SELF-SELF-DUAL SPACES OF POLYNOMIALS

LEV BORISOV AND EVGENY MUKHIN

Abstract

A space of polynomials V of dimension 7 is called self-dual if the divided Wronskian of any 6 -subspace is in V. A self-dual space V has a natural inner product. The divided Wronskian of any isotropic 3-subspace of V is a square of a polynomial. We call V self-self-dual if the square root of the divided Wronskian of any isotropic 3 -subspace is again in V. We show that the self-self-dual spaces have a natural nondegenerate skew-symmetric 3-form defined in terms of Wronskians.

We show that the self-self-dual spaces correspond to G_{2}-populations related to the Bethe Ansatz of the Gaudin model of type G_{2} and prove that a G_{2}-population is isomorphic to the G_{2} flag variety.

1. Introduction

The Bethe equation is the main equation in the Bethe Ansatz method of diagonalizing the Hamiltonians of many integrable systems of mathematical physics. Given a solution of the Bethe equation, one explicitly constructs an eigenvector of the Hamiltonian. This paper is related to the case of Gaudin model associated to G_{2}. In this case, the Bethe equation is the system of algebraic equations on complex variables $t_{i}^{(j)}$ with parameters $z_{i} \in \mathbb{C}, m_{s}^{(j)} \in \mathbb{Z}_{>0}$.

$$
\begin{aligned}
& -\sum_{s=1}^{n} \frac{m_{s}^{(1)}}{t_{i}^{(1)}-z_{s}}-\sum_{k=1}^{l_{2}} \frac{3}{t_{i}^{(1)}-t_{k}^{(2)}}+\sum_{k=1, k \neq i}^{l_{1}} \frac{2}{t_{i}^{(1)}-t_{k}^{(1)}}=0, \quad i=1, \ldots, l_{1} \\
& -\sum_{s=1}^{n} \frac{3 m_{s}^{(2)}}{t_{j}^{(2)}-z_{s}}-\sum_{k=1}^{l_{1}} \frac{3}{t_{j}^{(2)}-t_{k}^{(1)}}+\sum_{k=1, k \neq j}^{l_{2}} \frac{6}{t_{j}^{(2)}-t_{k}^{(2)}}=0, \quad j=1, \ldots, l_{2}
\end{aligned}
$$

A pair of polynomials $\left(y_{1}, y_{2}\right) \in(\mathbb{P C}[x])^{2}$, is called fertile with respect to polynomials T_{1}, T_{2} if there exist polynomials $\tilde{y}_{1}, \tilde{y}_{2}$ such that we have explicit Wronskians:

$$
W\left(y_{1}, \tilde{y}_{1}\right)=T_{1} y_{2}, \quad W\left(y_{2}, \tilde{y}_{2}\right)=T_{2} y_{1}^{3} .
$$

The pair $\left(y_{1}, y_{2}\right)$ is called generic if $y_{i}(x)$ have no multiple roots and no common roots.
It is shown in MV1 that zeroes of the pair of polynomials $\left(\prod_{i=1}^{l_{1}}\left(x-t_{i}^{(1)}\right), \prod_{j=1}^{l_{2}}\left(x-t_{j}^{(2)}\right)\right)$ satisfy the Bethe equation if and only if the pair is generic and fertile with respect to $T_{j}(x)=\prod_{i=1}^{n}\left(x-z_{s}\right)^{m_{s}^{(j)}}$. We call such a pair a Bethe pair.

Research of L.B. is supported in part by NSF grant DMS-0140172. Research of E.M. is supported in part by NSF grant DMS-0140460.

Moreover, it is shown in MV1 that if the pair $\left(y_{1}, y_{2}\right)$ is a Bethe pair, then the pairs $\left(\tilde{y}_{1}, y_{2}\right)$ and $\left(y_{1}, \tilde{y}_{2}\right)$ are fertile and therefore for almost all choices of $\tilde{y}_{1}, \tilde{y}_{2}$ these pairs are Bethe pairs. Thus given one Bethe pair we obtain a family of new Bethe pairs which in turn produce new Bethe pairs, etc. The Zariski closure of all Bethe pairs obtained from $\left(y_{1}, y_{2}\right)$ is called a G_{2}-population originated at $\left(y_{1}, y_{2}\right)$.

It is conjectured in MV1 that the number of G_{2}-populations for generic z_{i} equals the multiplicity of $L_{\Lambda_{\infty}}$ in $L_{\Lambda_{1}} \otimes \cdots \otimes L_{\Lambda_{n}}$. Here L_{Λ} denotes an irreducible finite-dimensional G_{2}-module with highest weight $\Lambda,\left(\Lambda_{s}, \alpha_{i}^{\vee}\right)=m_{s}^{(i)}$ and Λ_{∞} is the unique dominant weight in the Weyl group orbit of the G_{2}-weight $\sum_{i=1}^{n} \Lambda_{i}-l_{1} \alpha_{1}-l_{2} \alpha_{2}$ where α_{i} are simple roots of a G_{2} root system.

The G_{2}-populations are the original motivation of this paper. It turns out that that the G_{2}-populations are in one-to-one correspondence with special 7-dimensional spaces of polynomials, which we call self-self-dual.

Let V be a 7 -dimensional space of polynomials. Let U_{i} be the greatest common monic divisor of Wronskians $\left\{W\left(v_{1}, \ldots, v_{i}\right), v_{j} \in V\right\}$. We always assume that $U_{1}=1$. Then there exist unique polynomials T_{1}, \ldots, T_{6} such that $U_{i}=T_{i-1} T_{i-2}^{2} \ldots T_{1}^{i-1}$.

The polynomial $W^{\dagger}\left(v_{1}, \ldots, v_{i}\right)=W\left(v_{1}, \ldots, v_{i}\right) / U_{i}$ is called the divided Wronskian.
The space V is called self-dual if the space of all divided 6 -Wronskians coincides with V. Self-dual spaces were studied in MV1. Note that if V is self-dual then $T_{i}=T_{7-i}$. A self-dual space has a natural non-degenerate symmetric bilinear form given by

$$
B(u, v)=W^{\dagger}\left(u, v_{1}, \ldots, v_{6}\right), \quad \text { if } v=W^{\dagger}\left(v_{1}, \ldots, v_{6}\right)
$$

Moreover, any divided 3-Wronskian of an isotropic 3-space is a perfect square.
We call a self-dual space self-self-dual if

$$
\left\{W^{\dagger}\left(v_{1}, v_{2}, v_{3}\right), v_{i} \in V, B\left(v_{i}, v_{j}\right)=0\right\}=\left\{v^{2}, v \in V\right\}
$$

Note, that if V is self-self-dual then $T_{3}=T_{1}$, so all T_{i} are expressed in terms of T_{1} and T_{2}. We prove that a self-self-dual space has a skew-symmetric non-degenerate 3-form w uniquely determined by the condition:

$$
w\left(v_{1}, v_{2}, v_{3}\right)=B(v, v), \quad \text { if } W^{\dagger}\left(v_{1}, v_{2}, v_{3}\right)=v^{2} \text { and } B\left(v_{i}, v_{j}\right)=0
$$

We identify the group G_{2} with the subgroup of orthogonal group $S O(V)$ which preserves w. It follows that the G_{2} flag variety G_{2} / B is identified with the variety of G_{2}-isotropic flags $F=\left\{F_{1} \subset F_{2} \subset \cdots \subset F_{7}=V\right\}$ which have the properties $B\left(F_{i}, F_{7-i}\right)=0$ and $F_{3}=\operatorname{Ker}\left(w\left(F_{1}, \cdot, \cdot\right)\right)$. We supply proofs of these and some other general facts on G_{2} which we failed to find in the literature.

Then we show that the first coordinates of a G_{2}-population span a self-self-dual space V and the G_{2}-population is isomorphic to the variety of G_{2}-isotropic flags in V. The isomorphism maps a flag F to the pair $\left(F_{1}, W^{\dagger}\left(F_{2}\right)\right)$.

Let us say a few words about our methods. A self-dual space V is naturally a vector representation of $S O(7)$. However, we have an explicit expression for the value of the 3 -form only on isotropic triples of vectors in V. The lack of general formula makes it
difficult to prove the well-definedness of the 3 -form and to compute it. To overcome this problem, we consider the 8 -dimensional spin representation \hat{V} of $\operatorname{Spin}(7)$. Vectors in V naturally act on \hat{V}. Moreover we show that the set of isotropic triples in V embeds in the projectivization of \hat{V} as a non-degenerate conic. This conic defines an inner product \hat{B} on \hat{V} and the vectors of V act by skew-symmetric operators. It turns out that the 3 -form can be defined for all triples, isotropic or not, by the same formula $w(a, b, c)=\hat{B}(a b c \cdot p, p)$ where $p \in \hat{V}$ is also computed explicitly. In addition, the 2 -form B is given by the formula $B(v, w)=2 \hat{B}(v \cdot p, w \cdot p) / \hat{B}(p, p)$. Those key observations allow us to finish all the proofs.

The paper is constructed as follows. In Section 2 we prepare the main facts about spinor embedding of isotropic Grassmannian of the vector representation of $S O(7)$. In Section 3 we collect and prove some general facts about G_{2}. In Section 4 we define and study self-self-dual spaces of polynomials. In Section 5 we show that G_{2}-populations are in one-to-one correspondence with self-self-dual spaces. In Section 6 we construct a special basis in a self-self-dual space so that all divided 3-Wronskians, and the 3 -form have a canonical form.

Acknowledgments. E.M. is grateful to A. Varchenko for stimulating discussions.

2. Spinor Embedding

In this section we define two important technical tools of this paper. First we define and study the spinor embedding of isotropic Grassmannian in the vector representation of $S O(7)$ to the projectivization of the spin representation. Then we proceed to the special maps from the spin representation to the vector representation which we call invariant surjections.
2.1. Spin representation. We recall the basic statements about the Clifford algebra and the algebraic group $\operatorname{Spin}(7)$. We generally follow the book of Adams, A. However, our exposition is adapted to the problem of embedding of the Grassmannian of isotropic 3 -spaces in a seven-dimensional space with a symmetric non-degenerate form into the projectivization of the spin representation of $\operatorname{Spin}(7)$.

Let V be a seven-dimensional complex vector space equipped with a non-degenerate quadratic form Q. Let $B(\cdot, \cdot)$ be the bilinear form given by $B(v, w)=Q(v+w)-Q(v)-$ $Q(w)$. Note that $B(v, v)=2 Q(v)$.

By definition, the Clifford algebra $C l(V)$ of V is the quotient of the free tensor algebra $\oplus_{n \geq 0} V^{\otimes n}$ by the two-sided ideal generated by $v \otimes v \oplus Q(v)$ for all $v \in V$. It contains the even Clifford subalgebra $C l^{+}(V)$ given by the the image of the even graded components of the free tensor algebra. Dimensions of $C l(V)$ and $C l^{+}(V)$ are 2^{7} and 2^{6} respectively.

