
(
Y TY

) (
Y Y T

)
w = αβw = 0.

Hence, αβ = 0. If β = 0, then

Y Y Tw = 0 =⇒
〈
w, Y Y Tw

〉
= 0 =⇒

〈
Y Tw, Y Tw

〉
= ‖Y Tw‖2 = 0 . (2.28)

Since Y Tw = 0 ∈ V , the subspace V is invariant under both Y and Y T . The second case α = 0 is
not possible. To see this, we similarly compute

Y TY w = 0 =⇒ Y w = 0 (2.29)

which shows that w is an eigenvector of Y . This contradicts our assumptions for Case 3 (but note
that this situation is handled in Case 1 or 2).

This completes the construction of the invariant subspace V and the proof of the lemma. �

Remark 2.11. The case λ > 0 of Lemma 2.10 can be deduced from the theory of principal angles
(see, e.g, [9]) for the eigenspaces of Y with eigenvalues

√
λ and −

√
λ. We are not aware of a

similar connection in the case λ ≤ 0.

Remark 2.12. The condition on Y is also sufficient, i.e., any matrix with the described block
structure is a real matrix square root of a symmetric matrix. It is also possible to show that
solutions to Y 2 = λ1 exist if and only if λ ≥ 0, or n is even.

We are now ready to formulate the main result of this section.

Theorem 2.13. For any real square root X ∈ R
n×n of a symmetric matrix S = X2 ∈ Sym(n)

there exists an orthogonal change of coordinates T ∈ O(n) such that the transformed square root is
block-diagonal

X̃ := T−1XT = diag(X̃1, X̃2, . . . , X̃r) =




X̃1 0 . . . 0

0 X̃2
. . .

...
...

. . .
. . . 0

0 . . . 0 X̃r




(2.30)
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with square blocks X̃j , j = 1, . . . , r, that are either of size 1 or 2. Each block X̃j is a real square
root of a multiple of an identity matrix 1, i.e.,

X̃2
j = µj1, µj ∈ R .

Proof. This is a straightforward application of the block lemma to each eigenblock of S = X2. �

Remark 2.14. Each eigenspace Eλi
of S in Lemma 2.7 is possibly decomposed into multiple

subspaces by the Lemma 2.10. As a result, the eigenvalues µj, 1 ≤ j ≤ r, of X̃2
j in Theorem 2.13

are equal to the eigenvalues λi, 1 ≤ i ≤ m, in the notation of Lemma 2.7 with, possibly, different
indices. Several µj in the statement of Theorem 2.13 may be equal to the same λi in the sense of
Lemma 2.7. For example, we might have the following

(µ1, µ2, µ3, µ4, µ5) = (λ1, λ1, λ2, λ3, λ3) .

Remark 2.15. An equivalent reformulation of the theorem is the following. For a matrix X
whose square is symmetric, there exists a decomposition of R

n into an orthogonal direct sum of
X-invariant subspaces Vi of dimension one or two such that X2 is a multiple of the identity matrix
on each Vi. The list of columns of the change of basis matrix T ∈ O(n) in Theorem 2.13 is obtained
by concatenation of orthonormal bases of Vi. Note that each Vi is also invariant under XT .

Remark 2.16. Given X and S the decomposition into invariant subspaces is not unique. In partic-
ular, a subspace of dimension two can sometimes be further decomposed into two one-dimensional
subspaces.

Remark 2.17. Our description of matrices which square to a symmetric matrix is similar in spirit
to the well-known characterization of orthogonal matrices. Every orthogonal matrix is orthogonally
conjugated to a block diagonal matrix with blocks of size one and two, see, e.g., [11, Thm. 12.5, p.
354].

3 Critical points of the Cosserat shear-stretch energy

In this section we investigate the critical points R ∈ SO(n) of the energy subject to minimization
in Problem 1.1

W (R ;D) = ‖sym(RD − 1)‖2 (3.1)

for a given diagonal matrix D = diag(d1, . . . , dn). We give a complete description of them under
some mild assumptions on the diagonal entries di based on a criterion which we derive next.

The Lie algebra so(n) of the matrix group of rotations SO(n) is given by the subspace of skew-
symmetric matrices, i.e., so(n) = Skew(n). Furthermore, the Frobenius inner product gives rise to
the orthogonal decomposition

R
n×n = Sym(n)⊕⊥ Skew(n) = Sym(n)⊕⊥ so(n)

of real square matrices into the subspaces of symmetric matrices and skew-symmetric matrices.

Lemma 3.1 (Symmetric square condition). Let D := diag(d1, . . . , dn) ∈ R
n×n be a diagonal

matrix. A rotation R ∈ SO(n) is a critical point of the function

W (R ;D) := ‖sym(RD − 1)‖2

if and only if the matrix (RD − 1)2 is symmetric.

Proof. In order to compute critical points in the submanifold SO(n) ⊂ R
n×n, we have to locate

zeroes of the tangent mapping dW : T SO(n) → T R
n×n ∼= R

n×n. To this end, we compute the
derivatives of the energy W (R ;D) along a family of smooth curves

cA : (−ε, ε) → SO(n), cA(t) := exp(tA)R ∈ SO(n), A ∈ so(n), (3.2)
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in the manifold of rotations. The right-trivialization of the tangent space at R ∈ SO(n) allows
to identify TR SO(n) = so(n) · R = Skew(n) · R and so we can always express a tangent vector
ξ ∈ TR SO(n) in the form ξ = AR ∈ Skew(n) · R. This family of curves satisfies

∀ ξ = AR ∈ TR SO(n) :
d

dt

∣∣∣∣
t=0

cA(t) = AR = ξ . (3.3)

Thus, for every possible tangent direction ξ = AR ∈ TR SO(n), there is precisely one curve of the
family which emanates from R ∈ SO(n) into this direction ξ.

A rotation R is a critical point of the energy W (R ;D) if and only if

∀A ∈ so(n) :
d

dt
(W ◦ cA)(t)|t=0 = 0 .

