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Abstract. We establish a correspondence between orbifold and singular el-

liptic genera of a global quotient. While the former is defined in terms of the

fixed point set of the action, the latter is defined in terms of the resolution of
singularities. As a byproduct, the second quantization formula of Dijkgraaf,

Moore, Verlinde and Verlinde is extended to arbitrary Kawamata log-terminal
pairs.

1. Introduction

One of the fundamental problems suggested by the intersection homology theory
is to determine which characteristic numbers can be defined for singular varieties.
Elliptic genus appears to be a key tool for a solution to this problem. In [30] it
was shown that the Chern numbers invariant in small resolutions are determined
by the elliptic genus of such a resolution. In [7] the elliptic genus was defined for
singular varieties with Q-Gorenstein, Kawamata-logterminal singularities and its
behavior in resolutions of singularities was studied. Among other things, [7] shows
that the elliptic genus is invariant in crepant, and in particular small, resolutions,
whenever they exist. Hence, the elliptic genus for such class of singular varieties
provides the complete class of Chern numbers which is possible to define in such
singular setting.

In present work, we study the elliptic genus of singular varieties which are global
quotients. We obtain generalizations for several relations between the numerical
invariants of actions of finite groups acting on algebraic varieties and invariant of
resolutions. Much of the interest in such relations comes from works in physics and
the work on Hilbert schemes (cf. [12],[13],[11], [17]) but starts with the work of
McKay [28].

The McKay correspondence was originally proposed in [28] as a relation between
minimal resolutions of quotient singularities C2/G, where G is a finite subgroup
of SL2(C), and the representations of G. Shortly after that, L.Dixon, J.Harvey,
C.Vafa and E.Witten (cf. [12]) discovered a formula for the Euler characteristic of
certain resolutions of quotients:

(1) e(X̃/G) =
1
|G|

∑
gh=hg

e(Xg,h)

where X is a complex manifold, π∗ : X̃/G → X/G is a resolution of singularities
such that π∗KX/G = K

X̃/G
and Xg,f is the submanifold of X of points fixed by

both f and g. The right hand side in (1) can be written as the sum over the
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conjugacy classes:
∑
{g} e(X

g/C(g)), where C(g) is the centralizer of g, which for
X = C2 is the number of irreducible representations of G. At the same time, the
other side in (1) is the number of exceptional curves in a minimal resolution plus
1 and one obtains the McKay correspondence on the numerical level (cf. [13]).
The McKay correspondence became the subject of intense study and the term is
now primarily used to indicate a relationship between the various invariants of the
actions of finite automorphism groups on quasiprojective varieties and resolutions
of the corresponding quotients by such actions generalizing (1). We refer to the
report [29] for a survey of the evolution of ideas since original empirical observation
of McKay.

One of the main results to date on the relationship between the invariants of
actions and resolutions of quotients is the description of the E-function of a crepant
resolution in terms of the invariants of the action (cf [5], [10])). We recall that for
a quasiprojective variety M its E-function is defined as

E(M ;u, v) : =
∑
p,q

upvq
∑

n

(−1)nhp,q(Hn
c (M))

where hp,q(Hn
c (M)) are the Hodge numbers of Deligne’s mixed Hodge structure

on the compactly supported cohomology of M . The E-function incorporates many
classical numerical invariants of manifolds. For example, if M is a projective man-
ifold and (u, v) = (y, 1) one obtains Hirzebruch’s χy-genus which in turn has the
topological and holomorphic Euler characteristics and the signature as its special
values.

In [5], Batyrev extended the definition of the E-function to the case of a global
quotient of a smooth variety M by a finite group G. He defined the orbifold E-
function, Eorb(M,G;u, v) in terms of the action of a finite group G. Moreover, he
extended this definition to G-normal pairs (M,D) composed of a smooth variety M
and a simple normal crossing G-equivariant divisor D on it. Batyrev showed that
the E-function of the pair (M̃/G,D) consisting of a resolution µ : M̃/G → M/G
and the divisor defined via the discrepancy D = K

M̃/G
− µ∗(KM/G) (with trivial

group action) coincides with the orbifold E-function. The fact that the E-function
of the pair doesn’t change under birational morphisms, as well as an alternative
proof of the McKay correspondence for E-functions are based on Kontsevich’s idea
of motivic integration (cf.[23], [5], [10], [26]).

Another generalization of Hirzebruch’s χy-genus is the (two-variable) elliptic
genus, and this paper grew from an attempt to prove the relationship between
elliptic genera of resolutions of the quotients M/G and the elliptic genera associated
with the actions of G on M . These two versions of the elliptic genus of a global
quotient were introduced in our previous paper [7] where the McKay correspondence
was stated as a conjecture. The proof given below, similarly to Batyrev’s approach,
requires a generalization of the elliptic genera considered in [7] to the elliptic genus
associated with triples consisting of a manifold, the group acting on it and the
divisor with simple normal crossings.

The elliptic genus was extensively studied in recent years (cf. [25], [24], [19], [18],
[30] [6], [8] and further references in the latter). For an almost complex compact
manifold X with Chern roots xi (i.e. the total Chern class is

∏
(1+xi)) the elliptic
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genus can be defined as

(2) Ell(X; z, τ) =
∫

X

∏
i

xi

θ( xi

2πi − z, τ)
θ( xi

2πi , τ)

where

θ(z, τ) = q
1
8 (2 sinπz)

l=∞∏
l=1

(1− ql)
l=∞∏
l=1

(1− qly)(1− qly−1)

is the classical theta function (cf. [9]) where y = e2πiz, q = e2πiτ .
Alternatively, the elliptic genus can be written as

(3) Ell(X; z, τ) =
∫

X

ch(ELLz,τ )td(X)

where

ELLz,τ := y−
dim X

2 ⊗n≥1

(
Λ−yqn−1T ∗X ⊗ Λ−y−1qnTX ⊗ SqnT ∗X ⊗ SqnTX

)
.

Here TX (resp. T ∗X) is the complex tangent (resp. cotangent) bundle and as usual
for a bundle V , Λt(V ) =

∑
i Λi(V )ti and St(V ) =

∑
i Sym

i(V )ti denote generating
functions for the exterior and symmetric powers of V (by Riemann-Roch this is also
the holomorphic Euler characteristic of ELLz,τ ). The elliptic genus of a projective
manifold is a holomorphic function of (z, τ) ∈ C×H. Moreover, if c1(X) = 0 then
it is a weak Jacobi form (of weight 0 and index dim X

2 , see [6] or earlier references
in [8]).

Since y−
dimX

2 χ−y(X) = limq→0Ell(X; z, τ), Hirzebruch’s χy-genus is a special-
ization of the elliptic genus (and so are various one-variable versions of the elliptic
genus due to Landweber-Stong, Ochanine, Witten and Hirzebruch). On the other
hand, elliptic genus is a combination of the Chern numbers of X, as is apparent
from (2), but it cannot be expressed via the Hodge numbers of X (cf. [19], [6]).
Therefore the information about elliptic genera of resolutions of X/G cannot be
derived from corresponding information about the E-function, though it can be
done for the specialization q → 0 of the elliptic genus. Since the elliptic genus
depends only on the Chern numbers, it is a cobordism invariant. Totaro [30] found
a characterization of the elliptic genus (2) of SU -manifolds from the point of view
of cobordisms as the universal genus invariant under classical flops.

A major difference between the elliptic genus and the E-function is that the latter
is defined for quasiprojective varieties. Unfortunately, we don’t know if a useful
definition of the elliptic genus can be given for arbitrary quasiprojective manifolds.
Moreover, while the E-function enjoys strong additivity properties there appears
to be no analog of them in the case of the elliptic genus. Additivity allows one to
work with E-functions not just in the category of manifolds but in the category of of
arbitrary quasiprojective varieties. Nevertheless, in [7] (extending [6]) a definition
of the elliptic genus for some singular spaces was proposed as follows. Let X be a Q-
Gorenstein complex projective variety and π : Y → X be a resolution of singularities
with the simply normal crossing divisor ∪Ek, k = 1, . . . , r as its exceptional locus.
If the canonical classes of X and Y are related via

(4) KY = π∗KX +
∑

αkEk,
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then
(5)

ÊllY (X; z, τ) :=
∫

Y

(∏
l

( yl

2πi )θ(
yl

2πi − z)θ′(0)
θ(−z)θ( yl

2πi )

)
×

(∏
k

θ( ek

2πi − (αk + 1)z)θ(−z)
θ( ek

2πi − z)θ(−(αk + 1)z)

)
is independent of the resolution π (here ek are the cohomology classes of the com-
ponents Ek of the exceptional divisor and yl are the Chern roots of Y ) and de-
pends only on X. ÊllY (X; z, τ) was called the singular elliptic genus of X. When
q → 0, the singular elliptic genus specializes to the singular χy-genus calculated
from Batyrev’s E-function. We refer the reader to [7] for further discussion of this
invariant.

On the other hand, for a finite group G of automorphisms of a manifold X,
an orbifold elliptic genus was defined in [7] in terms of the action of G on X as
follows. For a pair of commuting elements g, h ∈ G, let Xg,h be a connected
component of the fixed point set of both g and h. Let TX|Xg,h = ⊕Vλ, λ(g), λ(h) ∈
Q∩ [0, 1), be the decomposition into a direct sum, such that g (resp. h) acts on Vλ

as multiplication by e2πiλ(g) (resp. e2πiλ(h)). Then

(6) Eorb(X,G; z, τ) =

1
|G|

∑
gh=hg

( ∏
λ(g)=λ(h)=0

xλ

) ∏
λ

θ( xλ

2πi + λ(g)− τλ(h)− z)
θ( xλ

2πi + λ(g)− τλ(h))
e2πizλ(h)z[Xg,h].

In [7] it was conjectured that these two notions of elliptic genus coincide. More
precisely (cf. Conjecture 5.1, ibid), let X be a nonsingular projective variety on
which a group G acts effectively by biholomorphic transformations. Let µ : X →
X/G be the quotient map and D =

∑
(νi − 1)Di be the ramification divisor. Let

∆X/G :=
∑

j

(
νj − 1
νj

)
µ(Dj).

Then

(7) Ellorb(X,G; z, τ) =
(

2πi θ(−z, τ)
θ′(0, τ)

)dim X

Êll(X/G,∆X/G; z, τ)

where the elliptic genus of the pair Êll(X/G,∆X/G; z, τ) is defined by (5) but with
discrepancies αk obtained from the relation

KY = π∗(KX/G + ∆X/G) +
∑

αkEk

rather than the relation (4).
The main goal of this paper is to prove the identity (7), which we accomplish

in Theorem 5.3. One of the ingredients of the proof is the systematic use of the
“hybrid” orbifold elliptic genus of pairs generalizing both the singular and orbifold
elliptic genera. It is defined as follows. Let (X,E) be a resolution of singularities
of a Kawamata log-terminal pair (cf. [22] and Section 2) with E = −

∑
k δkEk. Let

X support an action of a finite group G such that (X,E) is a G-normal pair (cf.
[5] and Section 3). In addition to notations used in the above definition (6) of the
orbifold elliptic genus, let εk(g), εk(h) ∈ Q ∩ [0, 1) be defined as follows. If Ek does
not contain Xg,h then they are zero and if Xg,h ⊆ Ek then g (resp. h) acts on



MCKAY CORRESPONDENCE FOR ELLIPTIC GENERA 5

O(Ek) as multiplication by e2πiε(g) (resp. e2πiε(g)). Then we define (cf. Definition
3.2):

(8) Ellorb(X,E,G; z, τ) :=
1
|G|

∑
g,h,gh=hg

∑
Xg,h

[Xg,h]
( ∏

λ(g)=λ(h)=0

xλ

)

×
∏
λ

θ( xλ

2πi + λ(g)− τλ(h)− z)
θ( xλ

2πi + λ(g)− τλ(h))
e2πiλ(h)z

×
∏
k

θ( ek

2πi + εk(g)− εk(h)τ − (δk + 1)z)
θ( ek

2πi + εk(g)− εk(h)τ − z)
θ(−z)

θ(−(δk + 1)z)
e2πiδkεk(h)z.

If G is trivial, this expression yields the elliptic genus (5) if E = ∅ and the
version of (5) for pairs as described earlier for arbitrary E. On the other hand, if G
is non-trivial but E = ∅, then one obtains (6). Moreover Ellorb(X,E,G) for q → 0
specializes into Batyrev’s Eorb(X,E,G; y, 1) (cf. [5]). The thus defined orbifold
elliptic genus of pairs is birationally invariant (cf. Section 3). In fact, we show
that the contribution of each pair of commuting elements in the above definition is
invariant under the blowups with normal crossing nonsingular G-invariant centers,
which allows us to show that the contribution of each pair (g, h) is a birational
invariant.

The second main ingredient of the proof is the pushforward formula for the
class in (8) for toroidal morphisms. Finally, we use the results of [2] to show that
X → X/G can be lifted to a toroidal map Ẑ → Z so that in the diagram

Ẑ → Z
↓ ↓
X → X/G

the vertical arrows are resolutions of singularities.
As was already pointed out, the singular (resp. orbifold) elliptic genus specializes

into some known invariants of singular varieties (resp. orbifolds). The simplest
corollary of our main theorem is obtained in the limit q = 0, y = 1. We see that
if X/G admits a crepant resolution of singularities (i.e. such that in (4), one has
αk = 0 for any k) then the topological Euler characteristic of a crepant resolution is
given by the Dixon, Harvey, Vafa and Witten formula (1). While previous proofs of
this relation were based on motivic integration (cf. [5], [10]) the proof presented here
uses only birational geometry (but depends on [1] and [2]). Moreover, in projective
case, the results in [5], [10] for E(u, 1) also get an alternative proof, independent of
motivic integration.

Another corollary is the further clarification of a remarkable formula due to
Dijkgraaf, Moore, Verlinde and Verlinde. It was shown in [7] that

(9)
∑
n≥0

pnEllorb(Xn/Σn; z, τ) =
∞∏

i=1

∏
l,m

1
(1− piylqm)c(mi,l)

where Σn is the symmetric group acting on the product of n copies of a manifold
X such that Ell(X) =

∑
m,l c(m, l)y

lqm. A formula of such type was first proposed
in [11]. The main theorem of this paper shows that the orbifold elliptic genus in
(9) can be replaced by the singular elliptic genus. While for general X it is not
clear how to construct a crepant resolution of the symmetric product (or other
kind of resolution leading to a calculation of the singular elliptic genus) in the case
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dimX = 2 it is well known that the Hilbert scheme X(n) of subschemes of length
n in X yields a crepant resolution. A corollary of the main theorem is the the
following:

Corollary 6.7. Let X be a complex projective surface and X(n) be its n-th
Hilbert scheme. Let

∑
m,l c(m, l)y

lqm be the elliptic genus of X. Then∑
n≥0

pnEll(X(n); z, τ) =
∞∏

i=1

∏
l,m

1
(1− piylqm)c(mi,l)

.

This is a generalization of results due to Göttsche on the generating series of
χy-genera of Hilbert schemes (cf. [17]) which one obtains for q = 0. In fact in this
paper a substantial generalization of (9) is proposed. We are able to extend the
DMVV formula to symmetric powers of log-terminal varieties and, more generally,
to symmetric powers of Kawamata log-terminal pairs.