The spinor $\operatorname{group} \operatorname{Spin}(V)$ is defined as the subgroup of the invertible elements g of $C l^{+}(V)$ such that $g V g^{-1}=V$. The group $\operatorname{Spin}(V)$ is a double cover of $S O(V) \cong S O(7)$ with the map given by the above conjugation action on V, see A.

To describe the irreducible representations of $C l(V)$ and $C l^{+}(V)$ we identify these algebras with quotients of group algebras of finite 2 -groups as follows. For any orthonormal basis v_{1}, \ldots, v_{7} of V the images of the elements v_{i} in $C l(V)$ generate a group H of order 2^{8}. The elements of H are of the form $\pm \prod_{i=1}^{7} v_{i}^{r_{i}}$ with $r_{i} \in\{0,1\}$. The defining relations are $v_{i}^{2}=-1$ and $v_{i} v_{j}=-v_{j} v_{i}$ for $i \neq j$. Let H^{+}be the subgroup of H given by the condition $\sum_{i=1}^{7} r_{i}=0(\bmod 2)$. The group H^{+}has index 2 in H, and the order of H^{+} is 2^{7}. We denote by the same letter w the central element -1 in H and H^{+}, we have $w^{2}=1$.

The algebra $C l(V)$ (resp. $\left.C l^{+}(V)\right)$ is the quotient of the group algebra of $H\left(H^{+}\right)$by $w+1$. Consequently, complex representations of $C l(V)$ (resp. $\left.C l^{+}(V)\right)$ are in one-to-one correspondence with representations of H (resp. H^{+}) for which w acts by (-1).

The quotient groups with respect to $\mathbb{Z} / 2 \mathbb{Z}$ subgroups generated by $w, H /\{1, w\}$ and $H^{+} /\{1, w\}$, are abelian 2 -groups of orders 2^{7} and 2^{6} respectively. Therefore, the group algebra of H (resp. H^{+}) has 2^{7} (resp. 2^{6}) one-dimensional representations where w acts by 1. Recall that the irreducible representations of a group algebra are in one-to-one correspondence with conjugacy classes in the group.

Since 7 is an odd number, conjugacy classes in H^{+}are $\{1\},\{w\}\{ \pm h\}$, where $h \in$ $H^{+} /\{1, w\}, h \neq 1$. Thus, there is only one additional representation of H^{+}. Since the sum of squares of dimensions of all irreducible representations equals the order of the group, the dimension of this additional representation d satisfies $d^{2}+2^{6}=2^{7}$ which yields $d=8$. This produces a representation of $C l^{+}(V)$ and $\operatorname{Spin}(V)$ which is called spin representation. We denote this representation \hat{V}.

The conjugacy classes of the group H are $\{1\},\{w\},\left\{w_{1}:=v_{1} v_{2} \ldots v_{7}\right\},\left\{w_{2}:=w w_{1}\right\}$, $\{ \pm h\}$ where $h \in H /\{1, w\}, h \neq 1, h \neq \bar{w}_{1}$. As a result, there are two additional representations of H. On the other hand, we have two surjective group homomorphisms $H \rightarrow H^{+}$given by modding out the central element w_{1} or w_{2}. These homomorphisms produce two non-isomorphic irreducible representations of H of dimension 8 .

The group H admits an outer automorphism α which sends $\prod_{i=1}^{7} v_{i}^{r_{i}}$ to $w^{\sum_{i} r_{i}} \prod_{i=1}^{7} v_{i}^{r_{i}}$. This automorphism permutes the two representations of H. Hence, the irreducible 8dimensional spin representation \hat{V} of $C l^{+}(V)$ and $\operatorname{Spin}(V)$ can be lifted to a representation of the full Clifford algebra $C l(V)$ in two ways that differ by the automorphism α of $C l(V)$ that preserves $C l^{+}(V)$ and multiplies odd degree elements of $C l(V)$ by (-1). In particular, there is an action of elements of V on the space \hat{V}, defined uniquely up to an overall sign.

By the construction, the action of $\operatorname{Spin}(V)$-module V on $\operatorname{Spin}(V)$-module \hat{V} has the following equivariance property

$$
\begin{equation*}
g(v \cdot x)=(g v) \cdot(g x) \tag{2.1}
\end{equation*}
$$

where $g \in \operatorname{Spin}(V), v \in V$ and $x \in \hat{V}$.
Now we describe the representation \hat{V} explicitly. Let \hat{V} be the space of polynomials in the odd variables $\hat{v}_{5}, \hat{v}_{6}, \hat{v}_{7}$. The space \hat{V} has the basis $\left\{\hat{1}, \hat{v}_{5}, \hat{v}_{6}, \hat{v}_{7}, \hat{v}_{5} \hat{v}_{6}, \hat{v}_{6} \hat{v}_{7}, \hat{v}_{5} \hat{v}_{7}, \hat{v}_{5} \hat{v}_{6} \hat{v}_{7}\right\}$.

Choose a basis v_{1}, \ldots, v_{7} of V with the property $B\left(v_{i}, v_{j}\right)=(-1)^{i+1} \delta_{i+j}^{8}$. We will use the convention $Q(v)=\frac{1}{2} B(v, v)$. The algebra $C l(V)$ is the associative \mathbb{C}-algebra with generators v_{i} and relations

$$
\begin{equation*}
v_{i} v_{j}+v_{j} v_{i}=(-1)^{i} \delta_{i+j}^{8} \tag{2.2}
\end{equation*}
$$

Define an action of $C l(V)$ in \hat{V} as follows. We let v_{5}, v_{6}, v_{7} act by multiplications by $\hat{v}_{5}, \hat{v}_{6}, \hat{v}_{7}$ respectively, v_{1}, v_{2}, v_{3} by differentiations $\partial / \partial v_{7},-\partial / \partial v_{6}, \partial / \partial v_{5}$ respectively, and v_{4} by $(-1)^{\mathrm{deg}}$, where deg is the degree of the odd polynomial.

Lemma 2.1. The space \hat{V} is an 8-dimensional irreducible representation of $C l(V)$. In particular, \hat{V} is the spin representation of $\operatorname{Spin}(V)$.

Proof. It is an easy check that equations (2.2) are satisfied. The irreducibility is obvious.

We also need the decomposition of the second symmetric power of \hat{V} into irreducible representations of $\operatorname{Spin}(V)$, see A .

Proposition 2.2. We have the isomorphism of $\operatorname{Spin}(V)$-modules defined uniquely up to scalars

$$
\operatorname{Sym}^{2}(\hat{V}) \cong \mathbb{C} \oplus \Lambda^{3}(V),
$$

where \mathbb{C} is the trivial representation.
We also observe that while $S O(V)$ acts on \hat{V} only projectively, the $\operatorname{Sym}^{2}(\hat{V})$ is an honest representation of $S O(V)$, and therefore the above proposition is also a decomposition of representations of the group $S O(V)$.
2.2. Spinor embedding of isotropic Grassmannian in $\mathbb{P} \hat{V}$. A subspace $U \subset V$ is called isotropic if the the quadratic form Q vanishes on V. Let $I G(3, V)$ denote the Grassmannian of isotropic three-dimensional subspaces in V.

Let $U \subset V$ be an isotropic subspace of V of dimension 3. Let $L_{U} \subset \hat{V}$ be the common kernel of elements of U acting on \hat{V} :

$$
L_{U}:=\{x \in \hat{V} \mid v \cdot x=0, v \in U\}
$$

Here $v \cdot x$ is the action of $v \in V$ on $x \in \hat{V}$. The action is defined up to a sign, therefore the space L_{U} is well defined.

For any complex vector space W we denote by $\mathbb{P} W$ the corresponding projective space, thought of as the space of lines in W. For any non-zero $w \in W$ we have $\mathbb{C} w \in \mathbb{P} W$.

Theorem 2.3. For every isotropic 3-subspace $U \subset V$ the space L_{U} is one-dimensional. The map $\rho: I G(3, V) \rightarrow \mathbb{P} \hat{V}$, sending $U \mapsto L_{U}$ is a $\operatorname{Spin}(V)$-equivariant embedding whose image is a smooth degree two hypersurface in $\mathbb{P} \hat{V}$.

We will call the map ρ the spinor embedding.

Proof. Let v_{1}, v_{2}, v_{3} be a basis of U. We extend it to a basis of V such that $B\left(v_{i}, v_{j}\right)=$ $(-1)^{i+1} \delta_{i+j}^{8}$ and use the model of \hat{V} as in Lemma 2.1.

It is an easy calculation to see that $L_{U}=\mathbb{C} \hat{1}$ and is therefore one-dimensional and the first part of theorem is proved.

Now that the map ρ is constructed, we will show that it is an injection. Let U_{1} and U_{2} be two isotropic 3-subspaces of V such that $L_{U_{1}}=L_{U_{2}}$. We can assume that $U_{1}=$ $\operatorname{Span}\left(v_{1}, v_{2}, v_{3}\right)$ and representation \hat{V} is written explicitly as above. It is clear that the only elements of V that annihilate $L_{U_{1}}=\mathbb{C} \hat{1}$ are the ones from U_{1}, so $U_{1}=U_{2}$.

To calculate the image of ρ observe that for any element z of \hat{V} its annihilator in V is an isotropic subspace. Indeed, an anticommutator of two elements of annihilator must be zero on z, but anticommutators are given by the pairing. So the necessary and sufficient condition on z to come from an isotropic 3-space is to have the dimension of its annihilator at least 3 (which will then be exactly 3 by the above argument). We do this calculation explicitly. If

$$
z=\alpha_{\emptyset} \hat{1}+\alpha_{5} \hat{v}_{5}+\alpha_{6} \hat{v}_{6}+\alpha_{7} \hat{v}_{7}+\alpha_{56} \hat{v}_{5} \hat{v}_{6}+\alpha_{67} \hat{v}_{6} \hat{v}_{7}+\alpha_{57} \hat{v}_{5} \hat{v}_{7}+\alpha_{567} \hat{v}_{5} \hat{v}_{6} \hat{v}_{7}
$$

and $v=\sum_{i=1}^{7} \beta_{i} v_{i}$ then $v \cdot z=0$ if and only if

$$
\left(\begin{array}{ccccccc}
-\alpha_{7} & \alpha_{6} & -\alpha_{5} & \frac{1}{\sqrt{2}} \alpha_{\emptyset} & 0 & 0 & 0 \\
\alpha_{57} & -\alpha_{56} & 0 & -\frac{1}{\sqrt{2}} \alpha_{5} & \alpha_{\emptyset} & 0 & 0 \\
\alpha_{67} & 0 & -\alpha_{56} & -\frac{1}{\sqrt{2}} \alpha_{6} & 0 & \alpha_{\emptyset} & 0 \\
0 & \alpha_{67} & -\alpha_{57} & -\frac{1}{\sqrt{2}} \alpha_{7} & 0 & 0 & \alpha_{\emptyset} \\
-\alpha_{567} & 0 & 0 & \frac{1}{\sqrt{2}} \alpha_{56} & \alpha_{6} & -\alpha_{5} & 0 \\
0 & 0 & -\alpha_{567} & \frac{1}{\sqrt{2}} \alpha_{67} & 0 & \alpha_{7} & -\alpha_{6} \\
0 & -\alpha_{567} & 0 & \frac{1}{\sqrt{2}} \alpha_{57} & \alpha_{7} & 0 & -\alpha_{5} \\
0 & 0 & 0 & -\frac{1}{\sqrt{2}} \alpha_{567} & \alpha_{67} & -\alpha_{57} & \alpha_{56}
\end{array}\right)\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4} \\
\beta_{5} \\
\beta_{6} \\
\beta_{7}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Hence $\mathbb{P C} z$ is in the image of ρ if and only if the rank of the above matrix is at most 4 . Two 7×7 determinants of this matrix obtained by removing the first and the last row are

$$
\begin{aligned}
D_{1} & =-\frac{1}{\sqrt{2}} \alpha_{567}\left(\alpha_{\emptyset} \alpha_{567}+\alpha_{6} \alpha_{57}-\alpha_{7} \alpha_{56}-\alpha_{67} \alpha_{5}\right)^{3} \\
D_{8} & =\frac{1}{\sqrt{2}} \alpha_{\emptyset}\left(\alpha_{\emptyset} \alpha_{567}+\alpha_{6} \alpha_{57}-\alpha_{7} \alpha_{56}-\alpha_{67} \alpha_{5}\right)^{3}
\end{aligned}
$$