It is well-known that the matrix exponential is given by (1 + tA) to first order in t and we write
exp(tA) ∼ (1+ tA). Thus, by the chain rule, we also have

(W ◦ cA)(t) ∼ (W ◦ (1+ tA)R)(t) .

We expand the expression

W ◦ (1+ tA)R = ‖sym((1 + tA)RD − 1)‖2 = ‖sym(RD − 1) + t sym(ARD)‖2

= ‖sym(RD − 1)‖2 + 2t
〈
sym(RD − 1), sym(ARD)

〉
+ t2 ‖sym(ARD)‖2

and obtain the expression for the first derivative dW from the term linear in t. In other words

d

dt
(W ◦ cA)(t)|t=0 = 2

〈
sym(RD − 1), sym(ARD)

〉
. (3.4)

Hence, a point R is a critical point for the energy W if and only if it satisfies

∀A ∈ so(n) : sym(RD − 1) ⊥ sym(ARD) .

Since Sym(n) ⊥ Skew(n), we may add skew(ARD) on the right hand side which gives us the
equivalent condition

∀A ∈ so(n) : sym(RD − 1) ⊥ ARD .

Expanding the definition of the Frobenius inner product, we find

0 =
〈
sym(RD − 1), ARD

〉
= tr

[
sym(RD − 1)TARD

]
= tr [RD sym(RD − 1)A]

=
〈
sym(RD − 1)(RD)T , A

〉
. (3.5)

Since this condition must hold for all A ∈ Skew(n), it follows that

sym(RD − 1)DRT ∈ Sym(n) .

We now multiply by a factor of 2 and expand the definition of sym(X) := 1
2 (X +XT ) which leads

us to

2 sym(RD − 1)DRT = (RD +DRT − 21)DRT = RD2RT + (DRT )2 − 2DRT

= (DRT − 1)2 + (RD2RT − 1). (3.6)

The second term on the right hand side is always symmetric and the effective condition for a critical
point is thus

(DRT − 1)2 ∈ Sym(n) . (3.7)

Finally, observing that symmetry is invariant under transposition, we conclude that

(
(DRT − 1)2

)T
= (RD − 1)2 ∈ Sym(n) (3.8)

is a sufficient and necessary condition for a critical point R ∈ SO(n) of W (R ;D). �

12



Remark 3.2. We immediately observe that R = 1 solves the condition (3.8) and is always a

critical point of the energy W (R ;D) := ‖sym(RD − 1)‖2. However, in general, it will not be the
global minimizer.

Remark 3.3 (Critical points and real matrix square roots). Introducing the notation

X(R) := RD − 1 ,

we see that R ∈ SO(n) is a critical point of W (R ;D) if and only if

S(R) := (X(R))
2
= (RD − 1)2 ∈ Sym(n) .

In other words, for any critical point R of W (R ;D), X(R) = RD−1 is a real square root of a real
symmetric matrix. This connects the set of critical points for W (R ;D) to our previously derived
characterization of the set of real square roots of a real symmetric matrix stated in Theorem 2.13.

Our next step is to apply Theorem 2.13 and Remark 2.15 to the special case X(R) = RD− 1. As
we shall see, this implies quite restrictive conditions on R ∈ SO(n).

Let us make the following assumption on the diagonal matrix D.

Assumption 3.4. The entries of the diagonal matrix D = diag(d1, . . . , dn), which parametrizes
the energy W (R ;D), do not vanish and do not cancel each other additively, i.e.,

di 6= 0 and di + dj 6= 0, 1 ≤ i, j ≤ n .

This ensures that ker(D) = 0 and that any D2-invariant subspace is also D-invariant. Note that
if the entries of D = diag(d1, . . . , dn) are positive, this assumption is satisfied. For the original
problem in Cosserat theory which stimulated the present work [6–8], the entries of D are the
singular values νi > 0, i = 1, . . . , n, of the deformation gradient F ∈ GL+(n).

The following insight is a key to our discussion.

Lemma 3.5 (Simultaneous invariance of R and D). Suppose that the eigenvalues of D satisfy the
above assumption. Let V be a subspace invariant under X(R) = RD − 1, such that V ⊥ is also
invariant under X(R). Then both V and V ⊥ are invariant under D and R.

Proof. Recall first that V and V ⊥ are both invariant under X(R) if and only if V is invariant
under both X(R) and X(R)T ; cf. (2.6).

By assumption the subspace V is invariant under both RD = X+1 and (RD)T = DRT = XT +1.
Therefore

D2V = (DRT )(RD)V ⊆ (DRT )V ⊆ V .

From the assumption on D, we have DV ⊆ V . Since D has only nonzero eigenvalues D is invertible
and so DV = V . It follows that

RDV ⊆ V =⇒ RV ⊆ V .

Since R ∈ SO(n) is invertible, we have RV = V . Reversing the roles of V and V ⊥, we can apply
the same argument to V ⊥. �

By Theorem 2.13, as phrased in Remark 2.15, there exists a sequence of pairwise orthogonal vector
spaces Vi, i = 1, . . . , r, with 1 ≤ dim Vi ≤ 2 which decompose R

n = V1 ⊕⊥ V2 ⊕⊥ . . .⊕⊥ Vr. These
correspond to a block-diagonal representation of X(R) := RD− 1. The existence of an associated
orthogonal change of basis matrix T ∈ O(n) is also assured by Theorem 2.13. Furthermore, by
Lemma 3.5, both R and D are also block-diagonal with respect to this choice of basis. This
means, in particular, that any solution R satisfying the symmetric square condition (X(R))2 =
(RD − 1)2 ∈ Sym(n) admits a block-diagonal representation. Since this condition characterizes
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the critical points by Lemma 3.1, any critical point of W (R ;D) admits a representation in block-
diagonal form

R̃ = T−1RT = diag(R̃1, . . . , R̃r) =




R̃1 0 . . . 0

0 R̃2
. . .

...
...