The paper is organized as follows. In Section 2 we recall the concept of Kawamata
log-terminal pairs, to the extent necessary for our purposes. Section 3 contains our
main definition of the orbifold elliptic genus of a Kawamata log-terminal pair. We
prove that it is well-defined, for which we use the full force of the machinery of [1].
In Section 4 we introduce toroidal morphisms between pairs that consist of varieties
and simple normal crossing divisors on them. Our main result is the description of
the pushforward and pullback in the Chow rings in terms of the combinatorics of
the conical polyhedral complexes. In the process we use some combinatorial results
related to toric varieties, which are collected in the Appendix 8. In Section 5 we
apply these calculations to prove our main Theorem 5.3. In Section 6 we generalize
the second quantization formula of [11] to the case of Kawamata log-terminal pairs.
Various open questions related to our arguments are collected in Section 7.

The authors would like to thank Dan Abramovich for helpful discussions and the
proof of the important Lemma 5.4. We thank Arthur Greenspoon for proofreading
the original version of the paper. We also thank Nora Ganter whose question
focused our attention on the problem of defining orbifold elliptic genera for pairs.
Finally, we thank the referee for numerous helpful suggestions on improving the
exposition.

2. Kawamata log-terminal pairs

In this section we present the background material for Kawamata log-terminal
pairs, which are a standard tool in the minimal model program. Our main reference
is [22].

Proposition 2.1. [22, Definition 2.25, Notation 2.26] Let (X,D) be a pair where
X is a normal variety and D =

∑
i aiDi is a sum of distinct prime divisors on

X. We allow ai to be arbitrary rational numbers. Assume that m(KX + D) is
a Cartier divisor for some m > 0. Suppose f : Y → X is a birational morphism
from a normal variety Y . Denote by Ei the irreducible exceptional divisors and the
proper preimages of the components of D. Then there are naturally defined rational
numbers a(Ei, X,D) such that

KY = f∗(KX +D) +
∑
Ei

a(Ei, X,D)Ei.

Here the equality holds in the sense that a nonzero multiple of the difference is a
divisor of a rational function. The number a(Ei, X,D) is called the discrepancy of
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Ei with respect to (X,D) and it depends only on Ei, but not on f . By definition
a(Di, X,D) = −ai and a(F,X,D) = 0 for any divisor F ⊂ X different from all
Di.

Remark 2.2. In the notation of the above proposition, we will often call the pair
(Y,−

∑
Ei
a(Ei, X,D)Ei) the pair on Y that corresponds to (X,D) or the pullback

of (X,D) by f . It is easy to see that for any birational morphism g : Z → Y from
a normal variety Z the pullback by g of the pullback of (X,D) by f is equal to the
pullback of (X,D) by f ◦ g.
Definition 2.3. We call a morphism f : Y → X from a nonsingular variety Y to a
normal variety X a resolution of singularities of the pair (X,D) if the exceptional
locus of f is a divisor with simple normal crossings, which is additionally simple
normal crossing with the proper preimage of D. Every pair admits a resolution,
see [22, Theorem 0.2].

Definition 2.4. A pair (X,D) is called Kawamata log-terminal if there is a reso-
lution of singularities f : Y → X of (X,D) such that the pullback (Y,−

∑
i αiEi)

satisfies αi > −1 for all i.

Remark 2.5. It is easy to see that our definition of Kawamata log-terminal pair
coincides with [22, Definition 2.34] in view of [22, Corollary 2.31]. This corollary
also implies that any resolution of singularities of a Kawamata log-terminal pair
satisfies the condition αi > −1 for all i.

We will also need to describe the behavior of Kawamata log-terminal pairs under
finite morphisms, in particular under quotient morphisms. We will use the following
result.

Proposition 2.6. [22, Proposition 5.20] Let g : X ′ → X be a finite morphism be-
tween normal varieties. Let D′ and D be Q-Weil divisors on X ′ and X respectively
such that

K ′
X +D′ = g∗(KX +D).

Then K ′
X + D′ is Q-Cartier if and only if KX + D is. Moreover, (X ′, D′) is

Kawamata log-terminal if and only if (X,D) is.

Definition 2.7. Let G be a finite group which acts effectively on a normal variety
X and preserves a Q-Weil divisor D. Let g : X → X/G be the quotient morphism.
Then there is a unique divisor D/G on X/G such that

g∗(KX/G +D/G) = KX +D.

The components of D/G are the images of the components of D and the images of
the ramification divisors of f . We call the pair (X/G,D/G) the quotient of (X,D)
by G. By the above proposition, the quotient pair is Kawamata log-terminal iff
(X,D) is Kawamata log-terminal.

We remark that this definition is contained in [5] in the particular case of a
smooth variety X and trivial divisor D. It allows us to generalize the definition of
the pullback of a pair to the case of G-equivariant morphisms as follows.

Definition 2.8. Let g : X ′ → X be a generically finite morphism from a normal
G-variety X ′ to a normal variety X which is birationally equivalent to the quotient
morphism f : X ′ → X ′/G. We say that a pair (X ′, D′) is a pullback of a pair
(X,D) if the pullback of (X,D) to X ′/G coincides with the quotient of (X ′, D′) by
G. Just as in the birational case, this pullback preserves Kawamata log-terminality.
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3. Orbifold elliptic genera of pairs

Definition 3.1. [5] Let X be a smooth manifold with the action of a finite group
G. Let E be a G-invariant divisor on X. The pair (X,E) is called G-normal if
Supp(E) has simple normal crossings and for every point x ∈ X the action of the
isotropy subgroup of x on the set of irreducible components of Supp(E) that pass
through x is trivial.

We will extensively use the theta function θ(z, τ) of [9]. By default, the second
argument will be τ . We will suppress it from the notations, unless it is different
from τ . We will implicitly assume the standard properties of θ, namely its zeroes
and transformation properties under the Jacobi group.

Definition 3.2. Let (X,E) be a Kawamata log-terminal G-normal pair (in partic-
ular, X is smooth and E has simple normal crossings) with E = −

∑
k δkEk. We

define the orbifold elliptic class of the triple (X,E,G) as an element of the Chow
group A∗(X) by the formula

Ellorb(X,E,G; z, τ) :=
1
|G|

∑
g,h,gh=hg

∑
Xg,h

(iXg,h)∗
( ∏

λ(g)=λ(h)=0

xλ

)

×
∏
λ

θ( xλ

2πi + λ(g)− τλ(h)− z)
θ( xλ

2πi + λ(g)− τλ(h))
e2πiλ(h)z

×
∏
k

θ( ek

2πi + εk(g)− εk(h)τ − (δk + 1)z)
θ( ek

2πi + εk(g)− εk(h)τ − z)
θ(−z)

θ(−(δk + 1)z)
e2πiδkεk(h)z.

Here Xg,h denotes an irreducible component of the fixed set of the commuting
elements g and h and iXg,h : Xg,h → X is the corresponding embedding. The
restriction of TX to Xg,h has the splitting ⊕Vλ, λ(g), λ(h) ∈ Q ∩ [0, 1), where g
(resp. h) acts on Vλ as multiplication by e2πiλ(g) (resp. e2πiλ(h)) and xλ are the
Chern roots of Vλ. see [7]. In addition, ek = c1(Ek) and εk ∈ Q ∩ [0, 1) is the
character of O(Ek) restricted to Xg,h if Ek contains Xg,h and is zero otherwise.

We define the orbifold elliptic genus Ellorb(X,E,G) of (X,E,G) as the degree
of the top component of the orbifold elliptic class Ellorb(X,E,G).

Remark 3.3. Throughout this section and elsewhere in the paper the Chow groups
A∗ and A∗ will always be thought of as Chow groups with complex coefficients.

Remark 3.4. Notice that in the particular cases of |G| = 1 and E = 0 the above
definition restricts to that of the singular elliptic genus (up to a normalization
factor) and orbifold elliptic genus, see [7]. However, the notion of orbifold elliptic
class appears to be new.

Remark 3.5. The Kawamata log-terminality assures that we never divide by zero
in the above formulas.

Our first goal is to show that the orbifold elliptic class is compatible with blowups.

Theorem 3.6. Let (X,E) be a Kawamata log-terminal G-normal pair and let Z
be a smooth G-equivariant locus in X which is normal crossing to Supp(E). Let f :
X̂ → X denote the blowup of X along Z. We define Ê by Ê = −

∑
k δkÊk−δExc(f)
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where Êk is the proper transform of Ek and δ is determined from KX̂ + Ê =
f∗(KX + E). Then (X̂, Ê) is a Kawamata log-terminal G-normal pair and

f∗Ellorb(X̂, Ê, G; z, τ) = Ellorb(X,E,G; z, τ).

Proof. It is clear that (X̂, Ê) is Kawamata log-terminal. Because of the normal
crossing conditions on Z and Supp(E), the divisor Supp(Ê) has simple normal
crossings. The G-normality is clearly preserved since the exceptional divisors do
not intersect and any intersection of Êk on X̂ induces an intersection of Ek on X.

We will prove the theorem by showing that for every pair (g, h) and every con-
nected component Xg,h the contributions to f∗Ellorb(X̂, Ê, G; z, τ) of connected
components X̂g,h such that f(X̂g,h) ⊆ Xg,h equals the contribution of Xg,h to
Ellorb(X,E,G; z, τ). So from now on g, h and Xg,h are fixed.

The set of connected components of the fixed point set of 〈g, h〉 that maps inside
Xg,h is described as follows. Let Zg,h denote the intersection of Xg,h and Z. Since
Z is G-equivariant, the intersection is a union of some connected components of
〈g, h〉-invariant points of Z. Locally at every point of the intersection, Z and Xg,h

intersect normally, since the normal spaces to Zg,h inside Z and Xg,h have different
characters. For simplicity, we assume that Zg,h is connected, and we will remark
later on the general case.

If Xg,h 6= Zg,h then one of the X̂g,h will be obtained as the proper preimage
of Xg,h under f and will be isomorphic to the blowup of X along Zg,h. Other
components will lie in the preimage of Zg,h and are described as follows. The
restriction of the normal bundle to Z in X to Zg,h splits into character subbundles.
For each character Λ the projectivization of the corresponding bundle over Zg,h is
naturally embedded into the preimage of Zg,h under f (which is the projectivization
of the whole normal bundle to Z restricted to Zg,h).

We first concentrate on the case Xg,h 6= Zg,h.
Let N1 be the subbundle of the normal bundle to Zg,h in X that is the image of

the normal bundle of Zg,h in Z. Let N2 be the subbundle of the normal bundle to
Zg,h that is the image of the normal bundle of Zg,h in Xg,h. Finally let N3 be the
quotient of NZg,h by the sum of N1 and N2. The transversality implies that it is
also a bundle, i.e. the rank of the fibers is constant.

Let us calculate the contribution to f∗Ellorb(X̂, Ê, G; z, τ) that comes from X̂g,h
0 ,

which is the proper preimage of Xg,h, provided N2 6= 0. As in [7], we make a
technical assumption that all bundles we consider are restrictions of some bundles
defined on X. We will later explain why this assumption can be dropped. The
calculation follows closely those of [7]. We have

c(TX̂) = c(f∗TX)(1 + ẑ)
∏

i

(1 + f∗mi − ẑ)
(1 + f∗mi)

where ẑ is the first Chern class of the exceptional divisor of f and
∏

i
(1 +mi) is

the Chern class of the bundle on X whose restriction to Z is the normal bundle of
Z in X. Similarly,

c(TX̂g,h
0 ) = c(f∗TXg,h)(1 + ẑ)

∏
i

(1 + f∗si − ẑ)
(1 + f∗si)

where ẑ and f are restrictions to Xg,h
0 (mild abuse of notation) and

∏
i
(1 + si)

restricts to c(N2) on Zg,h.
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So the Chern class of the normal bundle to X̂g,h
0 is

c(NX̂g,h
0 ) = c(f∗NXg,h)

∏
i

(1 + f∗ti − ẑ)
(1 + f∗ti)

where
∏

i
(1 + ti) restricts to c(N3) on Zg,h.

We will also need to know how the Ei change. For Ei that do not contain Z we
have Êi = f∗Ei, and for Ei that contain Z we have Êi = f∗Ei − Ẑ.

As a result, the contribution of X̂g,h
0 to Ellorb(X̂, Ê, G; z, τ) is

(iXg,h
0

)∗
∏

i

xiθ( xi

2πi − z)
θ( xi

2πi )

∏
N2

(f∗ni − ẑ)θ( f∗ni−ẑ
2πi − z)

θ( f∗ni−ẑ
2πi )

θ( f∗ni

2πi )

(f∗ni)θ( f∗ni

2πi − z)

×
( ẑ
2πi )θ(

ẑ
2πi − z)θ′(0)

θ( ẑ
2πi )θ(−z)

×
∏

N1

θ( f∗ni

2πi + λi(g)− λi(h)τ − z)

θ( f∗ni

2πi + λi(g)− λi(h)τ)
e2πiλi(h)z

×
∏

N3

θ( f∗ni−ẑ
2πi + λi(g)− λi(h)τ − z)

θ( f∗ni−ẑ
2πi + λi(g)− λi(h)τ)

e2πiλi(h)z

×
∏

Ei⊃Z

θ( f∗ei−ẑ
2πi + εi(g)− εi(h)τ − (δi + 1)z)

θ( f∗ei−ẑ
2πi + εi(g)− εi(h)τ − z)

θ(−z)
θ(−(δi + 1)z)

e2πiδiεi(h)z

×
∏

Ei 6⊃Z

θ( f∗ei

2πi + εi(g)− εi(h)τ − (δi + 1)z)

θ( f∗ei

2πi + εi(g)− εi(h)τ − z)
θ(−z)

θ(−(δi + 1)z)
e2πiδiεi(h)z

×
θ( ẑ

2πi − (δ + 1)z)
θ( ẑ

2πi − z)
θ(−z)

θ(−(δ + 1)z)
.

In the above formula the first two lines account for the tangent bundle to X̂g,h
0 , the

next two lines account for the normal bundle to it, and the remaining three lines
account for the divisors. We use the notation

∏
Ni

to indicate the product over
the Chern roots of the corresponding bundle. Notice the normalization factor in
the second line. The symbol iXg,h

0
denotes the embedding of Xg,h

0 into X̂.
As in [7], we rewrite the above expression as a power series

∑
nRnẑ

n in ẑ.
Clearly, f∗R0 is precisely the contribution of the Xg,h to Ellorb(X,E,G; z, τ). If
we denote r = rkN2, we have f∗ẑr+n = i∗(sn(i∗N2))(−1)n+r−1 where i∗ is the
pushforward from Zg,h to Xg,h. We can therefore rewrite the contribution of f∗R>0

as
(iZg,h)∗

∑
n≥0

sn(i∗N2)(−1)n+r−1(Coeff. at ẑr+n)(above expression)

where iZg,h is the embedding on Zg,h into X. Taking into account∑
n≥0

sn(i∗N2)(−1)nt−n =
tr∏

N2
(t− ni)

,

we can rewrite this as

(−1)Rest=0(iZg,h)∗
θ( t

2πi − (δ + 1)z)θ′(0)
(2πi)θ( t

2πi )θ(−(δ + 1)z)

∏
TZg,h

yiθ( yi

2πi − z)
θ( yi

2πi )
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×
∏

N1

θ( f∗ni

2πi + λi(g)− λi(h)τ − z)

θ( f∗ni

2πi + λi(g)− λi(h)τ)
e2πiλi(h)z

∏
N2

θ( f∗ni−t
2πi − z)

θ( f∗ni−t
2πi )

×
∏

N3

θ( f∗ni−t
2πi + λi(g)− λi(h)τ − z)

θ( f∗ni−t
2πi + λi(g)− λi(h)τ)

e2πiλi(h)z

×
∏

Ei⊃Z

θ( f∗ei−t
2πi + εi(g)− εi(h)τ − (δi + 1)z)

θ( f∗ei−t
2πi + εi(g)− εi(h)τ − z)

θ(−z)
θ(−(δi + 1)z)

e2πiδiεi(h)z

×
∏

Ei 6⊃Z

θ( f∗ei

2πi + εi(g)− εi(h)τ − (δi + 1)z)

θ( f∗ei

2πi + εi(g)− εi(h)τ − z)
θ(−z)

θ(−(δi + 1)z)
e2πiδiεi(h)z.