So the image of ρ must be contained in the union of the hypersurface

$$
\begin{equation*}
\alpha_{\emptyset} \alpha_{567}+\alpha_{6} \alpha_{57}-\alpha_{7} \alpha_{56}-\alpha_{67} \alpha_{5}=0 \tag{2.3}
\end{equation*}
$$

and the subspace $\alpha_{\emptyset}=\alpha_{567}=0$. By an easy dimension count, the dimension of $\operatorname{IG}(3, V)$ is 6 . Hence, the image of ρ is a hypersurface, so it must coincide with the smooth conic above. We also note that $I G(3, V)$ is smooth, since it is a variety with a transitive action of $S O(V)$, which implies that ρ is an embedding. Finally, this embedding is equivariant by construction and (2.1).

Remark 2.4. In view of Proposition 2.2 it is clear that the image of ρ is given by the dual of the one-dimensional subrepresentation \mathbb{C} of $\operatorname{Sym}^{2}(\hat{V})$. Indeed, the image of ρ is given by an element of $\operatorname{Sym}^{2}\left(\hat{V}^{*}\right)$ which is invariant under the action of $\operatorname{Spin}(V)$, perhaps up to a constant. Therefore it is the dual of the trivial one-dimensional subrepresentation of $\operatorname{Sym}^{2}(\hat{V})$.
2.3. Spinor embedding and Plücker embedding. Recall the spinor embedding ρ of the isotropic Grassmannian $I G(3, V)$ to $\mathbb{P} \hat{V}$ described in Theorem 2.3, Let $\mathcal{O}(1)$ be the tautological line bundle on $\mathbb{P} \hat{V}$. We denote by $\mathcal{O}_{I G(3, V)}(1)$ the line bundle on $I G(3, V)$ obtained as the pullback of the line bundle $\mathcal{O}(1)$ on $\mathbb{P} \hat{V}$ under the embedding ρ. Let $\mathcal{O}_{I G(3, V)}(2)$ be the line bundle obtained as a square of $\mathcal{O}_{I G(3, V)}(1)$.

Another standard embedding of $I G(3, V)$ is the Plücker embedding $I G(3, V) \rightarrow \mathbb{P}^{34}$ given by $U \mapsto \mathbb{C} \Lambda^{3}(U) \in \mathbb{P} \Lambda^{3} V \cong \mathbb{P}^{34}$.

Recall that we have $V \cong V^{*}$ as $\operatorname{Spin}(V)$-modules and $\operatorname{Sym}^{2}\left(V^{*}\right)=\mathbb{C} \oplus \Lambda^{3}(V)$, see Proposition [2.2. The following proposition connects these two embeddings.

Proposition 2.5. The Plücker embedding is given by the full linear system of global sections of $\mathcal{O}_{I G(3, V)}(2)$.

Proof. Let $\mathcal{O}, \mathcal{O}(-2)$ and $\mathcal{O}_{I G(3, V)}$ be the sheaves of all functions on $\mathbb{P} \hat{V}$, functions on $\mathbb{P} \hat{V}$ vanishing on the image of ρ and functions on $\operatorname{IG}(3, V)$ respectively. We have a short exact sequence of coherent sheaves on $\mathbb{P} \hat{V}$

$$
0 \rightarrow \mathcal{O}(-2) \rightarrow \mathcal{O} \rightarrow \rho_{*} \mathcal{O}_{I G(3, V)} \rightarrow 0 .
$$

We tensor multiply it by $\mathcal{O}(2)$ and get

$$
0 \rightarrow \mathcal{O} \rightarrow \mathcal{O}(2) \rightarrow \rho_{*} \mathcal{O}_{I G(3, V)}(2) \rightarrow 0
$$

We take the corresponding long exact sequence in cohomology. Since $H^{1}(\mathbb{P} \hat{V}, \mathcal{O})=0$ we see that the sections of $\mathcal{O}_{I G(3, V)}(2)$ are given by the quotient of $S y m^{2}\left(\hat{V}^{*}\right)$ by the equation of the image of the spinor embedding. By Remark [2.4 and Proposition 2.2, this space is isomorphic as a $\operatorname{Spin}(V)$ representation to $\Lambda^{3} V \cong \Lambda^{3}\left(V^{*}\right)$. As a result, the global sections of $\mathcal{O}_{I G(3, V)}(2)$ define a $\operatorname{Spin}(V)$-equivariant map to $\mathbb{P} \Lambda^{3} V$.

The image of $I G(3, V)$ is a six-dimensional orbit of $S O(V)$, and the stabilizer of the point which corresponds to $U \subset V$ coincides with the stabilizer of U. One can see that the only fixed point of the stabilizer of U in $\mathbb{P} \Lambda^{3} V$ is $\mathbb{C} \Lambda^{3} U$, which means that the map of the global sections of $\mathcal{O}(2)$ is precisely the Plücker embedding.
2.4. Properties of the image of the spinor embedding. Choose a non-zero quadratic form \hat{Q} on \hat{V} which vanishes on $\rho(I G(3, V))$. We denote by $I \subset V$ and $\hat{I} \subset \hat{V}, \mathbb{C} \hat{I}=$ $\rho(I G(3, V))$ the sets of isotropic vectors with respect to Q and \hat{Q} respectively. We denote by \hat{B} the bilinear form associated to \hat{Q}. We will also make a choice of the action of V on \hat{V} (as mentioned earlier these choices differ by an overall sign only). We use calculations of Theorem [2.3 to prove some easy results about these forms and the action.

Proposition 2.6. For any $v \in V, p, q \in \hat{V}$ there holds $\hat{B}(v \cdot p, q)=-\hat{B}(p, v \cdot q)$.
Proof. By linearity, it is sufficient to show this statement for v with $Q(v)=-\frac{1}{2}$. Every such v can be given by v_{4} in some basis as in Lemma 2.1 and we use the corresponding model of \hat{V}. It is then sufficient to check the statement for basic vectors p and q in \hat{V}. Since the action of v_{4} on the basis elements is diagonal with entries $(-1)^{\operatorname{deg}} \frac{1}{\sqrt{2}}$, we have

$$
\hat{B}(v \cdot p, q)=(-1)^{\operatorname{deg} p-\operatorname{deg} q} \hat{B}(p, v \cdot q)
$$

It remains to observe from the explicit formula (2.3) that $\hat{B}(p, q)=0$ unless $\operatorname{deg}(p)+$ $\operatorname{deg}(q)=3$.

Corollary 2.7. For all $v \in V$ and $p \in \hat{V}$ we have $\hat{B}(v \cdot p, p)=0$.
Proof. $\hat{B}(v \cdot p, p)=-\hat{B}(p, v \cdot p)=-\hat{B}(v \cdot p, p)$.
Corollary 2.8. For all $v \in V$ and $p, q \in \hat{V}$ we have $\hat{B}(v \cdot p, v \cdot q)=Q(v) \hat{B}(p, q)$.
Proof. $\hat{B}(v \cdot p, v \cdot q)=-\hat{B}\left(v^{2} \cdot p, q\right)=-\hat{B}(-Q(v) p, q)=Q(v) \hat{B}(p, q)$.
Corollary 2.9. For all $p \in \hat{V}$ and $u, v \in V$ there holds $\hat{B}(u \cdot p, v \cdot p)=B(u, v) \hat{Q}(p)$.
Proof. We have $\hat{B}(v u \cdot p, p)=-\hat{B}(u \cdot p, v \cdot p)=-\hat{B}(v \cdot p, u \cdot p)=\hat{B}(u v \cdot p, p)$. So $\hat{B}(u \cdot p, v \cdot p)=-\frac{1}{2} \hat{B}((u v+v u) \cdot p, p)=-\frac{1}{2} \hat{B}(-B(u, v) p, p)=B(u, v) \hat{Q}(p)$.
Proposition 2.10. Let $u \in I$ be an isotropic vector acting on \hat{V}. Then we have $\operatorname{Ker}(u)=$ $\operatorname{Im}(u) \subset \hat{I} \subset \hat{V}, \operatorname{dim}(\operatorname{Ker}(u))=4$. Moreover, $\mathbb{P} \operatorname{Ker}(u) \in \mathbb{P} \hat{V}$ coincides with $\rho(\{U \in$ $I G(3, V) \mid u \in U\})$.

Proof. We complete u to a basis of V as in Lemma 2.1] so that $u=v_{1}$. If we pick the corresponding basis in \hat{V} then the $u \cdot \hat{V}$ is the span of $\hat{1}, \hat{v}_{5}, \hat{v}_{6}, \hat{v}_{5} \hat{v}_{6}$ which is easily seen to belong to \hat{I}. It is clearly the kernel of u.

Moreover if $U \in I G(3, V)$ and $\mathbb{C} p=\rho(U)$ then the space of elements in V which kill p is exactly U. Therefore $u \cdot p=0$ if and only if $u \in U$.

Proposition 2.11. Let $p \in \hat{V}$ be a non-isotropic vector. Then $V \cdot p$ is the orthogonal complement of p in \hat{V} under \hat{Q}.

Proof. By Corollary 2.7 the space $V \cdot p$ is orthogonal to p. So we need to show that $V \cdot p$ has dimension 7. Suppose $v \cdot p=0$ for some v. Then $Q(v) p=-v^{2} \cdot p=0$ so $v \in I$. By Proposition 2.10 $p \in \operatorname{Ker}(v) \subset \hat{I}$, which contradicts the condition that p is non-isotropic.
2.5. Invariant surjections. A linear surjective map $\psi: \hat{V} \rightarrow V$ is called an invariant surjection if there exists $p \in \hat{V}$ such that $\psi(p)=0$ and $\psi(v \cdot p)=v$.
Lemma 2.12. If ψ be an invariant surjection then p is non-isotropic.