. . .
. . . 0

0 . . . 0 R̃r




∈ O(n) ⊂ R
n×n , (3.9)

where the blocks on the diagonal satisfy R̃i ∈ O(ni), i = 1, . . . , r, with ni ∈ {1, 2} and
∑r

i ni = n.
This shows that, in the basis provided by T ∈ O(n), any critical point R ∈ O(n) can be constructed

from solutions R̃i ∈ O(ni) of one- and two-dimensional subproblems

(
X̃(R̃i)

)2
∈ Sym(ni) . (3.10)

Note that these subproblems are now posed on the space of orthogonal, rather than special orthog-
onal matrices.

Assumption 3.6. For the purpose of clarity of exposition, we make an additional, stronger as-
sumption on the diagonal matrix D = diag(d1, . . . , dn), namely

d1 > d2 > . . . > dn > 0 .

The slightly more general case of possibly non-distinct positive entries di can be treated similarly
which we will indicate in running commentary.

Remark 3.7 (Implications of D-invariance). Under the Assumption 3.6, the D-invariance of the
subspaces Vi shown in Lemma 3.5 implies a strong restriction: the Vi are necessarily coordinate
subspaces in the standard basis of Rn. Thus, we can index these data by partitions of the index set
{1, . . . , n} into disjoint subsets of size one or two. Furthermore, by picking a standard coordinate
basis for each Vi, we can ensure that the change of basis matrix T ∈ O(n) is a permutation matrix.

We summarize that this particular structure allows to reduce the optimization Problem 1.1 to
a finite list of decoupled one- and two-dimensional subproblems. However, we have to consider
minimization with respect to orthogonal matrices R ∈ O(n) instead of R ∈ SO(n). This will be
the content of the next section.

4 Analysis of the decoupled subproblems

Let I ⊆ {1, . . . , n} be a one-element subset {i} or a two-element subset {i, j} and let DI be the
associated restriction of D given by






DI :=
(
di

)
, if I = {i},

DI :=

(
di 0

0 dj

)
, if I = {i, j} .

In this section we solve for critical points of the function

W (RI ;DI) := ‖sym(RIDI − 1)‖2

for RI ∈ O(|I|) and compute the corresponding critical values. This corresponds to the solution
of the decoupled lower-dimensional subproblems as described in the previous section.

Theorem 4.1 (Critical points: size one). For I = {i} we have the submatrix DI = (di) and
RI = ±1 = (±1). The realized critical energy levels are

W (+1 ;DI) = (di − 1)2 and W (−1 ;DI) = (di + 1)2 . (4.1)
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Proof. There are only two orthogonal matrices in dimension one and the result is immediate. �

For the case |I| = 2, we consider the two separate cases det[RI ] = 1 and det[RI ] = −1.

Theorem 4.2 (Critical points: size two and positive determinant). The critical points RI with
det[RI ] = 1 are described as follows. For any values di and dj the matrices RI = ±1 are critical
points with the critical values (di−1)2+(dj−1)2 and (di+1)2+(dj+1)2, respectively. In addition,
if di + dj > 2, there are two non-diagonal critical points

RI =

(
cosα − sinα
sinα cosα

)
, with cosα =

2

di + dj
(4.2)

which attain the same critical value

W (RI ;DI) =
1

2
(di − dj)

2 . (4.3)

Proof. By Lemma 3.1 RI is a critical point if and only if (RIDI − 1)2 is symmetric. We may
thus apply Lemma 2.6 which implies RIDI − 1 ∈ Sym(2) or tr [RIDI − 1] = 0. Using the explicit
representation

RI =

(
cosα − sinα
sinα cosα

)
,

the symmetry condition RIDI − 1 ∈ Sym(2) is equivalent to (di + dj) sinα = 0 which has two
solutions RI = ±1. The trace condition tr [RIDI − 1] = 0 is equivalent to (di + dj) cosα = 2
which can be solved for α if and only if di + dj ≥ 2. It gives rise to two non-diagonal solutions if
and only if di + dj > 2.
In the first case RI = ±1, the critical values are immediately seen to be (di − 1)2 + (dj − 1)2 and

(di + 1)2 + (dj + 1)2, respectively.
In the second case, the critical values are calculated as follows. Observing that

sym(RIDI − 1) =

(
di cosα− 1 1

2 (dj − di) sinα
1
2 (dj − di) sinα dj cosα− 1

)
(4.4)

we use (di + dj) cosα = 2 to get

‖sym(RIDI − 1)‖2 = (di cosα− 1)2 + (dj cosα− 1)2 +
1

2
(dj − di)

2 sin2 α

= (d2i + d2j) cos
2 α− 2(di + dj) cosα+ 2 +

1

2
(dj − di)

2(1− cos2 α)

=
1

2
(dj − di)

2 +
1

2
(di + dj)

2 cos2 α− 2(di + dj) cosα+ 2

=
1

2
(di − dj)

2 + 2− 4 + 2 =
1

2
(di − dj)

2 . (4.5)

This shows the claim. �

Theorem 4.3 (Critical points: size two and negative determinant). The critical points RI with
det[RI ] = −1 are described as follows. For any values di and dj the diagonal matrices RI =
± diag(1,−1) are critical points with the critical values (di−1)2+(dj+1)2 and (di+1)2+(dj−1)2,
respectively. In addition, for |di − dj | > 2, there are two non-diagonal critical points

RI =

(
cosα sinα
sinα − cosα

)
, with cosα =

2

|di − dj |
, (4.6)

which attain the same critical value

W (RI ;DI) =
1

2
(di + dj)

2 . (4.7)

15



Proof. By Lemma 3.1 RI is a critical point if and only if (RIDI − 1)2 is symmetric. We may
thus apply Lemma 2.6 which implies RIDI − 1 ∈ Sym(2) or tr [RIDI − 1] = 0. Using the explicit
representation