We will denote the expression above by F (t), to be thought of as a meromorphic
function on C with values in the Chow group A∗(Zg,h).

Let’s now calculate the contributions from other components X̂g,h that map
inside Xg,h. As we have discussed earlier, these components correspond to non-
trivial characters Λ that are present in N3. We want to find the normal and tangent
bundles of Xg,h

Λ
∼= PNΛ inside X̂. The Chern class of the tangent bundle can be

described as the restriction from X̂ of∏
NΛ

(1 + f∗ni − ẑ)
∏

TZg,h
(1 + f∗yi),

so the normal bundle has Chern class which is a restriction of

(1 + ẑ)
∏

N1
(1 + f∗ni)

∏
N2⊕N3/NΛ

(1 + f∗ni − ẑ).

Therefore, the contribution of X̂g,h
Λ to Ellorb(X̂, Ê, G) is

(iXg,h
Λ

)∗
θ′(0)

2πiθ(−z)
∏

NΛ

(f∗ni − ẑ)θ( f∗ni−ẑ
2πi − z)

θ( f∗ni−ẑ
2πi )

∏
TZg,h

f∗yiθ( f∗yi

2πi − z)

θ( f∗yi

2πi )

×
θ( ẑ

2πi + Λ(g)− Λ(h)τ − z)
θ( ẑ

2πi + Λ(g)− Λ(h)τ)
e2πiΛ(h)z

∏
N1

θ( f∗ni

2πi + λi(g)− λi(h)τ − z)

θ( f∗ni

2πi + λi(g)− λi(h)τ)
e2πiλi(h)z

×
∏

N2⊕N3/NΛ

θ( f∗ni−ẑ
2πi + (λi − Λ)(g)− (λi − Λ)(h)τ − z)

θ( f∗ni−ẑ
2πi + (λi − Λ)(g)− (λi − Λ)(h)τ)

e2πi(λi−Λ)(h)z

×
∏

Ei⊃Z

θ( f∗ei−ẑ
2πi + (εi − Λ)(g)− (εi − Λ)(h)τ − (δi + 1)z)θ(−z)

θ( f∗ei−ẑ
2πi + (εi − Λ)(g)− (εi − Λ)(h)τ − z)θ(−(δi + 1)z)

e2πiδi(εi−Λ)(h)z

×
∏

Ei 6⊃Z

θ( f∗ei

2πi + εi(g)− εi(h)τ − (δi + 1)z)

θ( f∗ei

2πi + εi(g)− εi(h)τ − z)
θ(−z)

θ(−(δi + 1)z)
e2πiδiεi(h)z.

×
θ( ẑ

2πi + Λ(g)− Λ(h)τ − (δ + 1)z)
θ( ẑ

2πi + Λ(g)− Λ(h)τ − z)
θ(−z)

θ(−(δ + 1)z)
e2πiδΛ(h)z

where iXg,h
Λ

is the embedding of Xg,h
Λ into X̂. Here we used the fact that the line

bundle O(Ẑ) has character Λ on Xg,h
Λ . We again expand the integrand in terms of

powers of ẑ and use f∗ẑl−1+n = sn(NΛ)(−1)l−1+n where l = rk(NΛ), to rewrite
the pushforward to X of the above as

(−1)Rest=0(iZg,h)∗
θ( t

2πi + Λ(g)− Λ(h)τ − (δ + 1)z)θ′(0)
(2πi)θ( t

2πi + Λ(g)− Λ(h)τ)θ(−(δ + 1)z)
e2πi(δ+1)Λ(h)z
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×
∏

TZg,h

yiθ( yi

2πi − z)
θ( yi

2πi )

×
∏

N1

θ( f∗ni

2πi + λi(g)− λi(h)τ − z)

θ( f∗ni

2πi + λi(g)− λi(h)τ)
e2πiλi(h)z

×
∏

N2

θ( f∗ni−t
2πi + Λ(g)− Λ(h)τ − z)

θ( f∗ni−t
2πi + Λ(g)− Λ(h)τ)

e−2πiΛ(h)z

×
∏

N3

θ( f∗ni−t
2πi + (λi − Λ)(g)− (λi − Λ)(h)τ − z)

θ( f∗ni−t
2πi + (λi − Λ)(g)− (λi − Λ)(h)τ)

e2πi(λi−Λ)(h)z

×
∏

Ei⊃Z

θ( f∗ei−t
2πi + (εi − Λ)(g)− (εi − Λ)(h)τ − (δi + 1)z)θ(−z)

θ( f∗ei−t
2πi + (εi − Λ)(g)− (εi − Λ)(h)τ − z)θ(−(δi + 1)z)

e2πiδi(εi−Λ)(h)z

×
∏

Ei 6⊃Z

θ( f∗ei

2πi + εi(g)− εi(h)τ − (δi + 1)z)θ(−z)
θ( f∗ei

2πi + εi(g)− εi(h)τ − z)θ(−(δi + 1)z)
e2πiδiεi(h)z

which can be rewritten as

(−1)Rest=Λ(g)−Λ(h)τF (t)

because the additional exponential factors cancel due to δ =
∑

Ei⊃Z δi + rk(N2) +
rk(N3)− 1.

So in the case Xg,h 6= Zg,h all we need is to show that

Rest=0F (t) +
∑
Λ

Rest=Λ(g)−Λ(h)τF (t) = 0.

This follows from the observation that F is periodic with respect to t → t + 2πi
and t→ t+ 2πiτ and has poles at 0 and Λ(g)− Λ(h) only. Indeed, the periodicity
is a corollary of the transformation properties of θ and the definition of δ. The
statement on poles follows from the fact that for every Ei ⊃ Z the theta function
in the denominator is precisely offset by of the theta functions in the numerator.
Indeed, in view of the normal crossing condition on Supp(E) and Z, each Ek gives
a quotient bundle of the normal bundle to Z and the sum over all Ek is (locally)
a quotient of N2 ⊕ N3. As a result, ek is a Chern root of N3 or N2 depending on
whether or not Ek contains Xg,h.

As in [7], we remark that we can ignore the assumption that the Ni come from
bundles on X, because the expression for F (t) makes sense without it and defor-
mation to the normal cone can be used in general. We also observe that in the case
when Zg,h has several connected components, the above calculation shows that the
contributions of the components, other than Xg,h

0 , to f∗Ellorb(X̂, Ê, G; z, τ) cancel
the f∗R>0 contributions of the connected component Xg,h

0 . The f∗R0 contribution
of Xg,h

0 is again the contribution of Xg,h to Ellorb(X,E,G; z, τ).
The case Xg,h = Zg,h is handled similarly. This time, the contributions to

Ell(X̂, Ê, G; z, τ) equal

−
∫

Zg,h

∑
Λ

Rest=Λ(g)−Λ(h)τF (t) =
∫

Xg,h

Rest=0F (t)

which is precisely the contribution of Xg,h to Ell(X,E,G; z, τ). Indeed, since
N2 = 0, and no divisor Ei that contains Z can have ε = 0, F (t) has a simple pole
at t = 0 and the residue is easy to calculate. �
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We will now use the invariance under blowups to define the orbifold elliptic genus
and orbifold elliptic class for an arbitrary G-equivariant Kawamata log-terminal
pair.

Definition 3.7. Let (Z,D) be an arbitrary G-equivariant Kawamata log-terminal
pair with no additional conditions on its singularities. Let π : X → Z be a G-
equivariant resolution of singularities of (Z,D), such that the corresponding pair
(X,E) is G-normal. Then the orbifold elliptic class of (Z,D) in A∗(Z) is defined as
the pushforward π∗ of the orbifold elliptic class of (X,E) and the orbifold elliptic
genus of (Z,D) is defined as the orbifold elliptic genus of (X,E) or alternatively as
the degree of the orbifold elliptic class.

Clearly, this definition does not make sense unless we can prove that it does not
depend on the resolution π.

Theorem 3.8. Definition 3.7 makes sense, that is, the pushforwards of the orbifold
elliptic classes do not depend on the resolution of singularities.

Proof. In view of Theorem 3.6, it is enough to show that any two G-normal res-
olutions of singularities (X−, E−) and (X+, E+) of (Z,D) can be connected by a
sequence of equivariant blowups and blowdowns among G-normal resolutions of sin-
gularities of (Z,D). This is a G-normality strengthening of the equivariant version
of the Weak Factorization Theorem of [1]. The equivariant version itself assures
that such a sequence of blowups and blowdowns exists in the category of simple
normal crossing G-equivariant divisors E.

In order to get G-normality, observe that for every simple normal crossing G-
equivariant divisor E on smooth X there is a canonical sequence of blowups that
makes the preimage G-normal. Namely, this is the toroidal morphism that corre-
sponds to the barycentric subdivision of the corresponding polyhedral complex (see
Section 5.6 of [1]). In the notations of Section 4.3 of [1], we apply this procedure
in the definition of W res

i± . Then the additional sequences of blowups ri± preserve
G-normality and the statement is reduced to the case of the toroidal birational map
ϕcan

i . The group G acts by interchanging the vertices of the polyhedral complexes
∆± of W can

i± . We apply the barycentric subdivision blowup to both of them, and
then observe that all intermediate varieties in the toroidal version of weak factor-
ization have G-normal divisors. Indeed, each of them comes from a subdivision
∆ of B∆+ or B∆−, where B stands for barycentric subdivision, and we assume
the former with no loss of generality. If a cone C in ∆ maps to itself by some
group element g ∈ G, then the same is true for the smallest cone C+ in B∆+ that
contains its image. However as observed in Section 5.6 of [1], this implies that g
acts trivially on the span of C∗, hence on C. This implies G-normality, since every
fixed point of g comes from a stratum that corresponds to some cone of ∆. �

Remark 3.9. The Weak Factorization Theorem also works in the category of G-
strict divisors, defined by the condition that the translates of every irreducible
component of E are either equal or disjoint. Indeed, the above argument works,
since G-strictness is preserved under normal crossing G-equivariant blowups with
smooth centers and the barycentric subdivision assures G-strictness, not just G-
normality.

Remark 3.10. It is clear from the definition that the orbifold elliptic genus of a
log-terminal G-variety is unchanged under equivariant crepant morphisms.
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Remark 3.11. The arguments of this section clearly show that the contribution
of each pair (g, h) of commuting elements of G to the orbifold elliptic class and
genus is well-defined. Indeed, in the proof of Theorem 3.6 each pair was considered
separately.

Remark 3.12. The orbifold elliptic genus for the product of triples (X1, E1, G1)
and (X2, E2, G2) equals the product of elliptic genera. The product of the triples
is defined as the product of the varieties, the sum of the pullbacks of the divisors
and the direct product of the group actions.

We observe that our definition of orbifold elliptic genus is compatible with the
definition of the orbifold string E-function of Eorb(X,E,G) of [5] in the sense that
the limit of the orbifold elliptic genus as τ → i∞ recovers the orbifold string function
analog of the χy-genus. For this, we will need the following easy lemma.

Lemma 3.13. Let X be a complete stratified G-variety with at most quotient singu-
larities such that the action of G is effective and free and preserves the stratification.
Let X1 be any stratum of X and let G1 be the subgroup of G that maps X1 to itself.
Then

χy(X1/G1) =
1
|G1|

χy(X1).

Proof. We will argue by induction on the dimension of the stratum. In dimension
zero the freeness of the action implies |G1| = 1 and χy(X1/G1) = χy(X1) = 1.
For the induction step, it is enough to assume that X1 = X and X is connected.
It is easy to see that the induction assumption allows us to consider X1 to be a
part of the nonsingular locus of X. After an equivariant desingularization, we may
assume that X is smooth and X1 is the open stratum. Notice that desingularization
preserves the freeness of the action, which implies

χy(X/G) =
1
|G|

χy(X).

By additivity of χy, we can split the above identity according to the contributions
of the strata. Each stratum Y1 in X/G is a quotient of a stratum Y in X. If H
is the subgroup of G that fixes Y , then there are |G : H| disjoint strata of X that
map to Y1. By the induction assumption, χy(Y1) = 1

|H|χy(Y ) = 1
|G|

∑
{gY } χy(gY )

where the sum is taken over the cosets of H. Consequently, the terms corresponding
to smaller dimensional strata cancel, which finishes the proof of the lemma. We
remark that the statement generally fails for free actions on noncomplete varieties.
It is crucial that the action stays free on the completion of the stratum. �

Proposition 3.14. Let Eorb(X,E,G;u, v) be defined as in [5]. Then

lim
τ→i∞

Ellorb(X,E,G; z, τ) = y−
dim X

2 Eorb(X,E,G; y, 1)

where y = e2πiz.

Proof. From the product formula for θ, i.e.:

θ(z, τ) = q
1
8 (2 sinπz)

l=∞∏
l=1

(1− ql)
l=∞∏
l=1

(1− qle2πiz)(1− qle−2πiz)
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(see [9]), we have

lim
τ→i∞

θ(u− β, τ)
θ(u, τ)

=
(1− e−2πi(u−β))

(1− e−2πiu)
e−πiβ

and

lim
τ→i∞

θ(u− ατ − β, τ)
θ(u− ατ, τ)

= e−πiβ

for 0 < α < 1. Hence, by taking the limit in Definition 3.2,

lim
τ→i∞

Ellorb(X,E,G; z, τ) =
1
|G|

∑
g,h,gh=hg

∑
Xg,h

∫
Xg,h

∏
λ(g)=λ(h)=0

xλ
(1− e−xλ+2πiz)

(1− e−xλ)

× e−πi(dim X)ze2πi(
∑

λ λ(h))z
∏

λ(h)=0,λ(g) 6=0

(1− e−xλ−2πiλ(g)+2πiz)
(1− e−xλ−2πiλ(g))

× e2πi
∑

k δkεk(h)z
∏

k,εk(h)=0

(1− e−ek−2πiεk(g)+2πi(δk+1)z)
(1− e−ek−2πiεk(g)+2πiz)

(1− e2πiz)
(1− e2πi(δk+1)z)

×
∏

k,εk(h) 6=0

(1− e2πiz)
(1− e2πi(δk+1)z)

=
y−

dim X
2

|G|
∑

g,h,gh=hg

∑
Xg,h

∫
Xg,h

td(Xg,h)ywt(h,Xh,E)

×
ch(Λ−yΩ1

Xh |Xg,h(g))
ch(Λ−1N∗

Xg,h⊆Xh(g))

∏
Ek 6⊇Xh

(1− e−ek−2πiεk(g)yδk+1)
(1− e−ek−2πiεk(g)y)

∏
Ek

(1− y)
(1− yδk+1)

.