Proof. If p was isotropic then we would have a non-zero $u \in V$ such that $u \cdot p=0$ which gives a contradiction: $0=\psi(u \cdot p)=u$.

Let V_{1}, V_{2} be linear spaces. We call a map of projective spaces $\mathbb{P} \pi: \mathbb{P} V_{1} \rightarrow \mathbb{P} V_{2} a$ projection if it is induced from a surjective linear map of linear spaces $\pi: V_{1} \rightarrow V_{2}$.

Let $\psi: \hat{V} \rightarrow V$ be an invariant surjection and let $\mathbb{P} \psi: \mathbb{P} \hat{V} \rightarrow \mathbb{P} V$ be the induced projection. Let $\mu_{\psi}: I G(3, V) \rightarrow \mathbb{P} V$ be the composition of spinor embedding ρ : $I G(3, V) \rightarrow \mathbb{P} \hat{V}$ and $\mathbb{P} \psi$.

Proposition 2.13. For any isotropic $v \in V$ the equation $\mu_{\psi}(U)=\mathbb{C} v$ has a unique solution $U \in \operatorname{IG}(3, V)$. Moreover $v \in U$.

For any non-isotropic $v \in V$ the equation $\mu_{\psi}(U)=\mathbb{C} v$ has exactly two solutions $U_{1}, U_{2} \in$ $I G(3, V)$. Moreover $U_{1}+U_{2}=U_{1} \oplus U_{2}=v^{\perp}$.

Proof. Recall that the image of the spinor embedding is the set of isotropic vectors $\hat{I} \subset \hat{V}$.
Let v be a non-zero element in V. The preimage of $\mathbb{C} v$ in \hat{V} is spanned by p and $v \cdot p$. We have $\hat{B}(p, v \cdot p)=0$ by Corollary 2.7. A linear combination $\alpha p+\beta v \cdot p$ is in \hat{I} if and only if (we use Corollary 2.8)

$$
\begin{equation*}
\hat{Q}(\alpha p+\beta v \cdot p)=\hat{Q}(p, p)\left(\alpha^{2}+Q(v) \beta^{2}\right)=0 \tag{2.4}
\end{equation*}
$$

If v is isotropic we have $\alpha=0$ and therefore there is a unique space $U \in I G(3, V)$ such that $\mu(U)=\mathbb{C} v$. Moreover, since $v \cdot p$ is in $\operatorname{Ker}(v)$, we get $v \in U$ by Proposition 2.10,

If v is not isotropic, then there are exactly two linear combinations (up to a scalar), satisfying (2.4) which give two spaces $U_{1}, U_{2} \in I G(3, V)$ such that $\mu\left(U_{1}\right)=\mu\left(U_{2}\right)=\mathbb{C} v$. Observe that $U_{1} \cap U_{2}=0$. Indeed, if $u \in U_{1} \cap U_{2}$ then u kills both $\rho\left(U_{1}\right)$ and $\rho\left(U_{2}\right)$ and therefore kills p which is a contradiction.

Finally let $u \in U_{1}$. Then for α, β as above, we have $u \cdot(\alpha p+\beta v \cdot p)=0$. It follows that $(\alpha-\beta v) u \cdot p=B(u, v) p$. The left hand side is isotropic in the sense of \hat{Q}, because $\hat{Q}(u \cdot p)=Q(u) \hat{Q}(p)=0, \hat{Q}(v u \cdot p)=Q(u) Q(v) \hat{Q}(p)=0$ and $\hat{B}(u \cdot p, v u \cdot p)=0$ by Corollary 2.7. Since p is non-isotropic, we obtain $B(u, v)=0$. Therefore $v \perp U_{1}$. Similarly $v \perp U_{2}$.

The following theorem provides a criterion for invariant surjections.
Theorem 2.14. Let $\psi: \hat{V} \rightarrow V$ be a surjective map with kernel spanned by a nonisotropic $p \in \hat{V}$. Then ψ is an invariant surjection if and only if for a generic $u \in V$ there exists an isotropic dimension 3 subspace $U \subset V$ such that $u \perp U$ and $\mu_{\psi}(U)=\mathbb{C} u$.
Proof. The only if part follows from Proposition 2.13,
Now we show the if part of the theorem. Consider the subset Z of $I G(3, V)$ which consists of U such that $\mu_{\psi}(U) \perp U$. Clearly, this is an algebraic subset. On the other hand, it has dimension at least 6 , so the irreducibility of $I G(3, V)$ implies that $Z=I G(3, V)$ and $\mu_{\psi}(U) \perp U$ for all U. In particular, if $u=\mu_{\psi}(U)$ is isotropic then $u \in U$, since there are no isotropic 4-subspaces of V. This implies $u \cdot \rho(U)=0$.

The preimage of u under ψ contains p and $\rho(U)$. Since $u \cdot p \neq 0$, the only solution up to scaling of $u \cdot \rho(q)=0$ for $\mathbb{C} \psi(q)=\mathbb{C} u$ is $\rho(U)$. This implies that $\rho(U) \perp p$, since otherwise there would be two such solutions. This characterizes $\rho(U)$ as the intersection of $\psi^{-1} \mathbb{C} u$ and $V \cdot p$.

Denote by $g: V \rightarrow V$ the map $g(v)=\psi(v \cdot p)$. Surjectivity of ψ and Proposition 2.11 imply that g is invertible, and we denote its inverse by h. We have $\psi(h(u) \cdot p)=u$, which implies that $\mathbb{C} h(u) \cdot p=\rho(U)$ and $u h(u) \cdot p=0$ for all isotropic $u \in I$.

Let q_{1}, \ldots, q_{8} be some basis in \hat{V}. Write $u h(u) \cdot p=\sum_{i=1}^{8} a_{i}(u) q_{i}$ where $a_{i}(u) \in \mathbb{C}$. For every linear function $r: \hat{V} \rightarrow \mathbb{C}$, we have a quadratic function $r(u h(u) \cdot p)$ on V which vanishes on I. Hence, it is proportional to Q. In particular $a_{i}(u)=c_{i} Q(u)$ for some $c_{i} \in \mathbb{C}$. Therefore there exists an element $p_{1}=\sum_{i=1}^{8} c_{i} q_{i} \in \hat{V}$ such that for all $u \in V$

$$
u h(u) \cdot p=Q(u) p_{1}=-u^{2} \cdot p_{1} .
$$

Since for generic u its action on \hat{V} has no kernel, we get

$$
\begin{equation*}
h(u) \cdot p=-u \cdot p_{1} \tag{2.5}
\end{equation*}
$$

for all $u \in V$. This implies that $V \cdot p=V \cdot p_{1}$. By passing to the orthogonal complement, we get $p_{1}=c p$, which means that $h(u)$ is a multiple of the identity. We can scale p to get $h(u)=u$, which implies that ψ is an invariant surjection.

We will need the following technical lemma later.
Lemma 2.15. For any $c \in \mathbb{C}^{*}$, the set $\{v \in \hat{V} \mid \hat{Q}(v)=c\}$ is an orbit of $\operatorname{Spin}(V)$.
Proof. It is enough to show that any two points p_{1}, p_{2} in $\mathbb{P} \hat{V}$ lie in the same orbit of $\operatorname{Spin}(V)$. Indeed, then every vector can be translated to a multiple of another vector. If vectors have the same length, this multiple is ± 1, and the lemma follows since $-\mathbf{i d} \in$ $\operatorname{Spin}(V)$.

Let p_{1} and p_{2} be two points in $\mathbb{P} \hat{V}-\hat{I}$. Draw generic lines l_{i} through p_{i} so that the line p_{i} intersects the conic \hat{I} at two distinct points $q_{i, 1}$ and $q_{i, 2}$. These points correspond to isotropic vector spaces $U_{i, 1}$ and $U_{i, 2}$.

Proposition 2.13, applied to an invariant surjection corresponding to point on V which is on the line p_{i}, assures that $U_{i, 1}$ does not intersect $U_{i, 2}$.

Therefore there exists an element of $S O(V)$ which maps $U_{1,1}$ to $U_{2,1}$ and $U_{1,2}$ to $U_{2,2}$. The corresponding elements of $\operatorname{Spin}(V)$ will map p_{1} to some point p_{3} on the line l_{2}. It remains to observe that the elements of $S O(V)$ that multiply all vectors in $U_{2,1}$ by λ, vectors in $U_{2,2}$ by λ^{-1} and fix the orthogonal complement $\left(U_{1} \oplus U_{2}\right)^{\perp}$ act transitively on the non-isotropic points in l_{2}. Indeed, such elements scale the corresponding vectors in \hat{V} with coefficients $\pm \sqrt{\lambda}$ and $\pm \sqrt{\lambda^{-1}}$ respectively.
2.6. A 3-form. Let $\psi: \hat{V} \rightarrow V$ be an invariant surjection. In this section we define and study the trilinear skew-symmetric 3 -form that corresponds to ψ.

Let non-isotropic $p \in \hat{V}$ span the kernel of ψ. We define a trilinear from w_{ψ} by:

$$
w_{\psi}(a, b, c)=\hat{B}(a b c \cdot p, p)(\hat{Q}(p))^{-1}
$$

for all $a, b, c \in V$. Note that the definition of w_{ψ} does not depend on the choice of non-zero p in the kernel of ψ.

Proposition 2.16. The form w_{ψ} is a trilinear skew-symmetric 3-form.
Proof. We check the skew-symmetry (we use relations in Clifford algebra and Corollary 2.7):

$$
\begin{aligned}
& \hat{B}(a b c \cdot p, p)+\hat{B}(b a c \cdot p, p)=-\hat{B}(B(a, b) c \cdot p, p)=0 \\
& \hat{B}(a b c \cdot p, p)+\hat{B}(a c b \cdot p, p)=-\hat{B}(B(b, c) a \cdot p, p)=0
\end{aligned}
$$

Lemma 2.17. Let $v \in V$ be an isotropic vector. Let U be the kernel of the skew-symmetric 2-form $w_{\psi}(v, \cdot, \cdot)$. Then U is the unique 3-dimensional isotropic space such that $\mu_{\psi}(U)=$ $\mathbb{C} v$. In particular, $v \in U$.

Proof. By Proposition [2.13] the space $U \in I G(3, V)$ such that $\rho(U)=\mathbb{C} v \cdot p$ is unique. Moreover $v \in U$.

By the definition of ρ and by the fact that the subspace of V which kills the isotropic vector $v \cdot p \in \hat{V}$ is 3-dimensional, we obtain $u \in U$ if and only if $u v \cdot p=0$.