RI =

(
cosα sinα
sinα − cosα

)

the symmetry condition RIDI − 1 ∈ Sym(2) is equivalent to

(di − dj) sinα = 0 (4.8)

which has two solutions RI = ± diag(1,−1) since di 6= dj due to Assumption 3.6. The trace
condition tr [RIDI − 1] = 0 is equivalent to (di − dj) cosα = 2 which can be solved for α if and
only if |di − dj | ≥ 2. Thus there are two non-diagonal solutions if and only if |di − dj | > 2.
In the first case RI = ± diag(1,−1), the critical values are immediately seen to be (di−1)2+(dj+1)2

and (di + 1)2 + (dj − 1)2, respectively.
In the second case, the critical values are calculated as follows. Observing that

sym(RIDI − 1) =

(
di cosα− 1 1

2 (di + dj) sinα
1
2 (di + dj) sinα −dj cosα− 1

)
(4.9)

we use |di − dj | cosα = 2 to get

‖sym(RIDI − 1)‖2 = (di cosα− 1)2 + (dj cosα+ 1)2 +
1

2
(di + dj)

2 sin2 α

= (d2i + d2j) cos
2 α− 2(di − dj) cosα+ 2 +

1

2
(di + dj)

2(1− cos2 α)

=
1

2
(di + dj)

2 +
1

2
(di − dj)

2 cos2 α− 2(di − dj) cosα+ 2

=
1

2
(di + dj)

2 + 2− 4 + 2 =
1

2
(di + dj)

2 . (4.10)

This shows the claim. �

Remark 4.4 (The positive choice det[RI ] = +1 minimizes energy). A direct comparison of the
energy levels realized by the different choices for the determinant of RI is instructive. Summarizing
our preceding results, we have for |I| = 1, i.e., for a block of size one

det[RI ] = +1 7→ (di − 1)2 , (4.11)

det[RI ] = −1 7→ (di + 1)2 ≥ (di − 1)2 . (4.12)

Similarly, for |I| = 2, i.e., for a block of size two, we obtain

det[RI ] = +1 7→ 1

2
(di − dj)

2 , (4.13)

det[RI ] = −1 7→ 1

2
(di + dj)

2 ≥ 1

2
(di − dj)

2 . (4.14)

The estimates follow from our Assumption 3.6 on the entries di > 0 of the diagonal matrix D > 0.

Remark 4.5. The diagonal critical points RI = ±1 and RI = ± diag(1,−1) reduce to size one
blocks (or index subsets |I| = 1) in the block decomposition (3.9).

Remark 4.6 (On non-distinct entries of D). If we relax the Assumption 3.6 and allow for

d1 ≥ d2 ≥ . . . ≥ dn > 0

then there are degenerate critical points with det[RI ] = −1 if and only if di = dj. The corresponding
critical value is the same as that realized by the diagonal matrices ± diag(1,−1).
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5 Global minimization of the Cosserat shear-stretch energy

Combining the results of the two preceding sections, we can now describe the critical values of the
Cosserat shear-stretch energy W (R ;D) which are attained at the critical points. The main result
of this section is a procedure (algorithm) which traverses the set of critical points in a way that
reduces the energy at every step of the procedure and finally terminates in the subset of global
minimizers.

Technically, we label the critical points by certain partitions of the index set {1, . . . , n} containing
only subsets I with one or two elements. In the last section, we have seen that the subsets I and
a choice of sign for det[RI ] uniquely characterize a critical point R ∈ SO(n).

Let us give an outline of the energy-decreasing traversal strategy starting from a given labeling
partition (i.e., critical point):

1. Choose the positive sign det[RI ] = +1 for each subset of the partition (cf. Remark 4.4
and Remark 5.3).

2. Disentangle all overlapping blocks for n > 3 (cf. Lemma 5.8).

3. Successively shift all 2 × 2-blocks to the lowest possible index, i.e., collect the blocks of size
two as close to the upper left corner of the matrix R as possible (cf. Lemma 5.4).

4. Introduce as many additional 2×2-blocks by joining adjacent blocks of size 1 as the constraint
di + dj > 2 allows (cf. Lemma 5.4).

At the end of this section, we provide an Example 5.12.

The next theorem expresses the value of W (R ;D) realized by a critical point in terms of the
labeling partition and choice of determinants det[RI ] which characterize it.

Theorem 5.1 (Characterization of critical points and values). Under the Assumption 3.6 on the
entries d1 > d2 > . . . > dn > 0 of D ∈ Diag(n), the critical points R ∈ SO(n) can be classified
according to partitions of the index set {1, . . . , n} into subsets of size one or two and choices of
signs for the determinant det[RI ] for each subset I. The subsets of size two I = {i, j} satisfy

{
di + dj > 2, det[RI ] = +1 , and

|di − dj | > 2, det[RI ] = −1 .

The critical values are given by

W (R ;D) =
∑

I={i}
det[RI ]=1

(di − 1)2 +
∑

I={i}
det[RI ]=−1

(di +1)2 +
∑

I={i,j}
det[RI ]=1

1

2
(di − dj)

2 +
∑

I={i,j}
det[RI ]=−1

1

2
(di + dj)

2 .

Proof. A suitable partition of the index set {1, . . . , n} can be constructed as detailed in Section 3.
The contributions of the subsets I of size one and two are given by the theorems of Section 4. It
suffices to consider the non-diagonal critical points for the subproblems of size two, because the
diagonal cases can be accounted for by splitting the subset I = {i, j} into two subsets {i} and {j}
of size one, see Remark 4.5. �

Remark 5.2 (On non-distinct entries of D). If we relax the Assumption 3.6 and allow for

d1 ≥ d2 ≥ . . . ≥ dn > 0

then the D- and R-invariant subspaces Vi are not necessarily coordinate subspaces. This produces
non-isolated critical points but does not change the formula for the critical values.

In order to compute the global minimizers R ∈ SO(n) for the Cosserat shear-stretch energy
W (R ;D), we have to compare all the critical values which correspond to the different partitions
and choices of the signs of the determinants in the statement of Theorem 5.1. In what follows, we
prove the various reduction steps.
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Remark 5.3. Notice that |di − dj | > 2 implies that di + dj > 2. Therefore, it is always possible
to replace negative determinant choices by positive ones. In the process the value of W (R ;D) is
reduced. Therefore, if R is a critical point which is a global minimizer of || sym(RD−1)||2, it only
contains RI with determinant det[RI ] = 1.

This allows us to assume that det[RI ] = 1 for all subsets I without any loss of generality.

The following lemma shows that blocks of size two are always favored whenever they exist.