Here wt(h,Xh, E) is the same weight as defined in [5] (cf. 6.1), for the irreducible
component Xh of the fixed point set of h that contains Xg,h. We have also used

ch(Λ−yΩ1
Xh |Xg,h(g)) =

∏
λ(h)=0

(1− e−xλ−2πiλ(g)+2πiz)

and
ch(Λ−1N

∗
Xg,h⊆Xh(g)) =

∏
λ(h)=0,λ(g) 6=0

(1− e−xλ−2πiλ(g)).

We use a trick to rearrange the product over Ek 6⊇ Xh as follows.

lim
τ→i∞

Ellorb(X,E,G; z, τ)

=
y−

dim X
2

|G|
∑

g,h,gh=hg

∑
Xg,h

∫
Xg,h

td(Xg,h)ywt(h,Xh,E) ch(Λ−yΩ1
Xh |Xg,h(g))

ch(Λ−1N∗
Xg,h⊆Xh)

×
∏

Ek 6⊇Xh

(
1 +

(y − yδk+1)(1− e−ek−2πiεk(g))
(yδk+1 − 1)(1− ye−ek−2πiεk(g))

) ∏
Ek⊇Xh

(y − 1)
(yδk+1 − 1)

=
y−

dim X
2

|G|
∑

g,h,gh=hg

∑
Xg,h

∫
Xg,h

td(Xg,h)ywt(h,Xh,E) ch(Λ−yΩ1
Xh |Xg,h(g))

ch(Λ−1N∗
Xg,h⊆Xh)

×
∑

J⊆I(Xh)

∏
k∈J

(y − yδk+1)(1− e−ek−2πiεk(g))
(yδk+1 − 1)(1− ye−ek−2πiεk(g))

∏
Ek⊇Xh

(y − 1)
(yδk+1 − 1)
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=
y−

dim X
2

|G|
∑

g,h,gh=hg

∑
Xg,h

∑
J⊆I(Xh)

∫
Xg,h∩EJ

td(Xg,h ∩ EJ)ywt(h,Xh,E)

×
ch(Λ−yΩ1

Xh∩EJ
)|Xg,h∩EJ

(g)
ch(Λ−1N∗

Xg,h∩EJ⊆Xh∩EJ
)(g)

∏
k∈J

(y − yδk+1)
(yδk+1 − 1)

∏
Ek⊇Xh

(y − 1)
(yδk+1 − 1)

.

Here the set I(Xh) is defined as the set of all k such that Ek 6⊇ Xh and Ek∩Xh 6= ∅,
which in particular implies that Ek is mapped to itself by h due to G-normality.
We have also used the identities

td(Xg,h ∩ EJ) = td(Xg,h)
∏

k∈J,Xg,h 6⊆Ek

(1− e−ek)
ek

ch(Λ−yΩ1
Xh∩EJ

)|Xg,h∩EJ
(g) = ch(Λ−yΩ1

Xh)|Xg,h(g)
∏
k∈J

(1− ye−ek−2πiεk(g))−1

ch(Λ−1N
∗
Xg,h∩EJ⊆Xh∩EJ

)(g) = ch(Λ−1N
∗
Xg,h⊆Xh)(g)

∏
k∈J,Xg,h⊆Ek

(1−e−ek−2πiεk(g)).

Changing the order of summation, one obtains

lim
τ→i∞

Ellorb(X,E,G; z, τ)

=
y−

dim X
2

|G|
∑
h∈G

∑
Xh

ywt(h,Xh,E)
∑

J⊆I(Xh)

∑
g∈C(h,Xh,J)

∫
Xg,h∩EJ

td(Xg,h ∩ EJ)

×
ch(Λ−yΩ1

Xh∩EJ
)|Xg,h∩EJ

(g)
ch(Λ−1N∗

Xg,h∩EJ⊆Xh∩EJ
)(g)

∏
k∈J

(
y − 1

yδk+1 − 1
− 1)

∏
Ek⊇Xh

(y − 1)
(yδk+1 − 1)

where the group C(h,Xh, J) is defined as the subgroup of the centralizer of h that
consists of group elements that map Xh to itself and preserve all elements of J . By
the equivariant Riemann-Roch theorem the above expression equals

y−
dim X

2

|G|
∑

h,Xh,J⊆I(Xh)

ywt(h,Xh,E)|C(h,Xh, J)|χy(Xh ∩ EJ/C(h,Xh, J))

×
∏
k∈J

(
y − 1

yδk+1 − 1
− 1)

∏
Ek⊇Xh

(y − 1)
(yδk+1 − 1)

=
y−

dim X
2

|G|
∑

h,Xh,J⊆I(Xh)

ywt(h,Xh,E)|C(h,Xh, J)|χy(Xh ∩ EJ/C(h,Xh, J))

×
∑

J1⊆J

(−1)|J|−|J1|
∏

k∈J1

(y − 1)
(yδk+1 − 1)

∏
Ek⊇Xh

(y − 1)
(yδk+1 − 1)

.

We observe that we can replace the group C(h,Xh, J) by a possibly bigger group
Ĉ(h,Xh, J) characterized by the condition of fixing h and Xh and fixing J as a set.
Indeed, the G-normality of E implies that the action of Ĉ(h,Xh, J)/C(h,Xh, J)
on Xh ∩ EJ/C(h,Xh, J) is free and we can rewrite the above as

y−
dim X

2

|G|
∑

h,Xh,J⊆I(Xh)

ywt(h,Xh,E)|Ĉ(h,Xh, J)|χy(Xh ∩ EJ/Ĉ(h,Xh, J))
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×
∑

J1⊆J

(−1)|J|−|J1|
∏

k∈J1

(y − 1)
(yδk+1 − 1)

∏
Ek⊇Xh

(y − 1)
(yδk+1 − 1)

.

The varietyXh is stratified by intersections with various E◦J which induces a stratifi-
cation on Xh∩EJ/Ĉ(h,Xh, J). Every J2 ⊇ J gives a stratum Xh∩E◦J2

on Xh∩EJ ,
but different such strata may map to the same stratum in Xh ∩ EJ/Ĉ(h,Xh, J).
In fact, the strata for all possible sets of J2 from the same orbit of Ĉ(h,Xh, J)-
action on the set of J2 that contain J will map to the same stratum S on Xh ∩
EJ/Ĉ(h,Xh, J). This stratum S will be isomorphic to Xh ∩E◦J2

/Ĉ(h,Xh, J ⊆ J2)
where Ĉ(h,Xh, J ⊆ J2) is the subgroup of G that fixes h and Xh and fixes J and
J2 as sets. By Lemma 3.13, we get

χy(S) =
|Ĉ(h,Xh, J2)|

|Ĉ(h,Xh, J ⊆ J2)|
χy(Xh ∩ E◦J2

/Ĉ(h,Xh, J2)).

Indeed, both groups Ĉ(h,Xh, J ⊆ J2) and Ĉ(h,Xh, J2) act freely on the variety
Xh∩EJ2/C(h,Xh, J2) and preserve the stratification which allows one to compare
the χy-genera of the quotients. Using the additivity property of the χy-genus we
now get

χy(Xh ∩ EJ/Ĉ(h,Xh, J)) =
∑

J2⊇J

|Ĉ(h,Xh, J2)|
|Ĉ(h,Xh, J)|

χy(Xh ∩ E◦J2
/Ĉ(h,Xh, J2))

with the rational coefficients included to account for the fact that the same stra-
tum on the quotient may come from different strata on Xh ∩ EJ . We notice that∑

J,J2⊇J⊇J1
(−1)|J|−|J1| equals 1 for J1 = J2 and equals zero otherwise, to get

lim
τ→i∞

Ellorb(X,E,G; z, τ) =
y−

dim X
2

|G|
∑

h,Xh,J⊆I(Xh)

ywt(h,Xh,E)

×|Ĉ(h,Xh, J)|χy(Xh ∩ E◦J/Ĉ(h,Xh, J))
∏
k∈J

(y − 1)
(yδk+1 − 1)

∏
Ek⊇Xh

(y − 1)
(yδk+1 − 1)

= y−
dim X

2

∑
{h},{Xh},{J}

ywt(h,Xh,E)χy(Xh ∩ E◦J/Ĉ(h,Xh, J))

×
∏
k∈J

(y − 1)
(yδk+1 − 1)

∏
Ek⊇Xh

(y − 1)
(yδk+1 − 1)

.

Here we are summing over representatives h of conjugacy classes of G, then over
representatives Xh of the orbits of the action of C(h) on the components of the
fixed point set of h and finally over the orbits of the action of C(h,Xh, ∅) on the
subsets of I(Xh). This can be compared with Definitions 6.1 and 6.3 of [5]. Our
sum over the subsets of the set of components fixed by h that contain the set of
components Ek that contain Xh coincides with the set from the definition of [5]
up to trivial contributions. Indeed, in Definition 6.1 of [5] WJ is empty unless J
consists of the elements that correspond to divisors that intersect W and moreover
contains all elements that correspond to the divisors that contain W .

However, it appears that we are summing over the orbits {J} whereas Definition
6.3 of [5] contains the sum over all J . The extra factor is equal to the length of the
orbit of J under the action of C(h,Xh, ∅). This appears to be a typo in [5], which
can be easily seen for a fixed point free action of G. �
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Remark 3.15. Clearly, the comparison between the orbifold elliptic genus and the
orbifold E-function follows from Theorem 5.3 and the main result of [5]. However,
it would be strange to rely on such a roundabout way of proving it.

Proposition 3.16. Let X be a smooth G-variety and let E be a G-normal divisor
on it such that (X,E) is Kawamata log-terminal. Let m(KX + E) be a trivial
Cartier divisor for some integer m. Denote by n the order of the image of the
homomorphism G → AutH0(X,m(KX + E)), where the homomorphism can be
defined due to G-invariance of E. Then Ellorb(X,E,G) is a weak Jacobi form of
weight 0 and index dimX/2 with respect to the subgroup of the Jacobi group ΓJ

generated by the transformations

(z, τ) → (z +mn, τ), (z, τ) → (z +mnτ, τ), (z, τ) → (z, τ + 1), (z, τ) → (
z

τ
,−1

τ
).

Proof. As in the proof of Theorem 4.3 in [7], we introduce

Φ(g, h, κ, z, τ, x) :=
θ( x

2πi + κ(g)− τκ(h)− z)
θ( x

2πi + κ(g)− τκ(h))
e2πizκ(h)

where κ is a character of the subgroup of G generated by g and h considered acting
on a line bundle with the first Chern class x. Then the contribution of a connected
component Xg,h in Definition 3.2 is( ∏

λ(g)=λ(h)=0

xλ

)
×

∏
λ

Φ(g, h, λ, z, τ, xλ)

∏
k

Φ(g, h, εk, (1 + δk)z, τ, ek)
Φ(g, h, εk, z, τ, ek)

θ(−z)
θ(−(δk + 1)z)

[Xg,h].

The proposition follows from the transformation properties of Φ(g, h, κ, z, τ, x) proven
in Theorem 4.3 of [7]. Note that these properties yield that the transforma-
tion (z, τ) → (z + mnτ) transforms Ellorb(X,E,G) as a Jacobi form provided:∑

λ xλ +
∑
δkEk = 0 and for any g ∈ G one has mn(

∑
λ λ(g) +

∑
k δkεk(g)) ∈ Z.

Those are the assumptions of the proposition. The Jacobi property for the trans-
formation (z, τ) → (z + 1, τ) also uses mn(

∑
λ λ(g) +

∑
k δkεk(g)) ∈ Z. The other

two generators of ΓJ mentioned above transform the contribution of the pair (g, h)
into the contribution for the pairs (gh−1, h) and (h, g−1) respectively, multiplied by
the corresponding Jacobi factor.

We remark that the result of this proposition also follows from the main Theorem
5.3 of this paper and [7, Proposition 3.8]. �

4. Toroidal morphisms of nonsingular pairs

The goal of this section is to derive pullback and pushforward formulas for func-
tions of divisor classes for certain maps of varieties with simple normal crossing
divisors on them.

Let Z be a smooth algebraic variety, together with an open set UZ whose comple-
ment is a simple normal crossing divisorD =

∑
i∈IZ

Di, whereDi are the irreducible
components of D. To every subset I ⊆ IZ and every connected component ZI;j of
ZI = ∩i∈IDi we associate a cone CI;j in the lattice NI;j

∼= Z|I|. We denote the
standard basis of NI;j by {ek;j}, k ∈ I. The cone CI;j is defined as ⊕k∈IR≥0ek;j .
For any cone C its relative interior will be denoted by C◦.
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If I1 ⊆ I2 and a connected component ZI1;j1 contains a connected component
ZI2;j2 then we define a face inclusion map from NI1;j1 to NI2;j2 by mapping ek;j1 to
ek;j2 for every k ∈ I1. The image of the cone CI1;j1 under this map is a face of CI2;j2 ,
which explains the terminology. In agreement with the terminology of [21] we define
the conical polyhedral complex ΣZ of (Z,D) as the union of all cones CI;j glued
according to the face inclusion maps. We will often refer to it as the conical complex.
This is the same as the conical polyhedral complex with an integral structure for
the smooth toroidal embedding without self-intersection, in the terminology of [21].
We also observe that closed subvarieties ZI;j induce a stratification on Z. The
corresponding locally closed strata will be denoted by Z◦I;j .

We define piecewise linear (resp. polynomial) functions on ΣZ as collections of
linear (resp. polynomial) functions on each CI;j ∈ ΣZ which are compatible with all
face inclusions. We will analogously talk about formal power series on the conical
complex by considering the completion of the space of polynomial functions by the
degree filtration, i.e. the space of collections of formal power series on the vector
space NI;j ⊗Z C for each ZI;j that are compatible with the face inclusions. There is
a natural ring structure on the space of formal power series, which we will denote
by C[[ΣZ ]].

Another natural ring to consider is the partial semigroup ring defined by the
conical complex ΣZ . It is a vector space whose basis elements [v] are in one-to-one
correspondence with lattice points v of ΣZ . For every pair of points v1, v2 ∈ ΣZ ,
the product [v1][v2] is defined as follows:

[v1][v2] =
∑̃

C∈ΣZ
v1,v2∈C

[v1 + v2].

where
∑̃

means that the same point of ΣZ that appears from different cones is
counted only once. Alternatively, it is enough to consider the cones C 3 v1, v2
that do not contain any smaller such cone. In particular, the product is zero if
there are no cones C that contain both v1 and v2. This ring will be denoted by
C[ΣZ ]. It can also be thought of as a subring of the direct sum of the semigroup
rings ⊕I;jC[CI;j ] that consists of collections that are compatible with the face in-
clusions. The identification is via mapping [v] to the collection of [v] for C 3 v and
0 otherwise.