If $u \in U$ then for any $a \in V$, we get

$$
w_{\psi}(a, u, v)=\hat{B}(a u v \cdot p, p)=\hat{B}(0, p)=0
$$

Therefore $U \subset \operatorname{Ker} w_{\psi}(v, \cdot, \cdot)$.
If for all $a \in V, w_{\psi}(a, u, v)=0$ then by Proposition 2.6

$$
0=w_{\psi}(a, u, v)=\hat{B}(a u v \cdot p, p)=-\hat{B}(u v \cdot p, a \cdot p) .
$$

But $V \cdot p=p^{\perp}$ by Proposition [2.11, hence $u v \cdot p=\alpha p$ for some $\alpha \in \mathbb{C}$. But $\hat{Q}(u v \cdot p)=$ $Q(u) Q(v) \hat{Q}(p)=0$, therefore $\alpha=0$, and $u v \cdot p=0$. It follows that Ker $w_{\psi}(v, \cdot, \cdot) \subset U$.

Lemma 2.18. Let $v \in V$ be a non-isotropic vector. Then the kernel of the skew-symmetric 2 -form $w_{\psi}(v, \cdot, \cdot)$ is one-dimensional and is spanned by v.

Proof. Suppose there is $u \in V$ such that for all $u_{1} \in V$ we have

$$
\hat{B}\left(u_{1} v u \cdot p, p\right)=0
$$

We rewrite this as $\hat{B}\left(v u \cdot p, u_{1} \cdot p\right)=0$, which implies $v u \cdot p=\alpha p$ for some $\alpha \in \mathbb{C}$. Acting on both sides by v, we obtain $-Q(v) u \cdot p=\alpha v \cdot p$. Since p is non-isotropic we have $-Q(v) u=\alpha v$.

3. Group G_{2}

This section collects some facts about G_{2}. We believe that most of these facts are standard and known. However in some cases we failed to find an adequate reference and therefore we provide the proofs.
3.1. Definition of G_{2}. Let g_{2} be the semisimple complex Lie algebra with Cartan matrix

$$
\left(\begin{array}{rr}
2 & -3 \\
-1 & 2
\end{array}\right)
$$

We have $\operatorname{dim} g_{2}=14$.
To describe the irreducible modules we choose a Cartan subalgebra spanned by coroots $\alpha_{1}^{\vee}, \alpha_{2}^{\vee}$. For $m, n \geq 0$, denote $L_{m, n}$ the irreducible highest module of highest weight $m \omega_{1}+n \omega_{2}$ where ω_{i} are fundamental weights $\left\langle\omega_{i}, \alpha_{j}^{V}\right\rangle=\delta_{i}^{j}$. All irreducible modules have such form. The dimension of $L_{m, n}$ is given by the Weyl formula:

$$
\operatorname{dim} L_{m, n}=\frac{1}{120}(m+1)(n+1)(m+n+2)(m+2 n+3)(m+3 n+4)(2 m+3 n+5) .
$$

In particular $\operatorname{dim} L_{0,0}=1, \operatorname{dim} L_{1,0}=7, \operatorname{dim} L_{0,1}=14$, $\operatorname{dim} L_{2,0}=27$. We call the representations $L_{0,0}$ and $L_{1,0}$ trivial and vector representations respectively.

Let G_{2} be the connected, simply-connected complex Lie group with Lie algebra g_{2}.
Let V be the 7 -dimensional space with a non-degenerate bilinear symmetric form B as before. Let \hat{V} be the spinor representation of $\operatorname{Spin}(V)$. The following fact is a \mathbb{C}-analog of (A) Theorem 5.5].

Lemma 3.1. Let $p \in \hat{V}$ be non-isotropic. Then G_{2} is isomorphic to the subgroup of $\operatorname{Spin}(V)$ which fixes v.
Proof. The stabilizer of p is unaffected by scaling p. Hence, by Lemma 2.15, the statement of this lemma is sufficient to check for any non-isotropic p.

In view of A. Theorem 5.5], the Lie algebra of the compact real Lie group G_{2} sits inside that of real $\operatorname{Spin}(7)$. Consequently, the same is true for complex Lie algebras which by exponentiation implies that there is a map $G_{2} \rightarrow \operatorname{Spin}(V)$ with a finite kernel. The determinant of the Cartan matrix of g_{2} is 1 and therefore the root and the weight lattices of g_{2} coincide. Then by [GOV, Chapter 3, section 2.5], G_{2} does not have finite subgroups and our map is injective.

Since \hat{V} is a representation of $\operatorname{Spin}(V)$, it must split into representations of G_{2}, which can only be one copy of a trivial and one copy of a 7 -dimensional representation. Hence there is an element $p \in \hat{V}$ whose stabilizer in $\operatorname{Spin}(V)$ contains G_{2}. If p was isotropic, then the Lie algebra g_{2} would act non-trivially on the tangent space to $\mathbb{C} p$ inside $\mathbb{P} \hat{I}$, which is six-dimensional. This is impossible, which implies that p is non-isotropic.

It remains to show that the stabilizer G of p in $\operatorname{Spin}(V)$ can not be bigger than G_{2}. In view of the dimension count this can only happen if G is disconnected. Denote by X the orbit of p, which is isomorphic to the affine conic $\hat{Q}(*)=\hat{Q}(p)$ by Lemma 2.15. The
$\operatorname{group} \operatorname{Spin}(V)$ is isomorphic to a fibration over X with fiber G. The exact sequence of homotopy groups gives an exact sequence $\pi_{1}(X) \rightarrow \pi_{0}(G) \rightarrow \pi_{0}(\operatorname{Spin}(V))$, so it is enough to check that $\pi_{1}(X)$ is trivial.

The variety X is an orbit of $S O(\hat{V}) \cong S O(8)$. The stabilizer of p for the $S O(\hat{V})$ action is isomorphic to $S O\left(\mathbb{C} p^{\perp}\right) \cong S O(7)$. We have

$$
\pi_{1}(S O(7)) \rightarrow \pi_{1}(S O(8)) \rightarrow \pi_{1}(X) \rightarrow 1
$$

The first map is an isomorphism, since it is induced by the embedding $\operatorname{Spin}(7) \rightarrow \operatorname{Spin}(8)$. This shows that $\pi_{1}(X)$ is trivial and finishes the argument.

We also use the projective version of this statement.
Lemma 3.2. The subgroup G of $\operatorname{Spin}(V)$ that fixes the point $\mathbb{C} p$ in $\mathbb{P} \hat{V}$ is disconnected. The connected component of identity has index 2 and is isomorphic to the group G_{2}.

Proof. Suppose that $g \in \operatorname{Spin}(V)$ satisfies $g \mathbb{C} p=\mathbb{C} p$. This implies $g p=c p$ for some constant c. Since g preserves \hat{Q}, we get $c= \pm 1$. The connected component of identity is characterized by $c=1$ and therefore consists of elements of $\operatorname{Spin}(V)$ that fix p. On the other hand, $\left(-i d_{\hat{V}}\right)$ is an element of $\operatorname{Spin}(V)$ that has $c=-1$, which implies that the index of the $c=1$ subgroup is precisely two.

We remark that in terms of the projective action of $S O(V)$ on $\mathbb{P} \hat{V}$ the isotropy subgroup of the point $\mathbb{C} p$ is isomorphic to G_{2}. This is because the map $\operatorname{Spin}(V) \rightarrow S O(V)$ has kernel $\{ \pm 1\}$. In particular G_{2} is a subgroup of $S O(V)$ and acts on V. Therefore V is the vector representation of G_{2}.
3.2. G_{2} and 3 -forms. We choose an identification $\Lambda^{7} V \cong \mathbb{C}$. A skew-symmetric 3-form w on V and a bilinear symmetric 2 -form b on the 7 -dimensional space V are called associated if there exists a non-zero constant $c \in \mathbb{C}$, such that for every two vectors $v_{1}, v_{2} \in V$ we have $b\left(v_{1}, v_{2}\right)=c w\left(v_{1}, *, *\right) \wedge w\left(v_{2}, *, *\right) \wedge w(*, *, *)$.

A skew-symmetric 3 -form on V is called non-degenerate if it is associated to a nondegenerate 2-form.
Lemma 3.3. Let V be a vector representation of G_{2}. Then

- The space of G_{2}-invariant skew-symmetric three-forms on V is one-dimensional. Any such form is non-degenerate.
- The space of G_{2}-invariant symmetric bilinear 2-forms on V is one-dimensional. Any such form is non-degenerate.
In particular, any non-zero G_{2}-invariant skew-symmetric three-form on V is associated to any G_{2}-invariant symmetric bilinear 2-form.

Proof. We have the following decompositions of G_{2}-modules:

$$
\operatorname{Sym}^{2}(V) \cong L_{2,0} \oplus L_{0,0}, \quad \Lambda^{3}(V) \cong L_{2,0} \oplus L_{1,0} \oplus L_{0,0} .
$$

These decompositions are easy to establish using the known dimensions of $L_{m, n}$ and the weight decompositions of each module.

It follows that the spaces of symmetric 2 -forms and skew-symmetric 3-forms are onedimensional. The bilinear form associated to a G_{2}-invariant 3 -form is G_{2}-invariant.

So, we only have to show the G_{2}-invariant skew-symmetric form is non-degenerate. Since the bilinear form b is a multiple of the non-degenerate form B, we simply need to show that the bilinear form associated to the G_{2}-invariant skew-symmetric 3 -form is non-zero. We use the multiple of the 3-form of Proposition 2.16 given by $w(a, b, c)=$ $\hat{B}(a b c \cdot p, p)$ where $G_{2}=G_{2}(p)$ is realized as the subgroup of $\operatorname{Spin}(V)$ that fixes $p \in \hat{V}$.

Consider a non-isotropic vector $v \in V$ and the skew-symmetric 6 -form in $V / \mathbb{C} v$ given by $w(v, *, *) \wedge w(v, *, *) \wedge w(v, *, *)$. It is sufficient to show that this 6 -form is non-zero, since this will show that $b(v, v) \neq 0$. By Lemma 2.18 the form $w(v, *, *)$ is non-degenerate, so its cube is non-zero.

Let ψ_{p} be an invariant surjection from a non-isotropic vector p and let $G_{2}(p)$ be the group preserving p. Recall that we constructed a skew-symmetric trilinear form w_{ψ} on V in Section [2.6.

Proposition 3.4. The form w_{ψ} is a non-zero $G_{2}(p)$-invariant 3-form. In particular w_{ψ} is associated to B.

Proof. The form w_{ψ} is $G_{2}(p)$-invariant because p and \hat{B} are $G_{2}(p)$-invariant. The form w_{ψ} is clearly non-zero in view of Proposition 2.11.

The rest follows from Lemma 3.3.
Lemma 3.5. For a G_{2}-invariant non-degenerate skew-symmetric three-form w the subgroup G of $S L(V)$ that preserves w is equal to G_{2}.

Proof. Clearly, $G \supseteq G_{2}$. Since G preserves the associated non-degenerate symmetric bilinear form B, it lies in $S O(V)$.

We can assume that w is given by $\hat{B}(a b c \cdot p, p)$. By Lemma 2.17 the action of g on \hat{V} preserves the set of $\operatorname{Ker} w(v, *, *)$ for isotropic $v \in V$. Hence it preserves the linear span $V \cdot p$ of this set. It then preserves the orthogonal complement of $V \cdot p$ which is the span of p by Proposition [2.11] Lemma 3.2 then finishes the proof.