Lemma 5.4 (Comparison lemma). If di + dj > 2 then the difference between the critical values of
W (R ;D) corresponding to the choice of a size two subset I = {i, j} as compared to the choice of
two size one subsets {i}, {j} is given by

−1

2
(di + dj − 2)2.

Proof. We subtract the corresponding contributions of the subsets and simplify

1

2
(di − dj)

2 − (di − 1)2 − (dj − 1)2 = −1

2
(di + dj − 2)2 .

This proves the claim. �

Let us rewrite W (R ;D) in a slightly different form in order to distill the contributions of the size
two blocks in the partition.

Corollary 5.5. For the choices of det[RI ] = 1 there holds

W (R ;D) = ‖sym(RD − 1)‖2 =
n∑

i=1

(di − 1)2 − 1

2

∑

I={i,j}

(di + dj − 2)2.

Proof. The first term in the formula is the value realized by W (R ;D) for the trivial partition into
n subsets of size one. By virtue of the Comparison Lemma 5.4 each block of size two reduces the
critical value by the amount 1

2 (di + dj − 2)2. �

Let us now consider the case of dimension n = 3 explicitly in order to prepare the exposition of
the higher dimensional case.

Theorem 5.6. Let d1 > d2 > d3 > 0. If d1 + d2 ≤ 2 then the global minimum of W (R ;D) occurs
at R = 1 and is given by

W (R ;D) = (d1 − 1)2 + (d2 − 1)2 + (d3 − 1)2 .

If d1 + d2 > 2 then the global minimum is realized by either of two critical points of the form

R =




cosα − sinα 0
sinα cosα 0
0 0 1



 with (d1 + d2) cosα = 2 .

In this case the global minimum is

W (R ;D) = (d1 − 1)2 + (d2 − 1)2 + (d3 − 1)2 − 1

2
(d1 + d2 − 2)2 =

1

2
(d1 − d2)

2 + (d3 − 1)2 .

Proof. If d1 + d2 ≤ 2 then di + dj ≤ 2 for all index pairs (i, j) and there are no blocks of size
two at the global minimum. If d1 + d2 > 2 then the choice of partition {1, 2} ⊔ {3} is admissible.
Corollary 5.5 shows that this is always favorable compared to the partition into three size one
subsets {1} ⊔ {2} ⊔ {3}. Whether or not other size two subsets are admissible according to the
inequalities di+dj > 2, the partition {1, 2}⊔{3} is always optimal. This follows from the ordering
d1 > d2 > d3 > 0 which implies that the partition-dependent term 1

2 (di + dj − 2)2 in Corollary 5.5
is maximized for I = {i, j} = {1, 2}. �

18



In mechanics one often makes assumptions on the symmetries of the deformation gradient F ∈
GL+(n) and it may then have non-distinct singular values νi = νj , i 6= j. It is thus of interest to
investigate the three-dimensional case with d1 ≥ d2 ≥ d3 ≥ 0.

Remark 5.7 (On non-distinct entries of D). Assume d1 ≥ d2 ≥ d3 > 0. Our results imply the
following.
If d1+ d2 ≤ 2, then all Vi are of dimension 1. Since the restriction of a given minimizer R to each

Vi satisfies R|Vi
= 1, we see that R = 1. The global minimum of the Cosserat shear-stretch energy

is given by
W (R ;D) = (d1 − 1)2 + (d2 − 1)2 + (d3 − 1)2 .

If d1 + d2 > 2, then for a global minimizer R there is a one-dimensional R-invariant subspace
which is also D-invariant with associated eigenvalue d3. Therefore, R is a rotation with axis in
the d3-eigenspace of D. The rotation angle satisfies the relation (d1 + d2) cosα = 2 and the global
minimum of the energy is given by

W (R ;D) = (d1 − 1)2 + (d2 − 1)2 + (d3 − 1)2 − 1

2
(d1 + d2 − 2)2 =

1

2
(d1 − d2)

2 + (d3 − 1)2 .

This case further splits into several subcases all realizing the same energy level according to the
multiplicity of the eigenvalue d3:
If d1 ≥ d2 > d3, i.e., the multiplicity of d3 is one, then there are two isolated global minimizers

which are rotations with rotation angle arccos(2/(d1+d2)) with respect to either of the two half-axes
in span ({e3}) (as in the case of distinct entries of D discussed in Theorem 5.6).
If d1 > d2 = d3, i.e., the multiplicity of d3 is two, then the global minimizers R form a one-

dimensional family of rotations with rotation angle arccos(2/(d1 + d2)) and rotation half-axes in
the d3-eigenplane span ({e2, e3}) of D.
If d1 = d2 = d3, i.e., the multiplicity of d3 is three, then there is a two-dimensional family of global

minimizers R which are rotations with rotation angle arccos(2/(d1 + d2)) about arbitrary half-axes
in R

3.

It is interesting that the set of global minimizers is connected in the last two cases where d2 = d3.
This allows for a continuous transition between minimizers with opposite half-axes which are
inverses of each other.

To study the global minimizers for the Cosserat shear-stretch energy in arbitrary dimension n ≥ 4,
we need to investigate the relative location of the size two subsets of the partition.

Lemma 5.8. Let R ∈ SO(n) be a global minimizer for W (R ;D). Then R cannot contain over-
lapping size two subsets, i.e., I = {i1, i4}, J = {i2, i3}, with i1 < i2 < i3 < i4.

Proof. We assume that R is a global minimizer corresponding to a partition containing two over-
lapping subsets as described above and derive a contradiction.
It suffices to consider the case i1 = 1, i2 = 2, i3 = 3 and i4 = 4 with the general case being com-
pletely analogous. We recall the ordering d1 > d2 > d3 > d4 > 0.
There are two cases to consider:

Case 1: d3 + d4 > 2. In this case, we can consider another critical point R̊ corresponding to the

partition {1, 2} ⊔ {3, 4} instead of {1, 4} ⊔ {2, 3}. By Corollary 5.5 we have

W (R ;D)−W (R̊ ;D) =
1

2
(d1 + d2 − 2)2 +

1

2
(d3 + d4 − 2)2 − 1

2
(d1 + d4 − 2)2 − 1

2
(d2 + d3 − 2)2

= d1d2 + d3d4 − d1d4 − d2d3 = (d1 − d3)(d2 − d4) > 0.