It will be crucial to our calculations to construct a natural isomorphism between
the ring C[ΣZ ] and the subring of C[[ΣZ ]] that consists of piecewise polynomial
functions. Namely, for every cone CI;j we denote by xk;j the linear functions on
NI;j such that xk;j(el;j) = δl

k, where δ is the Kronecker symbol. The element
[v] = [

∑
k∈I akek;j ] of C[CI;j ] is mapped to the polynomial

∏
k∈I

(xk;j)ak . If a
collection of elements of C[CI;j ] is compatible with face restrictions, then so is the
collection of the corresponding polynomial functions. Indeed for any face inclusion
between CI1;j1 and CI2;j2 the linear functions xk;j2 restrict to xk;j1 if k ∈ I1 and to
0 otherwise. It is straightforward to see that this identification is compatible with
the product structure. The inverse map from piecewise polynomial functions on
ΣZ to C[ΣZ ] is easy to construct as well. In what follows we will frequently pass
from one description of C[Σ] to the other.
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Definition 4.1. We define a map ρ : C[[ΣZ ]] → A∗(Z) as follows. For every lattice
point v ∈ C◦I;j given by

v =
∑
i∈I

kiei;j , ki ≥ 1

we define by f the corresponding piecewise polynomial function on ΣZ and set

ρ(f) = ZI;j ∩ (∩i∈I(Di)ki−1).

We extend the definition of ρ to arbitrary piecewise polynomial functions by linear-
ity. We extend it to arbitrary piecewise formal power series by noticing that that
only v with

∑
i ki ≤ dimZ contribute nontrivially.

Proposition 4.2. The map ρ defined above is a ring homomorphism.

Proof. It is enough to calculate the image of the product of two monomial functions
f1 and f2 that correspond to points v1 and v2 in the conical complex. If there is no
cone CI;j ∈ ΣZ that contains both v1 and v2, then f1f2 = 0. On the other hand,
in this case the components ZI1;j1 and ZI2;j2 do not intersect, so ρ(f1)ρ(f2) = 0.

In general, the product f1f2 will correspond to∑
CI;j⊇CI1;j1 ,CI;j⊇CI2;j2

[vCI;j ]

where I = I1 ∪ I2 and

vCI;j =
∑
i∈I1

ki,1ek;j +
∑
i∈I2

ki,2ek;j .

The cones CI;j are in one-to-one correspondence with the connected components
of the intersection ZI1;j1 ∩ ZI2;j2 . The image of each fCI;j under ρ is

ρ(fCI;j ) = ZI;j ∩ (∩i∈I1∪I2D
ki,1+ki,2−1
i )

where ki,1 is defined to be zero for i 6∈ I1 and similarly for ki,2. On the other hand,
the excess intersection formula [15] gives

ZI1;j1 ∩ ZI2;j2 =
∑

j

ZI;j ∩ (∩i∈I1∩I2Di)

in A∗(Z). Then it is easy to see that ρ(f1f2) = ρ(f1)ρ(f2). �

Remark 4.3. If all ZI = ∩i∈IDi are either empty or connected, then the above
discussion simplifies greatly. Then the image of ρ is precisely the subring of A∗(Z)
generated by the classes of Di. The difficulty was to somehow localize a polynomial
in Di to the correct connected component.

Remark 4.4. The relation between lattice points of ΣZ and piecewise polynomial
functions on ΣZ becomes important for what follows. While the former are easier
to describe, the latter behave better under pullbacks.

We now define a certain class of morphisms between two varieties Ẑ and Z with
the normal crossing divisors D̂ and D respectively. This is a particular case of the
general definition of [3].
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Definition 4.5. We call a proper generically finite morphism µ : Ẑ → Z toroidal
if the following conditions hold.
• D̂ = µ−1D and the morphism µ is finite and nonramified outside of D̂.
• The image of the closure of any stratum of Ẑ is the closure of a stratum in Z.
• For every pair of points ẑ ∈ Ẑ and z ∈ Z such that µ(ẑ) = z and every system

of local analytic coordinates at z such that the components of D that pass through
z are coordinate hyperplanes, there exists a system of local analytic coordinates at
ẑ such that the map µ is given by monomials.

We claim that locally in Z a toroidal morphism is given by a finite toric mor-
phism. A local description of a finite toric morphism can be seen in Figure 1 where
the positive orthant in one lattice is subdivided into cones of determinant 1 in a
smaller lattice. We refer the reader to [16] for the background on toric geometry.

Remark 4.6. Let C be a positive orthant in a lattice N and let N̂ be a finite index
sublattice of N . Then to each subdivision Σ of C into cones of determinant one
in N̂ (see Figure 1) one can associate a proper generically finite toric morphism
between the smooth toric variety that corresponds to (N̂ ,Σ) and the smooth toric
variety CrkN that corresponds to (N,C).

Figure 1.
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As in [3], to every toroidal morphism we associate a map ν : ΣẐ → ΣZ as follows.
For a cone CÎ,ĵ , pick a generic point ẑ on the corresponding connected component
ẐÎ;ĵ and consider the above monomial map between the neighborhoods of ẑ and
z = µ(ẑ). The point z lies in the stratum ZI;j for some I and j. For every î ∈ Î
consider the point in CI;j whose coordinates are the degrees of the local variables
that correspond to î in the expressions of the variables that correspond to Di, i ∈ I.
This defines the image of the point eî;ĵ in CI;j and the map is extended to the
whole ΣẐ by linearity. This map is compatible with the face inclusions and is thus
well-defined. Indeed, it encodes the coefficients of D̂î in the divisors µ∗Di.

Moreover, we can describe the preimage of any cone CI;j as follows. Let z be
a generic point of the corresponding stratum Z◦I;j and let U be a small analytic
neighborhood of z. Let Û be one of the connected components of the preimage of
U . We denote by U◦ and Û◦ the intersections of U and Û with the complements
of D and D̂ respectively. Then µ induces a finite nonramified covering map from
Û◦ to Û . Since the fundamental group of U◦ is naturally isomorphic to NI;j , this
covering gives a map from NI;j to a finite group. The kernel of this map is the
fundamental group of Û◦. It is a finite index subgroup of N = NI;j which we denote
by N̂ . The map from Û to U can be factored through the singular variety U1 which
is the preimage of U under the natural map from Spec[C∗I;j ∩ N̂ ] → Spec[C∗I;j ∩N ].
Then the arguments of [21, Chapter 2,§2] show that the map from Û to U1 comes
from a subdivision of the cone CI;j in N̂ into cones of volume 1 as in Figure 1.

In general, it is possible that different connected components of the preimage of
U are part of the same connected component of the preimage of Z◦I;j . However,
we have just shown that the preimage ν−1C◦I;j of the interior of CI;j is a union
of connected components, each of which corresponds to a finite toric morphism.
Namely, for each component, there is a sublattice N̂ of finite index in the lattice
N = NI;j . The relative interior of cone CI;j is subdivided into several simplicial
cones of volume 1 in the lattice N̂ as in Figure 1. We will denote this subdivision
by ΣCI;j , if it is clear from the discussion which connected component of ν−1C◦I;j

we are referring to. Then every cone of ΣCI;j is a cone of ΣẐ with the lattice N̂ as
the corresponding lattice. For the stratum Z◦I;j the restriction of µ to the preimage
of an analytic neighborhood U of Z◦I;j is described by ν in the following sense.
The connected components of this preimage are in one-to-one correspondence with
the connected components of ν−1C◦I;j . Let us fix one such connected component,
which we will denote by Û . It is easily seen to be a neighborhood of the union of
the strata Ẑ◦

Î;ĵ
for all CÎ;ĵ ∈ ΣCI;j . Moreover, it is a locally trivial fibration with

fibers isomorphic to the preimage in PN̂,ΣCI;j
of a disc around the origin under the

map of Remark 4.6. The base is isomorphic to some smooth variety W which is a
nonramified cover of degree di;j of Z◦I;j . The map µ on U is locally on Z isomorphic
to a product of the map from Remark 4.6 and an identity map along. Here W can
be taken to be any stratum on Ẑ that corresponds to a maximum-dimensional cone
in ΣCI;j . The numbers dI;j depend on the connected component Û and they will
be important in our description of the pushforward.

Our goal is to investigate the restriction of µ∗ and µ∗ to the subrings of A∗(Ẑ)
and A∗(Z) which are images of ρ̂ = ρẐ and ρ = ρZ .
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Proposition 4.7. The data of finite toroidal morphism define a map

ν∗ : C[[ΣZ ]] → C[[ΣẐ ]]

simply by pulling back the corresponding functions via ν. This map is a lifting of
µ∗ in the sense that

ρ̂ ◦ ν∗ = µ∗ ◦ ρ.

Proof. Let’s first check this for a linear function on ΣZ . Every such function cor-
responds to a divisor

∑
i αiDi. Then locally this is a statement of toric geometry,

namely that the preimage of a divisor under a map between two toric varieties is
given by the same piecewise-linear function, which is apparent from the definition
of ν.

It is then enough to check this statement for a function f that corresponds to a
point v =

∑
i∈I ei;j in the relative interior of a cone CI;j ∈ ΣZ , since both ν∗ and µ∗

are ring homomorphisms. We can restrict our attention to a Zariski neighborhood
U of ZI;j such that U ∩ ZI = ZI;j . Then all we need is the above statement in
toric geometry, restricted to U , together with the fact that µ∗ and ν∗ are ring
homomorphisms. �

It is a bit more difficult to describe the pushforward.

Theorem 4.8. Let ν∗ be defined as follows. For every f ∈ C[[ΣẐ ]] and every cone
CI;j ∈ ΣZ consider the subdivision ΣCI;j of each connected component of ν−1C◦I;j.
For each CÎ;ĵ of ΣCI;j with |Î| = |I|, the power series in the variables xî, î ∈ Î
that corresponds to the restriction of f to CÎ,ĵ gives a power series in the variables
xi, i ∈ I via the linear change of variables that corresponds to the inclusion of CÎ;ĵ

into CI;j. This power series will be denoted by fÎ;ĵ. Then we define the element of
C((xi;j)), i ∈ I

(10) (ν∗f)I;j =
∑

ΣCI;j

dI;j

∑
CÎ;ĵ∈ΣCI;j ,|Î|=|I|

fÎ;ĵ

∏
i∈I xi;j∏
î∈Î xî;ĵ

where the outer sum is taken over all connected components of ν−1C◦I;j. These
functions (ν∗f)I;j are compatible with face restrictions and actually lie in C[[xi;j , i ∈
I]]. Thus they define a map ν∗ : C[[ΣẐ ]] → C[[ΣZ ]]. Moreover, ν∗ is a lift of µ∗ in
the sense that

µ∗ ◦ ρ̂ = ρ ◦ ν∗.

Proof. Let’s check that the image of the function f is actually in C[[CI;j ]] for
every given cone CI;j . It is enough to consider one cone subdivision ΣCI;j . The
function ν∗f may have simple poles over hyperplanes that correspond to cones of
ΣCI;j of dimension |I| − 1. Each such cone has two adjacent cones of maximum
dimension, and it is straightforward to see that the terms of (10) for two such cones
will contribute opposite residues for this hyperplane, because of the compatibility
condition on f .

Let’s now show that ν∗f is well-defined as a map from C[[ΣẐ ]] to C[[ΣZ ]], that
is, the definition of (ν∗f)I;j is compatible with face inclusions. Let CI1;j1 be a
codimension one face of CI2;j2 . Hence I2 = I1 ∪ {i0}. The cones CÎ2;ĵ2

∈ ΣẐ that
map to the cone CI2;j2 and have the same dimension may or may not contain a
face CÎ1;ĵ1

that maps to CI1;j1 . In the latter case, the contribution of such CÎ2,ĵ2
to

(ν∗f)I2;j2 is going to restrict to zero on the face CI1;j1 . Indeed, in equation (10), the
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restriction of the numerator to CI1;j1 vanishes, because it contains the linear factor
xi0;j2 , whereas the denominator does not vanish. In the former case, the factor xi0;j2

will appear in the numerator while xî0;ĵ2
will appear in the denominator,where î0

is the linear function that vanishes on CÎ1;ĵ1
. It is easy to see that

xi0;j2

xî0;ĵ2

=
|NI2;j2 : NÎ2;ĵ2

|
|NI1;j1 : NÎ1;ĵ1

|
.

The other factors in the fraction would restrict to those for the contribution of
CÎ1;ĵ1

to (ν∗f)I1;j1 . For each cone CÎ1;ĵ1
there may be several different cones CÎ2;ĵ2

as above, but we observe that for each CÎ1;ĵ1

(11)
∑

CÎ2;ĵ2

|NI2;j2 : NÎ2;ĵ2
|dI2;j2 = |NI1;j1 : NÎ1;ĵ1

|dI1;j1 .

Indeed, both sides depend only on the connected component of ν−1CI1;j1 rather
than the specific cone CÎ1;ĵ1

. The right hand side then describes the number of
points in the preimage of a point in the neighborhood of the stratum Z◦I1;j1

that
lie near a certain connected component Y of µ−1ZI1;j1 . Indeed, for any z ∈ Z◦I1;j1
there is a neighborhood U 3 z such that the preimage is isomorphic to a union of
dI1;j1 copies of a toric variety PNI1;j1 ,ΣCI1;j1

. For each copy the map on the big
open set is finite unramified of degree |NI1;j1 : NÎ1;ĵ1

|. The left hand side describes
the sum of numbers of points in the preimage of a point in the neighborhood of
Z◦I2;j2

sorted by the connected component of its preimage. However, since we are
summing over the connected components of the preimage of ZI2;j2 that are part of
the component of the preimage of ZI1;j1 both sides are the same.

Next, we observe that ν∗ is a module homomorphism with respect to the C[[ΣZ ]]-
algebra structure on C[[ΣẐ ]] induced by ν∗. Indeed, multiplication by a pullback
of a function g on ΣZ results in multiplication of all fÎ,ĵ in equation (10) by g.

Because µ∗ is also a module homomorphism, it is now enough to check that
ρ(ν∗(f)) = µ∗(ρ̂(f)) for functions f from some generating set of C[ΣẐ ] as a module
over C[ΣZ ]. We claim that such a generating set can be taken to be the set of
f that correspond to minimal lattice points in the interiors of cones. Indeed, for
every cone CÎ;ĵ ∈ ΣẐ , consider a cone CI;j ∈ ΣZ that it maps into the interior of
under ν. It is easy to see that products of the function f that correspond to the
minimum interior point of v =

∑
î∈I eî;ĵ by pullbacks of polynomial functions on

CI;j span precisely the space of functions that correspond to monomials from the
interior of CÎ;ĵ . So it is now enough to consider the function f that comes from the
minimum interior point, where we keep the notations as above. We recall that for
such f we have ρ̂(f) = ẐÎ;ĵ .

In the case of |Î| < |I| the stratum ẐÎ,ĵ has image of smaller dimension, so
µ∗ρ̂(f) = 0. Consider all cones CÎ1;ĵ1

in ΣCI;j that contain CÎ;ĵ and have dimension
|I1| = |I|. These cones form the star of the neighborhood of CÎ;ĵ in the fan ΣCI;j .
The contributions of the fractions of equation (10) times the corresponding f will
be proportional to ∑

CÎ1;ĵ1

∏
î∈Î1,i 6∈Î

1
xî;ĵ1

.
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Since all these linear functions xî;ĵ1
vanish on the span of CÎ;ĵ , one can work on

the quotient, where Lemma 8.5 implies that (ν∗f)I;j = 0.
We also need to check that (ν∗f)I1;j1 = 0 for all cones CI1;j1 ∈ ΣZ that contain

CI;j . These calculations are analogous and are left to the reader.
Let us now consider the case |Î| = |I|. In this case there will be only one

contribution to (ν∗f)I;j and we get

(ν∗f)I;j = dI;j

∏
i∈I

xi;j ,

We also claim that for every other cone CI1;j1 that contains CI;j we will have

(ν∗f)I1;j1 = dI;j

∏
i∈I

xi;j1 .