Corollary 3.6. The $S L(V)$ orbit of a G_{2}-invariant non-degenerate skew-symmetric threeform on V is a dense open subset in the projective space of all non-zero skew-symmetric three-forms on V up to scaling.

Proof. The dimension of the $S L(V)$ orbit of w is equal to $\operatorname{dim} S L(V)-\operatorname{dim} G_{2}=48-14=$ $34=\operatorname{dim} \mathbb{P} \Lambda^{3}\left(V^{*}\right)$, which shows that the orbit is dense.

For the sake of the completeness of exposition we prove a stronger fact, which will not be used in the rest of the paper. Namely, we now show that every non-degenerate skew-symmetric three-form on V lies in this $S L(V)$ orbit, up to scaling. This implies that every non-degenerate skew-symmetric three-form is G_{2}-invariant for some $G_{2} \subset S L(V)$.

Proposition 3.7. Let w be a trilinear skew-symmetric 3-form on V associated to B. Then the subgroup of $S L(V)$ which preserves w is isomorphic to G_{2}.

Proof. Let w be a non-degenerate skew-symmetric three-form and let B be the associated non-degenerate bilinear symmetric form. Clearly, the group G that preserves w must preserve B as well, so it must lie in $S O(V)$.

The argument of the last paragraph of the proof of Lemma 3.3 shows that for every element $v \in V$ the bilinear form $B(v, v)$ is zero if and only if skew-symmetric bilinear form $w(v, *, *)$ on $V / \mathbb{C} v$ has zero kernel. This implies that if $w(u, v, *)$ is zero then u and v are both isotropic. Therefore, for any $u \in I$, the kernel of $w(u, *, *)$ consists of isotropic vectors of B and hence has dimension at most three. Consequently, the dimension of the kernel of $w(u, *, *)$ is three if u is isotropic and one if u is not. In both cases the kernel contains u.

The above discussion produces a map $\phi: \mathbb{P} I \rightarrow \mathbb{P} \hat{I}$ by mapping the isotropic vector to the corresponding point in $I G(3, V)$ which is identified with $\mathbb{P} \hat{I}$ via the spinor embedding.

We will now show that ϕ is an embedding. Suppose two linearly independent vectors u_{1}, u_{2} have the same kernel U of $w\left(u_{i}, *, *\right)$. Then for a generic element $u \in U$ the kernel of $w(u, *, *)$ contains u, u_{1} and u_{2}, which implies that $w\left(u, u^{\prime}, *\right)=0$ for all $u, u^{\prime} \in U$. Pick two vectors $v \in V$ and $u \in U$ with $B(u, v) \neq 0$. If we look at

$$
B(u, v)=w(u, *, *) \wedge w(v, *, *) \wedge w(*, *, *)
$$

we see that the right hand side is zero. Indeed, if we were to evaluate on the basis of V that extends the basis u_{1}, u_{2}, u_{3} of U, then in each term either we have $w\left(u, u_{i}, *\right)$ or $w\left(v, u_{i}, u_{j}\right)$, or $w\left(u_{i}, u_{j}, *\right)$. Contradiction. We can similarly show that the map μ does not kill tangent vectors. Indeed, if we have $\operatorname{Ker}\left(u_{1}+\epsilon u_{2}\right)=U \bmod \epsilon^{2}$, we have $w\left(u_{1}, U, *\right)=w\left(u_{2}, U, *\right)=0$, and the previous argument works.

As a result, the image $\phi(\mathbb{P} I)$ of ϕ is a smooth conic of dimension 5 inside a smooth conic of dimension 6 in a projective space of dimension 7 . By strong Lefschetz theorem, $\phi(\mathbb{P} I)$ is a complete intersection of $\mathbb{P} \hat{I}$ and a hypersurface in $\mathbb{P} \hat{V}$. It is easy to see that this hypersurface must in fact be a hyperplane, by comparing numerical invariants of complete intersections and conics. Hence, $\phi(\mathbb{P} I)$ spans a hyperplane in $\mathbb{P} \hat{V}$. Denote by V_{1} the corresponding codimension one subspace in \hat{V}. The restriction of \hat{B} to V_{1} gives a smooth conic $\phi(\mathbb{P} I)$, which implies that the orthogonal complement to V_{1} is non-isotropic.

Every element $g \in G$ must preserve $\phi(\mathbb{P} I)$ as a set. Hence it preserves V_{1} and its orthogonal complement, so it preserves a point in $\mathbb{P} \hat{V}$. Lemma 3.2 then shows that G is contained in G_{2} so it has dimension at most 14. Then the $S L(V)$ orbit of w is dense in $\mathbb{P} \Lambda^{3}\left(V^{*}\right)$ so it must coincide with the orbit of a G_{2}-invariant form. This shows that G is a conjugate of some $G_{2} \subset S L(V)$.

Note that $S O(V)$ acts transitively on 3-forms associated to B (considered up to a constant). Indeed, $G L(V)$ acts transitively on the set of all non-degenerate 3 -forms (because each orbit is an algebraic variety of dimension 35). And any element which maps a 3 -form associated to B to a 3 -form associated to B has to preserve B (all up to a constant).

In particular the dimension of the variety of 3 -forms (considered up to a constant) associated to B is 7 .

It follows that all subgroups of $S O(V)$ isomorphic to G_{2} are conjugated. We have a bijection between the set of subgroups of $S O(V)$ isomorphic to G_{2} and 3-forms associated to B (considered up to a constant). We also have a bijection between the set of subgroups of $S O(V)$ isomorphic to G_{2} and $\mathbb{P} \hat{V}-\hat{I}$.
3.3. The homogeneous space G / B. Recall that Borel subgroup of a semisimple Lie group is a maximal connected solvable subgroup. We give explicit description of flag varieties G / B of types G_{2}, C_{3}, A_{6}.

A full flag F in V is the chain $F_{1} \subset F_{2} \subset F_{3} \subset F_{4} \subset F_{5} \subset F_{6}$, where $F_{i} \subset V$ are subspaces of dimension i.

Let \mathcal{F} be the set of all full flags in V. The group $S L(V)$ acts transitively on \mathcal{F}, this action identifies \mathcal{F} with the quotient of $S L(V)$ by a Borel subgroup. Then \mathcal{F} is an algebraic variety of dimension 21 which is called the flag variety of A_{6} type.

A full flag F is called isotropic if $B\left(F_{i}, F_{7-i}\right)=0$. Let $\mathcal{F}^{\perp} \subset \mathcal{F}$ be the set of all isotropic flags in V. The group $S O(V)$ acts transitively on \mathcal{F}^{\perp}, this action identifies \mathcal{F}^{\perp} with the quotient of $S O(V)$ by a Borel subgroup. Then \mathcal{F}^{\perp} is an algebraic variety of dimension 9 which is called the flag variety of B_{3} type.

We choose a 3 -form w on V associated to B and $G_{2}(w)$ the subgroup of $S O(V)$ which preserves w. An isotropic flag F is called G_{2}-isotropic if $F_{3}=\operatorname{Ker} w\left(F_{1}, *, *\right)$. Let $\mathcal{F}^{\Perp} \subset$ \mathcal{F}^{\perp} be the set of all G_{2}-isotropic flags in V.

Proposition 3.8. The set \mathcal{F}^{\perp} is a smooth algebraic variety of dimension 6 .. The group $G_{2}(w)$ acts transitively on the space $\mathcal{F} \Perp$, this action identifies $\mathcal{F} \Perp$ with the quotient of $G_{2}(w)$ by a Borel subgroup.

Proof. Elements of $\mathcal{F}{ }^{\Perp}$ can be identified with flags $F_{1} \subset F_{2}$ such that for bases u and (u, v) of F_{1} and F_{2} respectively there holds $B(u, u)=B(u, v)=B(v, v)=0$ and $w(u, v, *)=0$. Consequently, \mathcal{F}^{\Perp} is a smooth variety of dimension 6 which admits a fibration $\mathcal{F} \Perp \rightarrow \mathbb{P} I$ to a smooth conic of dimension 5 . The fibers are isomorphic to \mathbb{P}^{1}. In fact, the fibration is the projectivization of the rank two vector bundle whose fiber over F_{1} is given by $\operatorname{Ker} w\left(F_{1}, *, *\right) / F_{1}$.

Denote by B_{1} the stabilizer of $F_{1} \subset F_{2}$ in $\mathcal{F}{ }^{\Perp}$. It is easy to see that it stabilizes a complete flag in V and so lies in the Borel subgroup of $S L(V)$. Consequently, B_{1} is solvable which implies that its connected component of identity is contained in a Borel subgroup B_{2} of $G_{2}(w)$.

The dimension of B_{2} is 8 , which implies that the dimension of B_{1} is at most 8 . Since the dimension of G_{2} is 14 the dimension of $G_{2}(w)$ orbit of the flag is at least 6 , hence it is exactly 6. Since $\mathcal{F} \Perp$ is irreducible, this means that all $G_{2}(w)$ orbits on \mathcal{F}^{\Perp} are Zariski dense hence there is only one orbit. We have thus shown the transitivity of the action.

The above argument also shows that the connected component of identity $B_{1}^{\circ} \subseteq B_{1}$ is equal to B_{2}, since their Lie algebras have the same dimension and one is contained in the other.

We now claim that B_{1} is in fact connected. If B_{1} was not connected, the variety \mathcal{F}^{\Perp} would admit an unramified covering from the variety $G_{2}(w) / B_{1}^{\circ}$. However, the fibration description of \mathcal{F}^{\Perp} shows that it is unirational, i.e. admits a dominant morphism from a projective space. Hence it has trivial fundamental group by [S].

The quotient of G_{2} by a Borel subgroup is called the flag variety of G_{2} type. Proposition 3.8 says that \mathcal{F}^{\Perp} is isomorphic to the flag variety of G_{2} type.

4. Self-SELF-DUAL SPACES OF POLYNOMIALS

In this section we define the self-self-dual spaces of polynomials and show that such spaces possess a natural skew-symmetric 3 -form.
4.1. Self-dual spaces of polynomials of dimension 7. Here we recall main facts about self-dual spaces of polynomials proved in MV1.

Let $V \in \mathbb{C}[x]$ be a vector space of polynomials of dimension 7 . The space V has a base point z if all polynomials in V vanish at z. We always assume that V has no base points.

Let $W\left(u_{1}, \ldots, u_{k}\right)$ denote the Wronskian of functions u_{1}, \ldots, u_{k},

$$
W\left(u_{1}, \ldots, u_{k}\right)=\operatorname{det}\left(u_{i}^{(j-1)}\right)_{i, j=1}^{k}
$$

Let U_{i} be the (monic) greatest common divisor of the set of all Wronskians $W\left(u_{1}, \ldots, u_{i}\right)$ where $u_{1}, \ldots, u_{i} \in V$. The following lemma is easy, cf. for example Lemma 4.9 in [MV2].