Thus R is not a global minimum of W (R ;D).

Case 2: d3 + d4 ≤ 2. In this case, we can not have the size two subset {3, 4}. However, it is
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possible to decrease the value of W (R ;D) by choosing another critical point R̊ corresponding to
the partition {1, 2} ⊔ {3} ⊔ {4} instead of {1, 4} ⊔ {2, 3}. By Corollary 5.5 we have

W (R ;D)−W (R̊ ;D) =
1

2
(d1 + d2 − 2)2 − 1

2
(d1 + d4 − 2)2 − 1

2
(d2 + d3 − 2)2

≥ 1

2
(d1 + d2 − 2)2 − 1

2
(d1 + (2− d3)− 2)2 − 1

2
(d2 + d3 − 2)2

=
1

2
(d1 + d2 − 2)2 − 1

2
(d1 − d3)

2 − 1

2
(d2 + d3 − 2)2

= (d1 − d3)(d2 + d3 − 2) > 0.

In the first inequality we use the fact that for d1 + d4 ≥ 2 the function (d1 + d4 − 2)2 is increasing
in d4 and d4 ≤ 2− d3 by assumption. This shows that R is not a global minimum of W (R ;D).
We arrive at a contradiction in both cases which proves the statement. �

We are now ready to state and prove the general n-dimensional case.

Theorem 5.9. Let d1 > d2 > . . . dn > 0 be the entries of D. Let us fix the maximum k for which
d2k−1 + d2k > 2. Any global minimizer R ∈ SO(n) corresponds to the partition of the form

{1, 2} ⊔ {3, 4} ⊔ . . . ⊔ {2k − 1, 2k} ⊔ {2k + 1} ⊔ . . . ⊔ {n}

and the global minimum of W (R ;D) is given by

W red(D) := min
R∈SO(n)

‖sym(RD − 1)‖2 =

n∑

i=1

(di − 1)2 − 1

2

k∑

i=1

(d2i−1 + d2i − 2)2

=
1

2

k∑

i=1

(d2i−1 − d2i)
2 +

n∑

i=2k+1

(di − 1)2 .

Proof. Lemma 5.8 shows that a global minimizer R ∈ SO(n) can not have a partition with over-
lapping size two subsets. As in the proof of Theorem 5.6 (the n = 3 case) we can decrease the
value of W (R ;D) by shifting down the indices of all size two subsets as far as possible. Therefore
the optimal partition is of the form

{1, 2} ⊔ {3, 4} ⊔ . . . ⊔ {2l− 1, 2l} ⊔ {2l+ 1} ⊔ . . . ⊔ {n}

for some l ≤ k. By Corollary 5.5 the global minimum is realized by the critical points corre-
sponding to the maximal possible choice l = k. The value of W (R ;D) at a global minimizer
is computed by inserting the corresponding optimal partition into Theorem 5.1 and Corollary 5.5. �

Remark 5.10. The number of global minimizers in the above theorem is 2k, where k is the number
of blocks of size two in the preceding characterization of a global minimizer as a block diagonal
matrix. All global minimizers are block diagonal similar to the n = 3 case (Theorem 5.6).

Remark 5.11 (On non-distinct entries of D). If we relax the Assumption 3.6 and allow for

d1 ≥ d2 ≥ . . . ≥ dn > 0

then the global minimizers may or may not be isolated. The formula for the reduced energy as
stated in Theorem 5.9 is, however, not affected.

The following example illustrates the energy-minimizing traversal of critical points which always
terminates in a global minimizer.

Example 5.12. Let D = diag
(
4, 2, 1, 12 ,

1
4

)
. Theorem 5.1 shows that the critical points can

be characterized by certain partitions1 of the index set {1, 2, 3, 4, 5} and a choice of a sign

1More precisely, a labeling partition uniquely characterizes sets of critical points which generate the same critical
value. A block of size two, for example, characterizes two different symmetric solutions corresponding to the choice
of sign for the rotation angle α. Both choices, however, yield the same value for the energy.
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for each subset I of the partition. Thus, we introduce the convenient notation of a pair of a
subset and a sign (I,±), where the sign encodes a possible choice for the determinant det[RI ] = ±1.

Setup: We consider a critical point R(0) corresponding to the labeling partition

P(0) = {({1}, +) , ({2, 5} , − ) , ({3}, − ) , ({4}, − )} . (5.1)

Note that d2 + d5 = 2 + 1
4 > 2, i.e., the 2 × 2-block corresponding to I = {2, 5} exists, as required

for a valid partition characterizing a critical point R(0). The corresponding critical value of the
summation formula in the statement of Theorem 5.1 is given by

W (0) = W (R(0) ;D) = (4− 1)2︸ ︷︷ ︸
({1},+)

+(1 + 1)2︸ ︷︷ ︸
({3},− )

+

(
1 +

1

2

)2

︸ ︷︷ ︸
({4},− )

+
1

2

(
2 +

1

4

)2

︸ ︷︷ ︸
({2,5},− )

(5.2)

=
569

32
≈ 17.78 .

Step 1 (Choice of positive sign): We consistently choose the positive sign for the determinant
in the labeling partition which gives

P(1) = {({1, 5} , +) , ({2}, +) , ({3}, +) , ({4}, +)} . (5.3)

This updated partition characterizes a different critical point R(1) realizing a lower energy level

W (1) = W (R(1) ;D) = (4− 1)2︸ ︷︷ ︸
({1},+)

+(1− 1)2︸ ︷︷ ︸
({3},+ )

+

(
1− 1

2

)2

︸ ︷︷ ︸
({4},+)

+
1

2

(
2− 1

4

)2

︸ ︷︷ ︸
({2,5},+)

(5.4)

=
345

32
≈ 10.28 .

Step 2 (Disentanglement): The next step of the procedure is to remove overlap of 2× 2-blocks.
In our example, we only have one such block and there is nothing to do, i.e., P(2) = P(1).