Indeed, for every connected component of ν−1(CI;j) the terms of equation (10) will
be zero except for the cones CÎ1;ĵ1

with |Î1| = |I1| that contain CÎ,ĵ . If we again
work in the quotient by the span of CÎ,ĵ , we see that Lemma 8.3 implies that the
total contribution of such CÎ1;ĵ1

is

dI1;j1

|NI1;j1 : NÎ1;ĵ1
|

|NI;j : NÎ;ĵ |
∏
i∈I

xi;j1 .

Then an analog of equation (11) finishes the calculation of (ν∗f)I1;j1 .
Then we conclude that ν∗f corresponds to dI;j times the minimum lattice point

of CI;j . On the other hand, the corresponding cycle ẐÎ,ĵ maps onto ZI;j and the
morphism is is generically finite of degree dI;j . Therefore, we get µ∗ẐÎ,ĵ = dI;jZI;j ,
which finishes the proof. �

5. Main theorem

Our goal is to prove that any G-equivariant morphism µ : Ẑ → Z of smooth va-
rieties which is birational to a quotient by G has the property that the pushforward
of the orbifold elliptic class in A∗(Ẑ) is the elliptic class in A∗(Z). The strategy of
the proof is to reduce the situation to a toroidal morphism.

Let µ : Ẑ → Z be such a G-equivariant toroidal morphism. Let h be any linear
function on the fan ΣZ . The function h corresponds to the divisor

Dh =
∑
i∈IZ

αiDi.

We will also consider the divisor D̂h on Ẑ such that

(12) µ∗(KZ +Dh) = KẐ + D̂h

and
D̂h =

∑
î∈IẐ

α̂îD̂î.

The set IẐ splits into two sets Iexc
Ẑ

and Iram
Ẑ

according to whether or not Di is
contracted by µ to a smaller-dimensional variety. We will abuse notation and call
the divisors D̂î for i ∈ Iram

Ẑ
ramification divisors, and assign to each of them the
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ramification index rî (which may be equal to 1). We observe that if µ(D̂î) = Di,
then

α̂î + 1 = rî(αi + 1).

Since µ is birationally equivalent to a quotient morphism and is locally given by
the map between two toric varieties, it is easy to see that locally the group G acts
as a subgroup of the torus. The isotropy group of every point of the stratum that
corresponds to the cone CÎ;ĵ is equal to the index of

∑
î∈Î Zeî;ĵ in the restriction

of NCI;j to the Q-span of eî;ĵ . We will denote this group by GÎ;ĵ .
Consider the following function E of z, τ with values in A∗(Ẑ).

E(z, τ) =
1
|G|

∑
g,h∈G;gh=hg

∑
Zg,h=ZÎ;ĵ

ZÎ;ĵ

∏
î∈IẐ

D̂îθ(
D̂î

2πi − z)θ′(0)

2πiθ( D̂î

2πi )θ(−z)

∏
î∈Î

θ( D̂î

2πi + gî − hîτ − (α̂î + 1)z)θ(−z)θ( D̂î

2πi )

D̂îθ(
D̂î

2πi + gî − hîτ)θ(−(α̂î + 1)z)θ( D̂î

2πi − z)
e2πi(α̂î+1)hîz

∏
î 6∈Î

θ( D̂î

2πi − (α̂î + 1)z)θ(−z)

θ( D̂î

2πi − z)θ(−(α̂î + 1)z)
.

Here gî and hî are the rational numbers in the range [0, 1) which describe the
characters of the action of g and h on the divisor D̂î at each point of ẐÎ;ĵ .

The following theorem describes the pushforward of E to Z.

Theorem 5.1.

µ∗E(z, τ) =
∏
i∈IZ

Diθ
′(0)θ( Di

2πi − (αi + 1)z)
2πi θ( Di

2πi )θ(−(αi + 1)z)
.

Proof. We will use Theorem 4.8 to reduce the statement to a combinatorial result.
First, we observe that E(z, τ) can be obtained as ρ̂(F (z, τ)) where F is defined as
follows.

Consider the cone CÎ;ĵ that is a part of the subdivision ΣCI;j . Denote by GÎ;ĵ

the quotient of the intersection of the lattice ⊕i∈IZei;j with the rational span of
êî;ĵ , î ∈ Î by ⊕î∈ÎZêî;ĵ . The value of F (z, τ) on this cone is

FÎ;ĵ(z, τ) =
1
|G|

∑
g,h∈GÎ;ĵ

∏
î∈Î

x̂î;ĵθ
′(0)θ(

x̂î;ĵ
2πi + gî − hîτ − (α̂î + 1)z)

2πi θ(
x̂î;ĵ
2πi + gî − hîτ)θ(−(α̂î + 1)z)

e2πi(α̂î+1)hîz.

Indeed, for every g, h ∈ GÎ;ĵ there is a unique connected component of the fixed
point set of g and h that contains ZÎ;ĵ . Then we use the definition and multiplicative
properties of ρ, together with the fact that D̂î corresponds to the function on ΣẐ

that equals xî,ĵ for every CÎ;ĵ such that Î 3 î and equals zero otherwise.
Now we need to calculate ν∗F (z, τ). Let’s calculate the component of ν∗F (z, τ)

on a cone CI;j . By the definition of ν∗ we get

ν∗F (z, τ)I;j = (
∏
i∈I

xi;j)
∑

ΣCI;j

dI;j

|G|
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∑
CÎ;ĵ∈ΣCI;j ,|Î|=|I|

∑
g,h∈GÎ;ĵ

∏
î∈Î

θ′(0)θ(
x̂î;ĵ
2πi + gî − hîτ − (α̂î + 1)z)

2πi θ(
x̂î;ĵ
2πi + gî − hîτ)θ(−(α̂î + 1)z)

e2πi(α̂î+1)hîz.

We now apply Lemma 8.1. Indeed, it is easy to check that equation (12) implies
that the values (αî +1)z are values of a linear function on CI;j . As a result, we get

ν∗F (z, τ)I;j = (
∏
i∈I

xi;j)
∑

ΣCI;j

dI;j

|G|
|NI;j : NÎ;ĵ |

∏
i∈I

θ′(0)θ(xi;j
2πi − (αi + 1)z)

2πi θ(xi;j
2πi )θ(−(αi + 1)z)

=
∏
i∈I

xi;jθ
′(0)θ(xi;j

2πi − (αi + 1)z)
2πi θ(xi;j

2πi )θ(−(αi + 1)z)
.

Here we use
∑

ΣCI;j
dI;j |NI;j : NÎ,ĵ | = |G|, which follows from the count of the

number of preimage points of a point close to the stratum ZI;j .
We now use Theorem 4.8 to get

µ∗E(z, τ) = µ∗ρ̂F (z, τ) = ρν∗F (z, τ) =
∏
i∈IZ

Diθ
′(0)θ( Di

2πi − (αi + 1)z)
2πi θ( Di

2πi )θ(−(αi + 1)z)
.

Indeed, the calculation of ρν∗F (z, τ) is accomplished by the multiplicativity of ρ
and the fact that the power series in Di has constant term 1. �

We will also need the following lemma that connects the Chern classes of T Ẑ
and µ∗TZ.

Lemma 5.2.

c(T Ẑ) =
∏
î∈IẐ

(1 +Dî)
∏
i∈I

(1 + µ∗Di)−1µ∗c(TZ).

Proof. First of all, it is easy to see that the pullback of the bundle of logarith-
mic differentials on Z is the bundle of logarithmic differentials on Ẑ. Then it is
straightforward to calculate the ratio of Chern classes for the bundles of logarithmic
differentials and usual differentials for a variety with normal crossing divisor. The
details are left to the reader. �

We are now ready to formulate and prove our main theorem.

Theorem 5.3. Let (X;DX) be a Kawamata log-terminal pair which is invariant
under an effective action of G on X. Let ψ : X → X/G be the quotient morphism.
Let (X/G;DX/G) be the quotient pair, see Definition 2.7. Then

ψ∗Ellorb(X,DX , G; z, τ) = Ell(X/G,DX/G; z, τ).

Proof. The following lemma allows us to reduce the problem to the situation of a
G-equivariant toroidal morphism.

Lemma 5.4. There exists a commutative diagram

µ : Ẑ → Z
↓ ↓

ψ : X → X/G

where the vertical arrows are resolutions of singularities and µ is a G-equivariant
toroidal morphism.
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Proof. We define Z as a desingularization of (X/G,DX/G). Consider the normaliza-
tion of Z in the function field of X and the corresponding normalization morphism.
By Abhyankar’s lemma it is a (typically singular) toroidal embedding with the
toroidal morphism to Z. Then toroidal desingularization finishes the job. See [2]
for details. �

Proof of Theorem 5.3 continues. By Lemma 5.4, Definition 3.7 and composition
properties of pushforwards, it is sufficient to prove the pushforward result for a
G-equivariant toroidal morphism µ : Ẑ → Z which is birational to ψ. By Lemma
5.2 and Definition 3.2 of the orbifold elliptic class Ell(Ẑ,DẐ , G; z, τ), we see that

Ell(Ẑ,DẐ , G; z, τ) = E(z, τ)µ∗
( ∏

k

zkθ( zk

2πi − z)
θ( zk

2πi )

∏
i∈IZ

2πiθ( Di

2πi )θ(−z)
Diθ′(0)θ( Di

2πi − z)

)
.

Then Theorem 5.1 and the definition of the elliptic class Ell(Z,D; z, τ) finishes the
proof. �

Remark 5.5. Theorem 5.3 gives an affirmative answer to the conjecture of [7]. We
call it the McKay correspondence for elliptic genera, analogously to the homological
McKay correspondence for stringy E-functions.

6. DMVV formula for pairs

One of the motivations of the definition of orbifold elliptic genus in [7] was the
formula for the generating functions of elliptic genera of symmetric products.

(13)
∑
n≥0

pnEllorb(Xn, Sn; z, τ) =
∞∏

i=1

∏
l,m

1
(1− piylqm)c(mi,l)

.

HereX is a Kähler manifold, Sn is the symmetric group acting on the n-fold product
and c(m, l) are the coefficients of the elliptic genus

∑
m,l c(m, l)y

lqm of X.
This formula was originally derived in [11] by means of some string-theoretic

arguments. In particular, the orbifold elliptic genus of a quotient of a variety Xn

by the symmetric group Sn was defined as the trace of a certain operator over
the Hilbert space of the conformal field theory quotient of Cn, where C is the
superconformal field theory conjecturally associated to X. In [7], DMVV formula
was shown for the mathematically defined orbifold elliptic genus. Our goal now is to
extend this result to singular varieties and more generally to arbitrary Kawamata
log-terminal pairs.

Theorem 6.1. Let (X,D) be a Kawamata log-terminal pair. For every n ≥ 0
consider the quotient of (X,D)n by the symmetric group Sn, which we will denote
by (Xn/Sn, D

(n)/Sn). Here we denote by D(n) the sum of pullbacks of D under n
canonical projections to X. Then we have∑

n≥0

pnEll(Xn/Sn, D
(n)/Sn; z, τ) =

∞∏
i=1

∏
l,m

1
(1− piylqm)c(mi,l)

,

where the elliptic genus of (X,D) is∑
m≥0

∑
l

c(m, l)ylqm

and y = e2πiz, q = e2πiτ .
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Remark 6.2. In the case of smooth X with D = 0, the Fourier coefficient of
Ell(X, z, τ) at qm is a polynomial in y±

1
2 . In general other rational l are possi-

ble, but more importantly, the coefficient at qm is no longer a polynomial in y±
1
d ,

rather it is a rational function. However, we will always assume that this function is
Laurent expanded around y = 0, so we will be working in the field of formal power
series in y±

1
d , where d is divisible by 2 and all denominators of the discrepancy

coefficients for some resolution of (X,D). The issue of non-polynomiality was first
raised in [4] at the q0 level.

Proof. First of all, observe that the quotient of the tensor power of a Kawamata log-
terminal pair is again a Kawamata log-terminal pair. Moreover, by Theorem 5.3,
we can calculate the elliptic genus of (Xn/Sn, D

(n)/Sn) as an orbifold elliptic genus
of (Xn, D(n), Sn). A resolution of singularities (X̂, D̂) of the pair (X,D) induces a
birational morphism X̂n → Xn so we may assume that (X,D) is nonsingular, i.e.
X is smooth and D is a normal crossing divisor

∑
i αiDi with αi > −1. While the

divisor D(n) on Xn has simple normal crossings, it is not Sn-normal. Indeed the
pullbacks of the same component Di via different projections are group translates
of each other and certainly intersect and are nontrivially permuted by the isotropy
group of any such intersection point that lies on the main diagonal X ⊆ Xn. To
rectify this situation we need to consider an appropriate blowup of Xn. By Remark
3.11, each pair of commuting elements (g, h) can be handled separately.

Let’s describe the pairs of commuting elements g, h ∈ Sn and the connected
components of their fixed point set. If the cycle decomposition of h has aj cycles
of degree j, then the fixed point set of h on Xn is the product of

∑
j aj copies of

X, embedded into Xn by the product of diagonal embeddings of X into Xj for
each cycle of length j. Elements g of Sn that commute with h form a semidirect
product of the group Ch =

∏
j(Z/jZ)aj which consists of the products of powers of

cycle components of h and the group Bh =
∏

j Saj
which consists of the group that

permutes cycles of the same length without disturbing the order in the cycle. A fixed
point set of each such pair (g, h) consists of points on X

∑
j aj that are preserved by

the image of g in Bh. It is easy to see that the contribution of each such (Xn)g,h

is the product of the contributions of each factor. As a result, it is enough to
consider the contribution of the diagonal embedding of X into Xij = (Xj)i where
h acts by permuting the copies of X inside each Xj and g acts by a product of a
cyclic permutation of i copies of Xj and some cyclic permutations within each Xj ,
that does not change the cyclic orders of the components of Xj . Then gi = hs for
some 0 ≤ s ≤ j − 1, and s determines the action uniquely. Namely, if xk,l, k ∈
Z/iZ, l ∈ Z/jZ denote the components of Xij , then we may assume that h acts by
xk,l → xk,l+1 and g acts by xk,l → xk+1,l for k = 0, . . . , i − 2 and xi−1,l → x0,l+s.
We will denote by G the group generated by g and h. It is an abelian group of order
ij given by the generators g, h and relations gh = hg, gi = hs, hj = 1. We denote
the corresponding product of ij copies of X by XG, which indicates the action of
G on it.