Lemma 4.1. There exist unique polynomials T_{1}, \ldots, T_{6} such that $U_{i}=T_{1}^{i-1} T_{2}^{i-2} \ldots T_{i-1}$.

We call polynomials T_{i} the ramification polynomials of V.
For $u_{1}, \ldots, u_{i} \in V$, we call the divided Wronskian the polynomial defined by

$$
W^{\dagger}\left(u_{1}, \ldots, u_{i}\right)=\frac{W\left(u_{1}, \ldots, u_{i}\right)}{U_{i}}=\frac{W\left(u_{1}, \ldots, u_{i}\right)}{T_{1}^{i-1} T_{2}^{i-2} \ldots T_{i-1}}
$$

Note that $W^{\dagger}\left(u_{1}, \ldots, u_{7}\right) \in \mathbb{C}$.
Space V is called self-dual if

$$
V=\left\{W^{\dagger}\left(u_{1}, \ldots, u_{6}\right) \mid u_{1}, \ldots, u_{6} \in V\right\}
$$

If V is self-dual then $T_{i}=T_{7-i}$.
By Corollary 6.5 in (MV1 a self-dual space of polynomials V possesses a bilinear symmetric non-degenerate form given by

$$
\begin{equation*}
B\left(u_{1}, u_{2}\right)=W^{\dagger}\left(u_{1}, v_{1}, \ldots, v_{6}\right), \quad \text { if } u_{2}=W^{\dagger}\left(v_{1}, \ldots, v_{6}\right) \tag{4.1}
\end{equation*}
$$

Lemma 4.2. Let V be a self-dual space of polynomials of dimension 7. Let $u_{1}, u_{2}, u_{3} \in V$ be such that $B\left(u_{i}, u_{j}\right)=0$. Then the divided Wronskian $W^{\dagger}\left(u_{1}, u_{2}, u_{3}\right)$ is a square of a polynomial.

Proof. By Lemma 6.16 in MV1, the divided Wronskian is a square for generic isotropic 3 -space. The condition of Lemma 6.16 in MV1 is satisfied for a generic isotropic 3-space by Theorem 7.10 in MV1. Then the divided Wronskian of any isotropic 3-space is a square.
4.2. Definition of self-self-dual spaces and first properties. Let V be a self-dual space of polynomials of dimension 7 .

Definition 4.3. A self-dual space of polynomials V of dimension 7 is called self-self-dual if for a generic element f of V there exists a three-dimensional isotropic subspace $U \subset V$ such that $f \perp U$ and the divided Wronskian of U is (up to a constant) the square of f.

Remark 4.4. The space of polynomials of degree at most 6 is self-self-dual, see Section 5.6

Let V be a self-self-dual space of polynomials. Then V is self-dual and all divided Wronskians of isotropic 3 -spaces are squares of polynomials by Lemma 4.2, Denote by \bar{V} the span of all square roots of all divided Wronskians of three-dimensional isotropic subspaces $U \subset V$. Then we have a map

$$
\mu: \quad I G(3, V) \rightarrow \mathbb{P} \bar{V}
$$

Proposition 4.5. There exists a projection $P: \mathbb{P} \hat{V} \rightarrow \mathbb{P} \bar{V}$ such that the map μ is given by a composition of the spinor embedding $\rho: I G(3, V) \rightarrow \mathbb{P} \hat{V}$ and projection P.

Proof. Let L be the tautological line bundle on \bar{V}. Every map from an algebraic variety M to a projective space \bar{V} is given by sections of the line bundle on M which is the pull-back of L. So, we describe the pullback bundle $\mu^{*}(L)$. To do that we consider the pullback of L^{2}.

Recall that there is a bijective correspondence between line bundles and \mathbb{C}^{*}-bundles on any algebraic variety. We denote the \mathbb{C}^{*}-bundle corresponding to a line bundle M by \tilde{M}.

The square of \tilde{L}^{-1} can be thought of as the variety of non-zero squares $f^{2}, f \in \bar{V}$ with the obvious map to $\mathbb{P} \bar{V}$.

Let \tilde{R} be the subvariety of $\Lambda^{3} V$ which corresponds to isotropic 3 -spaces with a choice of a volume form:

$$
\tilde{R}=\left\{u_{1} \wedge u_{2} \wedge u_{3} \mid u_{1} \wedge u_{2} \wedge u_{3} \neq 0, u_{i} \in V, B\left(u_{i}, u_{j}\right)=0\right\} \subset \Lambda^{3} V
$$

Then \tilde{R} is \mathbb{C}^{*}-bundle over $I G(3, V)$ which is the dual of the \mathbb{C}^{*}-bundle associated to the Plücker bundle. By Proposition 2.5, R is $\mathcal{O}_{I G(3, V)}(-2)$.

The map μ induces a map of \mathbb{C}^{*}-bundles from \tilde{R} to the pullback of \tilde{L}^{-2} which maps $u_{1} \wedge u_{2} \wedge u_{3}$ to f^{2} if $W^{\dagger}\left(u_{1}, u_{2}, u_{3}\right)=f^{2}$. Every map of \mathbb{C}^{*} bundles which is isomorphism on the bases is an isomorphism. Therefore \tilde{R} is the pullback of \tilde{L}^{-2} and $\mathcal{O}_{I G(3, V)}(2)$ is the pullback of L^{2}.

The line bundles of any smooth hypersurface in a projective space of dimension at least 4 are integer powers of the pullback of the tautological bundle of the projective space. This
follows for example from the strong Lefschetz theorem GH]. In particular, all bundles on $I G(3, V)$ are powers of $\mathcal{O}_{I G(3, V)}(1)$.

Consequently, the pullback of L is the spinor line bundle $\mathcal{O}_{I G(3, V)}(1)$. Thus the map μ is given by a subspace of the global sections of $\mathcal{O}_{I G(3, V)}(1)$. The global sections of this bundle are a subspace in \hat{V}. The lemma follows.

Proposition 4.6. The space \bar{V} is equal to V. Moreover, there exists an invariant surjection $\psi: \hat{V} \rightarrow V$, such that projection P is the projectivization of ψ.

Proof. The condition of Definition 4.3 implies that \bar{V} contains V. Assume that it is bigger than V. By Proposition 4.5 the dimension of \bar{V} is at most the dimension of \hat{V}, so it must be exactly 8 and the projection of Proposition 4.5 must in fact be an isomorphism. Then the image of μ is a non-singular conic in $\mathbb{P} \bar{V}$ and does not contain a generic element of $\mathbb{P} \bar{V}$.

Now we know that the map μ is a composition of the embedding $I G(3, V)$ as a conic in $\mathbb{P} \hat{V}$ and some projection given by a surjective map $\psi: \hat{V} \rightarrow V$. The fact that the map μ is well-defined implies that the kernel of ψ does not lie in $I G(3, V)$. The condition of Definition 4.3 implies that ψ satisfies the assumption of Theorem 2.14 and therefore ψ is an invariant surjection.

We have an immediate corollary.
Corollary 4.7. Every vector f in V is a constant times a square root of a divided Wronskian of a three-dimensional isotropic subspace U of V. If f is isotropic, such U is unique and $f \in U$. If f is not isotropic, there are exactly two such spaces U_{1} and U_{2}, and $U_{1}+U_{2}=U_{1} \oplus U_{2}=f^{\perp}$.

Proof. Follows from Proposition 2.13
Lemma 4.8. If V is a self-self-dual space then $T_{1}=T_{3}=T_{4}=T_{6}$ and $T_{2}=T_{5}$.
Proof. We only need to show $T_{1}=T_{3}$. All T_{i} have zeroes only at z_{1}, \ldots, z_{n}. Let us show that T_{1} and T_{3} have the same order of zero at z_{1}.

Let T_{1}, T_{2}, T_{3} have orders t_{1}, t_{2}, t_{3} of zero at z_{1} respectively. Let $u_{1}, u_{2}, \ldots, u_{7}$ be a basis of V such that order of zero at z_{1} of u_{i} is strictly smaller than the order of zero at z_{1} of u_{i+1}. Then the orders of u_{i} at z_{1} are given by
$0, t_{1}+1, t_{1}+t_{2}+2, t_{1}+t_{2}+t_{3}+3, t_{1}+t_{2}+2 t_{3}+4, t_{1}+2 t_{2}+2 t_{3}+5,2 t_{1}+2 t_{2}+2 t_{3}+6$.
Then $W^{\dagger}\left(u_{5}, u_{6}, u_{7}\right)$ has the maximal possible order of zero at z_{1}. Since V is self-selfdual, this implies $W\left(u_{5}, u_{6}, u_{7}\right)=c u_{7}^{2} T_{1}^{2} T_{2}$ for some $c \in \mathbb{C}^{*}$. But the order of zero of $W\left(u_{5}, u_{6}, u_{7}\right)$ is $4 t_{1}+5 t_{2}+6 t_{3}+12$ and the order of zero of $u_{7}^{2} T_{1}^{2} T_{2}$ is $6 t_{1}+5 t_{2}+4 t_{3}+12$. It follows that $t_{1}=t_{3}$.
4.3. The 3-form. Let $p \in \hat{V}$ span the kernel of the map \bar{P} which corresponds to the projection P in Proposition 4.5. We denote by $G_{2}(p)$ the subgroup of $S O(V)$ which preserves p. The group $G_{2}(p)$ is isomorphic to G_{2}. We characterize $G_{2}(p)$ as the group of linear transformations of V that are compatible with the Wronskian structure.
Proposition 4.9. The group $G_{2}(p)$ is the set of all elements $g \in S O(V)$ such that for any basis $\left(a_{1}, a_{2}, a_{3}\right)$ of any isotropic 3-subspace of V, any $f \in V$ satisfying $W^{\dagger}\left(a_{1}, a_{2}, a_{3}\right)=f^{2}$ there holds

$$
\begin{equation*}
W^{\dagger}\left(g a_{1}, g a_{2}, g a_{3}\right)=(g f)^{2} . \tag{4.2}
\end{equation*}
$$

Proof. For each $g \in S O(V)$ consider a map $\mu_{g}: I G(3, V) \rightarrow \mathbb{P} V$ given as follows. For every isotropic 3 -space U pick a basis $\left(a_{1}, a_{2}, a_{3}\right)$ and define

$$
\mu_{g}(U):=g^{-1}\left(\sqrt{W^{\dagger}\left(g\left(a_{1}\right), g\left(a_{2}\right), g\left(a_{3}\right)\right)}\right) .
$$

While the square root is defined up to a sign only, the result makes sense as a point in $\mathbb{P} V$.

The proof of Proposition 4.5 is applicable to the map μ_{g} as well as to μ. Consequently, the map is given by a projection from a point $P_{\mu_{g}}$ in $\mathbb{P} \hat{V}$ which is uniquely determined by g. Moreover, the argument of Proposition 4.5 shows that the map is uniquely determined by that point, since Theorem 2.14 still applies. Our construction is $S O(V)$-equivariant, so we have $P_{\mu_{g}}=g \mathbb{C} p$ for the natural projective action of $S O(V)$ on $\mathbb{P} \hat{V}$. As a result, equation (4.2) implies that $g \in G_{2}(p)$.