Step 3 (Index shift): We now decrement the indices of the 2 × 2-blocks as much as possible,
i.e., we string them together starting in the upper left corner. Shifting the {2, 5}-block to {1, 2},
we obtain the following new partition

P(3) = {({1, 2} , +) , ({3}, +) , ({4}, +) , ({5}, +)} . (5.5)

The energy level realized by a corresponding critical point R(3) is

W (3) = W (R(3) ;D) = (1− 1)2︸ ︷︷ ︸
({3},+)

+

(
1− 1

2

)2

︸ ︷︷ ︸
({4},+)

+

(
1− 1

4

)2

︸ ︷︷ ︸
({5},+)

+
1

2
(4− 2)

2

︸ ︷︷ ︸
({1,2},+)

(5.6)

=
45

16
≈ 2.81 .

Step 4 (Exhaustion by 2 × 2-blocks): In this step, we try to create as many 2 × 2-blocks as
possible. We first locate the pair of subsets of size one with minimal indices which is ({3}, {4}).
Since d3 + d4 = 1 + 1

2 ≤ 2, no further 2× 2-block exists. Thus, P(4) = P(3).

Result: The finally obtained labeling partition

P = P(4) = {({1, 2} , +) , ({3}, +) , ({4}, +) , ({5}, +)} (5.7)

characterizes a global minimizer. With the notation of Theorem 5.9 the maximal number of 2× 2-
blocks is k = 1 and we have 2k = 2 global minimizers of the form

rpolar(D) =




cosα1 − sinα1 0 0 0
sinα1 cosα1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




, with cos(α1) =
2

d1 + d2
=

1

3
. (5.8)

21



Inserting the global minimizers into the energy, we obtain the reduced energy

W red(D) := W (rpolar(D) ;D) =
45

16
≈ 2.81 . (5.9)

Just to give a comparison, the identity matrix 1 ∈ SO(n) realizes the energy level

W (1 ;D) = (4− 1)2︸ ︷︷ ︸
({1},+)

+(2− 1)2︸ ︷︷ ︸
({2},+)

+(1− 1)2︸ ︷︷ ︸
({3},+ )

+

(
1− 1

2

)2

︸ ︷︷ ︸
({4},+)

+

(
1− 1

4

)2

︸ ︷︷ ︸
({5},+)

(5.10)

=
173

16
≈ 10.81 .

Thus, the identity 1 ∈ SO(n) is not a global minimizer.

Remark 5.13 (Optimality of 1). Our results imply that the identity matrix 1 ∈ SO(n) is globally
optimal for W (R ;D) with D > 0, if and only if there exists no 2 × 2-block with a positive choice
of det[RI ], i.e.,

max
1≤i6=j≤n

(di + dj) ≤ 2 .

This corresponds to the tension-compression asymmetry described in [6–8] for dimensions n = 2, 3.

6 Discussion

For the sake of clarity of exposition, we have restricted our attention to the case of a diagonal and
positive definite parameter matrix D > 0, i.e., di > 0. Our technical approach, however, readily
carries over to the more general case di 6= 0 with minor modifications. The construction

∥∥∥∥sym
{[

R

(
1

−1

)][(
1

−1

)
D

]
− 1

}∥∥∥∥
2

(6.1)

allows to reduce such a parameter matrix D to |D| := diag(|d1| , . . . , |dn|) > 0 which is positive
definite. Note that the minimization must then be carried out in the appropriate connected com-
ponent of the orthogonal matrices O(n). We also expect that the degenerate case where some
di = 0 can be handled with our techniques as well.

The matrix group of rotations SO(3) equipped with its natural bi-invariant Riemannian metric

g(ξ, η)|R := g(RT ξ, RT η)|1 :=
〈
RT ξ, RT η

〉
=
〈
ξ, η

〉
(6.2)

is a Riemannian manifold (SO(3), g). In [24], the dynamics of the following Riemannian gradient
flow2 was investigated

RT Ṙ = skew(RTD) ⇐⇒ Ṙ = −grad

(
1

2
‖RD − 1‖2

)
. (6.3)

The flow (6.3) converges to R = 1 for appropriate initial conditions which is consistent with Grioli’s

theorem; cf. Section 1. Similarly, one can study the gradient flow for the energy 1
2 ‖sym(RD − 1)‖2

given by

RT Ṙ = −1

2
skew

(
(RTD − 1)2

)
⇐⇒ Ṙ = −grad

(
1

2
‖sym(RD − 1)‖2

)
. (6.4)

Our present results on critical points of W (R ;D) determines the possible asymptotic solutions for
the gradient flow (6.4). A characterization of local minimizers is currently missing. For example,
it is not clear whether every local minimizer is automatically a global minimizer which holds in
dimension n = 2. It seems likely, that this holds in n = 3 as well. The classification of local
extrema of W (R ;D) is a completely open question in n ≥ 4.

Acknowledgments: Lev Borisov was partially supported by NSF grant DMS-1201466. Andreas
Fischle was supported by German Research Foundation (DFG) grant SA2130/2-1 and, previously,
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2For an introductory exposition of gradient flows on Riemannian manifolds, see, e.g., [21].

22



References

[1] L. Borisov, P. Neff, S. Sra, and C. Thiel. The sum of squared logarithms inequality in arbitrary dimensions.
arXiv preprint arXiv:1508.04039, 2015. http://arxiv.org/abs/1508.04039, to appear in Lin. Alg. Appl.

[2] E. Cosserat and F. Cosserat. Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils
(engl. translation by D. Delphenich 2007, available online at https://www.uni-due.de/~hm0014/Cosserat_
files/Cosserat09_eng.pdf), reprint 2009 by Hermann Librairie Scientifique, ISBN 978 27056 6920 1, Paris,
1909.

[3] V. A. Eremeyev, L. P. Lebedev, and H. Altenbach. Foundations of Micropolar Mechanics. Springer, 2012.

[4] A. C. Eringen. Microcontinuum Field Theories. Vol. I: Foundations and Solids. Springer, 1999.