We now need to make (XG, D(G)) into a G-normal pair. Let Dc, 1 ≤ c ≤ k be the
irreducible components ofD onX. We will denote byDr,c, r ∈ G the pullback ofDc

under the r-th projection map XG → X. We will perform the following sequence of
blowups to XG. First, we blow up ∩r∈GDr,1, then we blow up the proper preimage
of ∩r∈GDr,2, and so on. We can describe this blowup in terms of the subdivision
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of the conical complex that corresponds to the simple normal crossing divisor D(G)

on XG. For the sake of simplicity we assume that the intersection of every number
of components Dc on X is connected. The general case is completely analogous,
it can also be reduced to the connected case by further blowups of X. Every
cone C of the conical complex ΣXG is generated by elements er,c for some subset
of IC ⊆ G × {1, . . . , k}. We denote by JC the subset of {1, . . . , k} that consists
of all c for which IC ⊇ G × {c}. The subdivision of C that corresponds to this
sequence of blowups is then the product of Z≥0er,c for (r, c) ∈ IC , c 6∈ JC and the
product over all c ∈ JC of the subdivisions of

∑
r∈G Z≥0er,c where the extra vertex∑

r∈G er,C is added and the cone is subdivided accordingly. It is clear that this is
a well-defined subdivision of ΣXG and we denote the corresponding variety by X̂G

and the corresponding divisor by D̂(G). We observe that there are k exceptional
components of D̂(G), which we will call Ec, and the rest are the proper preimages
of the components of D(G).

We need to describe connected components of the fixed point set of G on X̂G.
Every such fixed point maps to the diagonal X ⊆ XG, and should lie on the
stratum of the stratification by the intersections of components of D̂(G) that is
stable under the group action. Since the construction is local in X, we need to
see what happens when X is a Cn with D given as a union of some coordinate
hyperplanes z1 = 0, z2 = 0, . . . , zl = 0. The extra coordinates zl+1, . . . , zn will
have an effect of tensoring the construction by an affine space, so it is enough to
look at the l = n case. Then we need to investigate the fixed point sets of the
toric variety that corresponds to a certain blowup of the positive orthant in Zijk

where the generators are denoted by er,c, r ∈ G, 1 ≤ c ≤ l. The group G acts
by multiplication on the first component of the index of the coordinate. The rays
of the fan of the blowup that are fixed under G correspond to e∗,c =

∑
r∈G er,c.

Moreover, it is easy to see that the only strata that are preserved by G are the
intersections of the corresponding divisors. In other words, we need to consider the
faces of the l-dimensional cone C which is a part of the subdivision of the positive
orthant and is the span of all e∗,c. This cone corresponds to the affine set which is
isomorphic to

(14) Cl × (C∗)ijl−l.

The coordinates on (C∗)ijl−l are given by xr,cx
−1
r1,c and the coordinates on Cl are

given by x0,c. Let P be a fixed point of G. For each c, xr,c/xr1,c = exp(2πiλ(r−r1))
for some character λ : G→ Q/Z. If λ is nontrivial then x0,c is zero, and otherwise
arbitrary values of x0,c are allowed. Moreover, for each component of the fixed
point set the map to Cn ⊆ (Cn)G is an embedding. Indeed, it is clear for each
factor CG that corresponds to the Dc. Basically, for each factor, the blowup locus
intersects the main diagonal of CG in codimension one, namely at the origin.

Returning to the global situation, the above description tells us that connected
components of the fixed point set Y of X(G) correspond to the collections of char-
acters λc : G → Q/Z. The fixed point set for each such character is isomorphic to
DI = ∩i∈IDi where I is the set of those components c for which λc is nontrivial.
Indeed, this follows from the fact that locally the map from the component of the
fixed point set to XG is an embedding. We observe that for some combinations of
characters we may have DI = ∅.
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We now need to calculate the tangent bundle to such a component, which we
will denote by Yλ1,...,λk

. Notice that the divisors D̂r,c do not intersect with Y .
Indeed, every G-invariant point of D̂r,c would belong to D̂r1,C for all r1, but the
intersection of all these divisors is empty since π factors through the blowup of the
intersection of Dr,C , r ∈ G. As far as intersection with Ec is concerned, Yλ1,...,λk

is
contained in Ec for λc 6= 0 and intersects transversally the other Ec. For λc = 0
the intersection of Ec and Yλ1,...,λk

can be identified with the intersection by Dc

under the isomorphism Yλ1,...,λk
∼= DI . The character of G that corresponds to

Ec ⊇ Yλ1,...,λk
is equal to λc.

The Chern classes of the tangent bundles of X̂G and XG are related by Lemma
5.2, namely

c(TX̂G) = π∗c(TXG)
k∏

c=1

(1 + Ec)
∏

r∈G,1≤c≤k

(1 + D̂r,c)
(1 + π∗Dr,c)

where D̂r,c is the proper preimage of Dr,c. Notice that as classes in A∗(X̂G),
D̂r,c = π∗Dr,c − Ec. Moreover, we can write c(TXG) as ⊕r∈GTXr where TXr is
the pullback of the tangent bundle of X under the r-th projection. Since D̂r,c are
disjoint from Yλ1...,λk

, we get

c(i∗TX̂G) = i∗π∗c(TXG)
k∏

c=1

(1 + i∗Ec)1−|G|

where i : Yλ1,...,λk
→ X̂G is the embedding. Notice that π restricts to an embedding

on Yλ1,...,λk
with image DI ⊆ X ⊆ XG where I is the set of all c that for which λc

is nontrivial. The following lemma describes i∗TX̂G in more detail.

Lemma 6.3. Let λ be a character of G. Then the λ-component Vλ of the restriction
of TX̂G to Yλ1,...,λk

, identified with DI 6= ∅ can be described as follows. If λ = 0,
then Vλ = TDI . If λ 6= 0, then there is an exact sequence

0 → j∗TXlog → Vλ →
⊕

c,λc=λ

O(Dc) → 0

where j is the embedding DI → X and TXlog is the dual to the bundle of log-
differentials for (X,D).

Proof. We observe that Yλ1,...,λk
is contained in the intersection of Ec for λc 6=

0, which induces a G-equivariant surjection from the restriction of TX̂G to the
restriction of ⊕λc 6=0O(Ec) with the kernel being the restriction of the tangent space
to ∩λc 6=0Ec to Yλ1,...,λk

. It is easy to see that under the identification of Yλ1,...,λk

with DI the restriction of O(Ec) is isomorphic to O(Dc) and has character λc.
So we now need to investigate the restriction of the tangent space of ∩λc 6=0Ec

and its eigenbundles. The λ = 0 case is clear, so it is enough to consider the normal
bundle to Yλ1,...,λk

in ∩λc 6=0Ec. Locally, in the notations of (14), this bundle is
isomorphic to the restriction of the tangent bundle of (C∗)ijk−k. The cotangent
bundle of (C∗)ijk−k is generated by dxr,c

xr,c
− dxr1,c

xr1,c
, so its λ-eigenbundle is isomor-

phic to a bundle generated by dxc

xc
, which is precisely the bundle of logarithmic

differential forms. Even though (14) refers to the neighborhood of a point of the
intersection of dimX divisors Dc, it is clear that the general case is obtained by
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a Cartesian product with a disc and the identification is still valid. It remains to
notice that this identification behaves well under coordinate changes. �

Proof of Theorem 6.1 continues. In view of Lemma 6.3, the contribution of (g, h)
to the orbifold elliptic genus of (XG, D(G)) is∑

{λ1,...,λk},∩λc 6=0Dc 6=∅

∫
X

( ∏
c,λc 6=0

Dc

) ∏
l

xlθ( xl

2πi − z)
θ( xl

2πi )

∏
c,λc 6=0

θ( Dc

2πi )
Dcθ( Dc

2πi − z)

×
∏
λ6=0

( ∏
l

θ( xl

2πi + λ(g)− λ(h)τ − z)
θ( xl

2πi + λ(g)− λ(h)τ)
e2πiλ(h)z

×
k∏

c=1

θ( Dc

2πi + λ(g)− λ(h)τ)θ(λ(g)− λ(h)τ − z)
θ( Dc

2πi + λ(g)− λ(h)τ − z)θ(λ(g)− λ(h)τ)

)
×

∏
c,λc 6=0

θ( Dc

2πi + λc(g)− λc(h)τ − z)
θ( Dc

2πi + λc(g)− λc(h)τ)
e2πiλc(h)z

×
∏

c,λc 6=0

θ( Dc

2πi + λc(g)− λc(h)τ − |G|(αc + 1)z)θ(−z)
θ( Dc

2πi + λc(g)− λc(h)τ − z)θ(−|G|(αc + 1)z)
e2πi(|G|αc+|G|−1)λc(h)z

×
∏

c,λc=0

θ( Dc

2πi − |G|(αc + 1)z)θ(−z)
θ( Dc

2πi − z)θ(−|G|(αc + 1)z)

where we have used the fact that the coefficients by Ec in the log-pair on X̂G are
(|G|αc−|G|−1) and other divisors do not intersect the fixed point set and are thus
irrelevant. After observing that the formula gives 0 for the case DI = ∅, the above
can be rewritten as

Fi,j,s =
∑

{λ1,...,λk}

∫
X

∏
l

(
xl

∏
λ

θ( xl

2πi + λ(g)− λ(h)τ − z)
θ( xl

2πi + λ(g)− λ(h)τ)
e2πiλ(h)z

)

×
∏
λ6=0

k∏
c=1

θ( Dc

2πi + λ(g)− λ(h)τ)θ(λ(g)− λ(h)τ − z)
θ( Dc

2πi + λ(g)− λ(h)τ − z)θ(λ(g)− λ(h)τ)

×
∏
c

θ( Dc

2πi )θ(
Dc

2πi + λc(g)− λc(h)τ − |G|(αc + 1)z)θ(−z)
θ( Dc

2πi − z)θ( Dc

2πi + λc(g)− λc(h)τ)θ(−|G|(αc + 1)z)
e2πi|G|(αc+1)λc(h)z.

We will use the following lemmas that take into account the specific form of G.

Lemma 6.4.∏
λ

θ( xl

2πi + λ(g)− λ(h)τ − z)
θ( xl

2πi + λ(g)− λ(h)τ)
e2πiλ(h)z =

θ( ixl

2πi − iz, iτ−s
j )

θ( ixl

2πi ,
iτ−s

j )
.

Proof. First, we observe that the set of pairs (λ(g), λ(h)) can be taken to be the
set of pairs (m

ij ,
n
j ) such that 0 ≤ n ≤ j − 1, 0 ≤ m ≤ ij − 1 and m = ns mod j.

Let us check the transformation properties of the left hand side of the equation
under z → z + 1/i. The exponential factors contribute

exp(2πi
1
i

∑
λ

λ(h)) = exp(2πi
j−1∑
n=0

n

j
) = (−1)j−1.
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For each n = 0, . . . , j−1, the set of λ(g) is given by the fractional parts of ns
ij + k

i , k =
0, . . . , i−1. There will be exactly one such fractional part which is less than 1

i . The
transformation z → z + 1/i switches these fractions around except for the extra
1 for the fraction with λ(g) < 1

i . As a result, we get the extra factor (−1)j from
the numerator, so overall the left hand side of the equation changes sign under
z → z + 1

i , as does the right hand side.
Now, let us check the transformation properties of the left hand side under

z → z + iτ−s
ij . This variable change amounts to n → n + 1, m → m + s, which

moves around the θs in the numerator, except for the cases when new values of m
and n fall out of their prescribed ranges. In the case of m falling out of its range, the
extra factor required to put it back in is (−1). It is easy to calculate the number of
such occurrences, because the sum of all m is going to change by ijs which require
s switches to put into the correct range. So the extra factor from the switches of
m is (−1)s. In the case of n, it falls out of the range when it goes from (j− 1) to j.
In this case we get m = 0 mod j, so λ(g) = k

i , k = 0, . . . , i− 1. The extra factors
come from the transformation properties of θ and equal

(−1)ie
∑i−1

k=0(2πi(
xl
2πi+

k
i −z)−πiτ) = e−πi+ixl−2πiiz−πiiτ .

The exponential factors contribute exp(πi(j − 1) (iτ−s)
j ), so the overall factor is

e−πi+ixl−2πiiz−πiiτ+πi(j−1)
(iτ−s)

j +πis = −eixl−2πiiz−πi
(iτ−s)

j

which is exactly the effect of the transformation z → z + (is−τ)
ij to the right hand

side of the equation.
It is straightforward to check that both sides have no poles and the same zeroes

as functions of z, therefore their ratio is a holomorphic elliptic function, hence a
constant. It remains to observe that both sides equal 1 for z = 0. �

Lemma 6.5. ∏
λ6=0

θ( Dc

2πi + λ(g)− λ(h)τ)θ(λ(g)− λ(h)τ − z)
θ( Dc

2πi + λ(g)− λ(h)τ − z)θ(λ(g)− λ(h)τ)

=
θ( iDc

2πi ,
iτ−s

j )θ( Dc

2πi − z)θ(−iz, iτ−s
j )θ′(0)

θ( iDc

2πi − iz, iτ−s
j )θ( Dc

2πi )iθ
′(0, iτ−s

j )θ(−z)
.

Proof. We use the result of Lemma 6.4 with xl replaced by Dc and the limit of the
same calculation as xl → 0. �

Proof of Theorem 6.1 continues. By Lemmas 6.4 and 6.5, we can rewrite Fi,j,s

as

Fi,j,s =
∑

{λ1,...,λk}

∫
X

∏
l

(
xl

θ( ixl

2πi − iz, iτ−s
j )

θ( ixl

2πi ,
iτ−s

j )

) k∏
c=1

e2πiij(αc+1)λc(h)z

×
k∏

c=1

θ( iDc

2πi ,
iτ−s

j )θ(−iz, iτ−s
j )θ′(0)θ( Dc

2πi + λc(g)− λc(h)τ − ij(αc + 1)z)

θ( iDc

2πi − iz, iτ−s
j )iθ′(0, iτ−s

j )θ( Dc

2πi + λc(g)− λc(h)τ)θ(−ij(αc + 1)z)
.

We will use the following lemma.

Lemma 6.6.∑
λ

θ(u+ λ(g)− λ(h)τ − v)
θ(u+ λ(g)− λ(h)τ)

e2πiλ(h)v = i
θ′(0, iτ−s

j )θ(−v)θ(iu− v
j ,

iτ−s
j )

θ′(0)θ(−v
j ,

iτ−s
j )θ(iu, iτ−s

j )
.
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Proof. We use the following basic formula which is essentially contained in [6],
where the right hand side converges for =(τ) > =(u) > 0.

−θ(u+ z)θ′(0)
2πiθ(u)θ(z)

=
∑
k∈Z

e2πiku

1− e2πize2πikτ
.

We also recall the description of (λ(g), λ(h)) from Lemma 6.4. Not that the quotient
depends on the choice of λ(g) mod 1 only, so we can assume that λ(g) = ns

ij +
m
i ,m ∈ Z/iZ. Then, ∑

λ

θ(u+ λ(g)− λ(h)τ − v)
θ(u+ λ(g)− λ(h)τ)

e2πiλ(h)v

=
i−1∑
m=0

j−1∑
n=0

θ(u− v + m
i + ns

ij −
n
j τ)

θ(u+ m
i + ns

ij −
n
j τ)

e2πiv n
j

= −2πiθ(−v)
θ′(0)

i−1∑
m=0

j−1∑
n=0

∑
k∈Z

e2πiv n
j

e2πik(u+ m
i + ns

ij −
n
j τ)

1− e−2πive2πikτ

= −i2πiθ(−v)
θ′(0)

j−1∑
n=0

∑
k∈Z

e2πiv n
j e2πikiue−2πikn iτ−s

j

1− e−2πive2πikiτ

= −i2πiθ(−v)
θ′(0)

∑
k∈Z

e2πikiu

(1− e−2πive2πikiτ )
(1− e2πive−2πik(iτ−s))

(1− e2πiv 1
j e−2πik iτ−s

j )

= i
2πiθ(−v)
θ′(0)

∑
k∈Z

e2πikiue2πive−2πikiτ

(1− e2πiv 1
j e−2πik iτ−s

j )

= −ie2πiv(1− 1
j ) 2πiθ(−v)

θ′(0)

∑
k∈Z

e2πik(iu−(j−1) iτ−s
j )

(1− e−2πiv 1
j e2πik iτ−s

j )

= ie2πiv(1− 1
j )
θ(−v)θ′(0, iτ−s

j )θ(iu− (j − 1) iτ−s
j − v

j ,
iτ−s

j )

θ′(0)θ(iu− (j − 1) iτ−s
j , iτ−s

j )θ(−v
j ,

iτ−s
j )

= i
θ′(0, iτ−s

j )θ(−v)θ(iu− v
j ,

iτ−s
j )

θ′(0)θ(−v
j ,

iτ−s
j )θ(iu, iτ−s

j )
.

In the above calculations the series are absolutely convergent, as long as =(τ) > 0
and 1 > =(u)

=(τ) >
j−1

j . Then analytic continuation finishes the proof. �

Proof of Theorem 6.1 continues. By Lemma 6.6 we can rewrite

Fi,j,s =
∫

X

∏
l

(xlθ( ixl

2πi − iz, iτ−s
j )

θ( ixl

2πi ,
iτ−s

j )

) k∏
c=1

θ(−iz, iτ−s
j )θ( iDc

2πi − i(αc + 1)z, iτ−s
j )

θ( iDc

2πi − iz, iτ−s
j )θ(−i(αc + 1)z, iτ−s

j ).

We notice that when we calculate
∫

X
, we only pick up the polynomials of degree

dimX in xl and Dc, which allows us to conclude that

Fi,j,s(z, τ) = Ell(X,D; iz,
iτ − s

j
).

We now recall that the contribution of the commuting pair of elements g, h ∈ Sn

to the orbifold elliptic genus of (Xn, D(n)) is 1
n! times the product of several Fi,j,s,
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each one corresponding to an orbit of the action of 〈g, h〉 on {1, . . . , n}. Every such
orbit Im will have im, jm and sm ∈ Z/jmZ uniquely specified. So we have∑

n≥0

pnEll(Xn/Sn, D
(n)/Sn; z, τ) =

∑
n≥0

pn
∑

gh=hg,g,h∈Sn

1
n!

∏
Im

Fim,jm,sm
(z, τ)

=
∑

r : Z>0×Z>0→Z≥0

p
∑

i,j ijr(i,j)∏
i,j r(i, j)!(ij)r(i,j)

∏
i,j

(
j−1∑
s=0

Fi,j,s(z, τ)r(i,j)).

In this calculation we have used the fact that for n =
∑

i,j ijr(i, j) there are

1∏
i,j r(i, j)!

n!∏
i,j((ij)!)r(i,j)

ways to split {1, . . . , n} into groups of subsets so that there r(i, j) subsets of “type
(i, j)”. Then for each set of type (i, j) there are (ij)!

ij different ways to define the
action of the g and h conjugate to the standard action we have discussed earlier.
We now conclude that∑

n≥0

pnEll(Xn/Sn, D
(n)/Sn; z, τ) = exp(

∑
i,j>0

j−1∑
s=0

pij

ij
Fi,j,s(z, τ))

= exp(
∑

i,j>0

j−1∑
s=0

pij

ij
Ell(X,D; iz,

iτ − s

j
))

= exp(
∑

i,j>0

∑
m,l

j−1∑
s=0

c(m, l)
pij

ij
yilq

im
j e2πi ms

j )

= exp(
∑

i,j>0

c(mj, l)
pij

i
yilqim)

=
∞∏

j=1

∏
m,l

exp(c(mj, l)
∑
i>0

pij

i
yilqim)

=
∞∏

j=1

∏
m,l

exp(−c(mj, l) ln(1− pjylqm)) =
∞∏

j=1

∏
m,l

(1− pjylqm)−c(mj,l),

which finishes the proof. �

Corollary 6.7. Let X be a complex projective surface and X(n) be the Hilbert
scheme of subschemes of X of length n. Let

∑
m,l c(m, l)y

lqn be the elliptic genus
of X. Then ∑

n≥0

pnEll(X(n); z, τ) =
∞∏

i=1

∏
l,m

1
(1− piylqm)c(mi,l)

.

Proof. By Theorem 5.3, the orbifold elliptic genus of the symmetric power Xn/Sn

equals the elliptic genus of its crepant resolution, which is provided by X(n) in the
surface case. �

Remark 6.8. As a corollary of our work we easily deduce the analog of the DMVV
conjecture for wreath products, see [32].
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7. Open questions

In this section we mention possible directions in which the results of this paper
could be extended.

The biggest drawback of our technique is that it does not establish the elliptic
genus of a Kawamata log-terminal pair as a graded dimension of some natural
vector space. In the smooth non-equivariant case such a description is provided
by (3). Even more interesting is the description of the elliptic genus as the graded
dimension of the vertex algebra which is the cohomology of the chiral de Rham
complex of [27], see [6]. This is still open even in the non-equivariant case. This
would be very interesting even at the q = 0 level, since it may give a vector space
that realizes the stringy Hodge numbers of a singular variety X.

It would also be interesting to try to somehow extend the results of this paper
to more general orbifolds (smooth stacks). The definition of orbifold elliptic genus
(no divisor) was extended to this generality in [14]. While our paper focuses on the
global quotient case, it is possible that its techniques may still apply to the case
of an algebraic variety with at most quotient singularities. Indeed, the toroidal
techniques are in some sense local. In a related remark, we do believe that the
analog of our main theorem holds for the orbifold elliptic classes of (X,E,G) and
(X/G1, E/G1, G/G1) where G is an arbitrary normal subgroup of G.

The birational properties of elliptic genus mean that it is preserved under K-
equivalence (cf. [20],[31]). It is conjectured in [20] that K-equivalent varieties
have equivalent derived categories. This therefore points to a possible connection
between elliptic classes considered above and derived categories. It is however more
likely that both objects are a part of a bigger structure of a conformal field theory
which somehow behaves well under K-equivalence. This is largely speculative at
this point, but it would be interesting to define mathematically an invariant of a
variety which would encompass both its derived category and its elliptic genus. The
situation is even more murky for Kawamata log-terminal pairs, since it is unclear
what the correct definition of the derived category of the pair may be.

A mirror symmetric analog of a resolution of singularities is a deformation to a
smooth variety. Unfortunately, this theory is not nearly as developed as the theory
of birational morphisms. It would be interesting to define an analog of a crepant
resolution in this setting and to try to check the invariance of the elliptic genus.

It is known that the elliptic genus for smooth manifolds has a rigidity property.
Recently, this property has been extended to the orbifold case in [14]. It is reason-
able to try to extend this property to the case of Kawamata log-terminal pairs. It is
possible that the framework of pairs that consist of an orbifold and an equivariant
bundle over it, see [14], will be useful.

It would be also interesting to see how the orbifold elliptic class of a singular
variety X compares to the Mather Chern class of X; see for example [15].

8. Appendix. Assorted toric lemmas

In this appendix we collect several combinatorial statements which are useful in
our study of toroidal morphisms.

Lemma 8.1. Let Σ be a simplicial fan in the first orthant of a lattice N = ⊕iZei.
Moreover, let N̂ be a sublattice of N of finite index. We denote the quotient group
N/N̂ by G. We further assume that each cone C of Σ is generated by a part of a
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basis of N̂ . We denote by xi the linear functions on NC that are dual to ei. For
each cone C of maximum dimension we denote by {xi;C} the linear combinations
of xi which are dual to the generators of C. Let a be a linear function on N which
takes values ai on ei and values ai;C on the generators of C. Then∑

C∈Σ,dim C=rkN

∑
g,h∈G

∏
i

θ′(0)θ(xi;C
2πi + gi;C − hi;Cτ − ai;C)

2πi θ(xi;C
2πi + gi;C − hi;Cτ)θ(−ai;C)

e2πiai;Chi;C

= |N : N̂ |
∏

i

θ′(0)θ( xi

2πi − ai)
2πi θ( xi

2πi )θ(−ai)

where gi;C and hi;C denote rational numbers in the range [0, 1) that are fractional
parts of the coordinates of the lifts of g and h to N in the basis of C.

In the case when the lattice N is one-dimensional one obtains the following
identity not involving toric data:

Corollary 8.2.

1
d

∑
0≤i,j<d

θ( x
2πid + i

d −
j
dτ − z)

θ( x
2πid + i

d −
j
dτ)θ(−z)

e
2πizj

d =
θ( x

2πi −
z
d )

θ( x
2πi )θ(−

z
d )

The scheme of the proof is the same as in the general case below: one checks
that both sides have the pole of order 1 for x = 0 the residues are the same
and, moreover, the ratio of both sides is an elliptic function with respect to x →
x+ 2πi, x→ x+ 2πiτ .

Proof. We will argue by induction on rkN , with rkN = 0 being the trivial base of
the induction (or checking first 8.2 as outlined above).

Let’s study transformation properties of both sides of the equation under the
translations x1 → x1 + 2πi and x1 → x1 + 2πiτ . Under the transformation x1 →
x1 +2πi the term of the sum that corresponds to C, g, h changes into the term that
corresponds to C, g+ e1, h. Indeed, the coefficients of e1 in the basis of the cone C
are the same as the coefficients of x1 in the linear functions xi;C . As a result, both
sides of the equation are unchanged under x1 → x1+2πi. Under the transformation
x1 → x1 + 2πiτ the term that corresponds to C, g, h changes into the term that
corresponds to C, g, h − e1 times e2πia1 . Indeed, the extra factor comes from the
exponential terms since a1 is the difference between the value of a on h and h− e1.
We also observe that the terms of the product are such that any lift of h to N gives
the same value, so the fact that some of the coefficients of h− e1 in the basis of C
are not in [0, 1) is not a problem. Clearly, the right hand side of the equation has
the same transformation properties.

We will now show that the left hand side of the equation of the lemma has
only simple poles at x1 = 2πi(Z + Zτ), considered as a function of x1 with fixed
generic values of other parameters. By the above transformation argument, it is
enough to show there are no poles at the solutions to linear equations on x1 given
by xi;C = 0. We only need to worry about such xi;C that define a non-coordinate
hyperplane which corresponds to some cone C̄ of dimension rkN − 1 in the interior
of the first orthant. This cone C̄ is contained in two cones C and C ′ of maximum
dimension and we argue that the contributions of these cones to the singular part
of the Laurent expansion around xi;C = 0 cancel. Let v1, . . . , vrkN−1, v be the
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generators of C and v1, . . . , vrkN−1, v
′ be the generators of C ′. It is easy to see that

v + v′ =
∑rkN−1

i=1 civi for some integer ci and

xi;C = xi;C′ + cixrkN ;C , 1 ≤ i ≤ rkN − 1; xrkN ;C = −xrkN ;C′ .

There are similar transformation formulas for gi;C and hi;C . The poles at xrkN ;C = 0
can be of order at most 1, and they can only occur in the case grkN ;C = hrkN ;C =
grkN ;C′ = hrkN ;C′ = 0. As a result, we only need to calculate the residue at this
pole. The residue of the term that corresponds to C ′, g, h is equal to

−1
c

rkN−1∏
i=1

θ′(0)θ(xi;C
2πi + gi;C − hi;Cτ − ai;C)

2πi θ(xi;C
2πi + gi;C − hi;Cτ)θ(−ai;C)

e2πiai;Chi;C

where c is the coefficient of x1 in xrkN ;C . This cancels the residue of the term that
corresponds to C, g, h.

By a standard argument from the theory of elliptic functions we conclude that the
left hand side of the equation of the lemma has simple zeros at x1 = 2πi(a1+Z+Zτ)
and at no other points. Moreover, the ratio of the two sides of the equation is
independent of x1. It is therefore enough to verify that the residues at x1 = 0 of
both sides are same. Only the terms with cones C that have a face C̄ of dimension
rkN − 1 that lies in the side of the orthant spanned by e>1 can contribute to the
residue. We will denote the generator of C that does not lie in C̄ by e1. The residue
occurs only for g1;C = h1;C = 0 and then it equals

1
c

∏
i>1

θ′(0)θ(xi;C̄
2πi + gi;C̄ − hi;C̄τ − ai;C̄)

2πi θ(xi;C̄
2πi + gi;C̄ − hi;C̄τ)θ(−ai;C̄)

e2πiai;C̄hi;C̄

where c is the coefficient of x1 in x1;C . Here we have observed that xi;C restricts
to xi;C̄ on x1 = 0, and similarly for gi;C and hi;C . If the intersection of N̂ and N

with the span of e>1 are lattices N̂1 and N1 respectively, then

c =
|N1 : N̂1|
|N : N̂ |

.

It remains to apply the induction hypothesis to the fan Σ1 induced by Σ on the
span of e>1. �

Lemma 8.3. Let Σ be a simplicial fan in the first orthant of a lattice N = ⊕iZei.
Moreover, let N̂ be a sublattice of N of finite index. We further assume that each
cone C of Σ is generated by a part of a basis of N̂ . We denote by xi the linear
functions on NC that are dual to ei. For each cone C of maximum dimension we
denote by {xi;C} the linear combinations of xi which are dual to the generators of
C. Then ∑

C∈Σ,dim C=rkN

1∏rkN
i=1 xi,C

= |N : N̂ | 1∏rkN
i=1 xi

.

Proof. By Lemma 8.1,∑
C∈Σ,dim C=rkN

∑
g,h∈G

∏
i

θ′(0)θ( εxi;C
2πi + gi;C − hi;Cτ − ai;C)

2πi θ( εxi;C
2πi + gi;C − hi;Cτ)θ(−ai;C)

e2πiai;Chi;C

= |N : N̂ |
∏

i

θ′(0)θ( εxi

2πi − ai)
2πi θ( εxi

2πi )θ(−ai).
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It remains to look at the coefficient by ε−rkN in the Laurent expansion of both sides
around ε = 0. �

Example 8.4. In the case of Figure 1 the identity of Lemma 8.3 is
1

x2(x1−2x2
3 )

+
1

( 2x2−x1
3 )( 2x1−x2

3 )
+

1
x1(x2−2x1

3 )
=

3
x1x2

.

Lemma 8.5. Let Σ be a simplicial fan in a lattice N such that the union of all of
its cones is a product of a subspace and a positive orthant. In addition, we assume
that all maximum-dimensional cones of Σ are generated by a basis of N . Then∑

C∈Σ,dim C=rkN

1∏rkN
i=1 xi;C

= 0

where xi;C denote the basis of linear forms dual to the lattice generators of C.

Proof. By Lemma 8.3, applied to the case N̂ = N , the function 1∏rkN
i=1 xi;C

is additive
on Σ, so we can replace Σ by any of its subdivisions with the same properties. After
an appropriate subdivision, we can assume that each cone of Σ sits in one of the
orthants and the support of Σ is ⊕i 6∈IR≥0ei +⊕i∈IRei for some basis {ei} and some
nonempty set I. Then we apply Lemma 8.3 again to show that∑

C∈Σ,dim C=rkN

1∏rkN
i=1 xi;C

=
∑

{σi}∈{1,−1}I

∏
i∈I

1
σixi

∏
i 6∈I

1
xi

= 0.

�
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