[5] A. Fischle. The planar Cosserat model: minimization of the shear energy on SO(2) and relations to ge-
ometric function theory. (diploma thesis). 2007. (available online: http://www.uni-due.de/~hm0014/
Supervision_files/dipl_final_online.pdf).

[6] A. Fischle and P. Neff. The geometrically nonlinear Cosserat micropolar shear–stretch energy. Part I: A general
parameter reduction formula and energy-minimizing microrotations in 2D. arXiv preprint arXiv:1507.05480,
2015. http://arxiv.org/abs/1507.05480, to appear in Z. angew. Math. Mechanik.

[7] A. Fischle and P. Neff. The geometrically nonlinear Cosserat micropolar shear–stretch energy. Part II:
Non-classical energy-minimizing microrotations in 3D and their computational validation. arXiv preprint
arXiv:1509.06236, 2015. http://arxiv.org/pdf/1509.06236v1.

[8] A. Fischle, P. Neff, and D. Raabe. The relaxed-polar mechanism of locally optimal Cosserat rotations for
an idealized nanoindentation and comparison with 3D-EBSD experiments. arXiv preprint arXiv:1603.06633,
2016. http://arxiv.org/abs/1603.06633.

[9] A. Galántai. Projectors and projection methods, volume 6. Springer Science & Business Media, 2013.

[10] J. Gallier. Logarithms and square roots of real matrices. arXiv preprint arXiv:0805.0245, 2008. http://
arxiv.org/abs/0805.0245.

[11] J. Gallier. Geometric methods and applications: for computer science and engineering, volume 38. Springer
Science & Business Media, 2. edition, 2011.

[12] F. R. Gantmacher. The Theory of Matrices, volume I. AMS Chelsea, 1. edition.

[13] G. Grioli. Una proprieta di minimo nella cinematica delle deformazioni finite. Boll. Un. Math. Ital., 2:252–255,
1940.

[14] N. J. Higham. Newton’s method for the matrix square root. Mathematics of Computation, 46(174):537–549,
1986.

[15] N. J. Higham. Computing real square roots of a real matrix. Lin. Alg. Appl, 88:405–430, 1987.

[16] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, Philadelphia, PA, USA, 2008.

[17] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, New York, 1985.

[18] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, New York, 1991.

[19] J. Jeong, H. Ramézani, I. Münch, and P. Neff. A numerical study for linear isotropic Cosserat elasticity with
conformally invariant curvature. Z. Angew. Math. Mech., 89(7):552–569, 2009.

[20] J. Lankeit, P. Neff, and Y. Nakatsukasa. The minimization of matrix logarithms: On a fundamental property
of the unitary polar factor. Lin. Alg. Appl., 449:28–42, 2014.

[21] J. M. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer, 2002.

[22] G. A. Maugin. On the structure of the theory of polar elasticity. R. Soc. Lond. Philos. Trans. Ser. A Math.
Phys. Eng. Sci., 356(1741):1367–1395, 1998.

[23] P. Neff. Existence of minimizers for a geometrically exact cosserat solid. PAMM, 4(1):548–549, 2004.

[24] P. Neff. Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation. Quart.
Appl. Math., 63:88–116, 2005.

[25] P. Neff. The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is
symmetric. Z. Angew. Math. Mech., 86:892–912, 2006.

[26] P. Neff, B. Eidel, and R. J. Martin. Geometry of logarithmic strain measures in solid mechanics. arXiv preprint
arXiv:1505.02203, 2015. http://arxiv.org/pdf/1505.02203v1 to appear in Arch. Rat. Mech. Analysis.

[27] P. Neff, B. Eidel, F. Osterbrink, and R. Martin. A Riemannian approach to strain measures in nonlinear
elasticity. C. R. Acad. Sci. Paris (Mecanique), 342(4):254–257, 2014.

[28] P. Neff, A. Fischle, and I. Münch. Symmetric Cauchy-stresses do not imply symmetric Biot-strains in weak
formulations of isotropic hyperelasticity with rotational degrees of freedom. Acta Mech., 197:19–30, 2008.

[29] P. Neff and J. Jeong. A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature
energy. Z. Angew. Math. Mech., 89(2):107–122, 2009.

[30] P. Neff, J. Jeong, and A. Fischle. Stable identification of linear isotropic Cosserat parameters: bounded stiffness
in bending and torsion implies conformal invariance of curvature. Acta Mech., 211(3-4):237–249, 2010.

[31] P. Neff, J. Lankeit, and A. Madeo. On Grioli’s minimum property and its relation to Cauchy’s polar decom-
position. Int. J. Engng. Sci., 80:209–217, 2014.

[32] P. Neff, Y. Nakatsukasa, and A. Fischle. A logarithmic minimization property of the unitary polar factor in
the spectral and Frobenius norms. SIAM J. Matrix Anal. Appl., 35(3):1132–1154, 2014.

[33] S. Sra. On the matrix square root via geometric optimization. arXiv preprint arXiv:1507.08366, 2015. http://
arxiv.org/abs/1507.08366.

23

http://arxiv.org/abs/1508.04039
https://www.uni-due.de/~hm0014/Cosserat_files/Cosserat09_eng.pdf
https://www.uni-due.de/~hm0014/Cosserat_files/Cosserat09_eng.pdf
http://www.uni-due.de/~hm0014/Supervision_files/dipl_final_online.pdf
http://www.uni-due.de/~hm0014/Supervision_files/dipl_final_online.pdf
http://arxiv.org/abs/1507.05480
http://arxiv.org/pdf/1509.06236v1
http://arxiv.org/abs/1603.06633
http://arxiv.org/abs/0805.0245
http://arxiv.org/abs/0805.0245
http://arxiv.org/pdf/1505.02203v1
http://arxiv.org/abs/1507.08366
http://arxiv.org/abs/1507.08366

	1 Introduction
	2 Representation of real matrix square roots of symmetric matrices
	3 Critical points of the Cosserat shear-stretch energy
	4 Analysis of the decoupled subproblems
	5 Global minimization of the Cosserat shear-stretch energy
	6 Discussion
	References