On the other hand, for every $g \in G_{2}(p)$ we have $\mu_{g}=\mu$ which translates into

$$
W^{\dagger}\left(g\left(a_{1}\right), g\left(a_{2}\right), g\left(a_{3}\right)\right)=c\left(a_{1}, a_{2}, a_{3}, g\right)(g(f))^{2}
$$

for some constants $c \in \mathbb{C}^{*}$ for all choices of a_{i} and f as in the statement of the proposition. The constant c depends only on g and the point $V_{1} \in I G(3, V)$. Since it is homomorphic and $I G(3, V)$ is compact, it must depend on g only. Since G_{2} has no non-trivial onedimensional representations, we see that $c=1$, so elements of $G_{2}(p)$ satisfy (4.2).

Define a linear map $\nu^{*}: \Lambda^{3} V \rightarrow S y m^{2} V^{*}$ by the formula

$$
\left\langle\nu^{*}(a \wedge b \wedge c), v \otimes v\right\rangle=\hat{B}(a b c v \cdot p, v \cdot p)
$$

where $a, b, c, v, \in V$. The argument of Proposition 2.16 shows that ν^{*} is well defined.
Let $\nu: \Lambda^{3} V \rightarrow S y m^{2} V$ be the linear map which is a composition of ν^{*} with the natural identification of $S y m^{2} V^{*}$ and $S y m^{2} V$ induced by B.

We remark that when one scales p or \hat{B} one scales ν.
Proposition 4.10. There exists a unique linear map $\phi: \Lambda^{3} V \rightarrow \operatorname{Sym}^{2} V$ such that $\phi(a \wedge b \wedge c)=f \otimes f$ for all isotropic pairwise orthogonal a, b, c with $W^{\dagger}(a, b, c)=f^{2}$. Moreover, there is a constant C such that $\phi=C \nu$.

Proof. We need to show that there is a constant C such that $\nu\left(v_{1} \wedge v_{2} \wedge v_{3}\right)=C f \otimes f$ for all bases $\left(v_{1}, v_{2}, v_{3}\right)$ of an isotropic subspace U and f such that $W^{\dagger}\left(v_{1}, v_{2}, v_{3}\right)=f^{2}$.

We extend $\left(v_{1}, v_{2}, v_{3}\right)$ to a basis of V as in Theorem 2.3. To calculate $\hat{B}\left(v_{1} v_{2} v_{3} v \cdot p, v \cdot p\right)$, observe that $\hat{B}\left(v_{1} v_{2} v_{3} \cdot q, q\right)$ is proportional to α_{567}^{2} in the notations of the proof of Theorem 2.3. This is also proportional to $(\hat{B}(\hat{1}, q))^{2}$ Since we have $\hat{1}=\gamma_{1} p+\gamma_{2} f \cdot p$ for some γ_{1} and γ_{2}, we see that

$$
\begin{aligned}
\left\langle\nu^{*}(a \wedge b \wedge c), v \otimes v\right\rangle & =C(a, b, c)\left(\hat{B}\left(\gamma_{1} p, v \cdot p\right)+\hat{B}\left(\gamma_{2} f \cdot p, v \cdot p\right)\right)^{2} \\
& =C_{1}(a, b, c) B(f, v)^{2} .
\end{aligned}
$$

Hence $\nu(a \wedge b \wedge c)=C_{1}(a, b, c) f \otimes f$ for some nonzero $C_{1}(a, b, c)$. We now observe that C_{1} in fact depends on the point of $I G(3, V)$ only. Since it is clearly holomorphic, it must be a constant.

We now show the uniqueness of ϕ. If we have ϕ_{1} and ϕ_{2} that satisfy the conditions of the proposition their difference ϕ_{3} satisfies $\phi_{3}(a \wedge b \wedge c)=0$ for all bases (a, b, c) of an isotropic subspace. Since the $S O(V)$ representation $\Lambda^{3} V$ is irreducible, such $a \wedge b \wedge c$ span all of $\Lambda^{3} V$, which implies that $\phi_{3}=0$.

Let $m: S y m^{2} V \rightarrow \mathbb{C}[x]$ be the multiplication map, sending $f \otimes g+g \otimes f \mapsto 2 f g$.
Corollary 4.11. For all $a, b, c \in V$, we have $W^{\dagger}(a, b, c)=m(\phi(a \wedge b \wedge c))$.
Proof. By Proposition 4.10, the corollary is true if a, b, c span an isotropic subspace. Such triples span $\Lambda^{3} V$, since they span an $S O(V)$-subrepresentation in $\Lambda^{3} V$, but $\Lambda^{3} V$ is an irreducible $S O(V)$-module. Then the generic case of the corollary follows from linearity.

Now we obtain the $G_{2}(p)$-invariant 3-form.
Theorem 4.12. There is a unique skew-symmetric 3 -form $w \in \Lambda^{3} V^{*}$ such that

$$
\begin{equation*}
w\left(a_{1}, a_{2}, a_{3}\right)=B(f, f) \tag{4.3}
\end{equation*}
$$

for all pairwise orthogonal isotropic a_{1}, a_{2}, a_{3} with $W^{\dagger}\left(a_{1}, a_{2}, a_{3}\right)=f^{2}$. An element $g \in$ $S O(V)$ preserves the form w if and only if $g \in G_{2}(p)$. Finally, the form w is associated to B.

Proof. We set $w(a, b, c)=B(\phi(a \wedge b \wedge c))$, where ϕ is the map in Proposition 4.10. This form clearly satisfies all the properties described in the theorem. In particular it is associated to B because all G_{2}-invariant forms are associated to B by Lemma 3.3,

Corollary 4.13. Let $v \in V, Q(v)=0$. Let U be the kernel of the skew-symmetric 2-form $w(v, \cdot, \cdot)$. Then U is the unique 3-dimensional isotropic 3-space, $U \in I G(3, V)$ such that $W^{\dagger}(U)$ equals (up to a constant) v^{2}. Moreover $v \in U$.

Proof. Follows from Lemma 2.17

5. Populations of critical points

Populations of critical points are defined for any Kac-Moody algebra in MV1. The motivation for this definition is algebraic Bethe Ansatz method. In this paper we study the populations of critical points associated with G_{2} root systems. We use properties of populations of A_{6} and C_{3} type. We recall known facts about those cases first.
5.1. A_{6}-populations. Consider the root system of type A_{6}. We have

$$
\left(\alpha_{i}, \alpha_{i}\right)=2, \quad\left(\alpha_{i}, \alpha_{i \pm 1}\right)=-1,
$$

and other scalar products are zero. The root system of type A_{6} corresponds to Lie algebra $s l_{7}$. The Weyl group of $s l_{7}$ is generated by simple reflections s_{i}. The shifted action of Weyl group on A_{6}-weights is

$$
s_{i} \cdot \lambda=\lambda-\left(\lambda+\rho, \alpha_{i}\right) \alpha_{i},
$$

where $\left(\rho, \alpha_{i}\right)=1$ for all i.
Fix polynomials $T_{i}(x)=\prod_{s=1}^{n}\left(x-z_{s}\right)^{m_{s}^{(i)}}$.
where $i=1, \ldots, 6, x$ is a formal variable and $z_{i}, m_{s}^{(i)}$ are parameters.
A 6-tuple of polynomials $\boldsymbol{y}=\left(y_{1}, \ldots, y_{6}\right)$ is called generic if y_{i} have no multiple roots and if y_{i}, y_{i+1} have no common roots. A generic 6 -tuple of polynomials \boldsymbol{y} is called a Bethe 6 -tuple of type A_{6} if there exist polynomials $\tilde{y}_{1}, \ldots, \tilde{y}_{6}$ such that

$$
W\left(y_{i}, \tilde{y}_{i}\right)=T_{i} y_{i-1} y_{i+1}
$$

Note that \tilde{y}_{i} is unique up to addition of a scalar multiple of y_{i}.
In what follows we always consider N-tuples of polynomials up to multiplication of its coordinates by non-zero scalars.

If \boldsymbol{y} is a Bethe 6-tuple and the 6-tuple $\boldsymbol{y}^{(i)}=\left(y_{1}, \ldots, \tilde{y}_{i}, \ldots, y_{6}\right)$ is generic then $y^{(i)}$ is also a Bethe 6-tuple of A_{6} type, see Theorem 3.7 in MV1. We call $\boldsymbol{y}^{(i)}$ an immediate descendent of \boldsymbol{y} in the direction i.

Let \bar{P} be the minimal set of Bethe 6 -tuples which contains \boldsymbol{y} and such that for all $\tilde{\boldsymbol{y}} \in \bar{P}$ all immediate descendants $\tilde{\boldsymbol{y}}^{(i)}$ are also in \bar{P}.

The degrees of all coordinates of all tuples of \bar{P} are simultaneously bounded. The A_{6}-population of Bethe 6 -tuples originated at \boldsymbol{y} is the closure of \bar{P} in $(\mathbb{P}(\mathbb{C}[x]))^{6}$.

The set of populations of Bethe 6-tuples associated with polynomials T_{i} is in one-to-one correspondence with the set of 7-dimensional spaces of polynomials with no base points and ramification polynomials T_{i}. Given a population P and $\boldsymbol{y} \in P$, we define

$$
\begin{align*}
D & =\left(\partial-\ln ^{\prime}\left(\frac{\prod_{s=1}^{6} T_{s}}{y_{6}}\right)\right)\left(\partial-\ln ^{\prime}\left(\frac{y_{6} \prod_{s=1}^{5} T_{s}}{y_{5}}\right)\right) \ldots\left(\partial-\ln ^{\prime}\left(\frac{y_{2} T_{1}}{y_{1}}\right)\right)\left(\partial-\ln ^{\prime}\left(y_{1}\right)\right) \\
& =\prod_{i}^{0}\left(\partial-\ln ^{\prime}\left(\frac{y_{7-i} \prod_{s=1}^{6-i} T_{s}}{y_{6-i}}\right)\right), \tag{5.1}
\end{align*}
$$

The operator D does not depend on the choice of $\boldsymbol{y} \in P$. The kernel of D is the 7dimensional space of polynomials V corresponding to P.

Let Λ_{s} be the unique dominant integral A_{6}-weight such that $\left(\Lambda_{s}, \alpha_{i}\right)=m_{s}^{(i)}$. Given a 6 -tuple of polynomials \boldsymbol{y}, define the corresponding A_{6}-weight at infinity

$$
\Lambda_{\infty}=\sum_{s=1}^{n} \Lambda_{s}-\sum_{i=1}^{6}\left(\operatorname{deg} y_{i}\right) \alpha_{i} .
$$

The set of weights of infinity corresponding to elements of a population P form an orbit of Weyl group with respect to the shifted action.

Let $\bar{\Lambda}_{\infty}$ be the unique dominant weight in the orbit of Λ_{∞} under the shifted action of the Weyl group. It is conjectured in MV1 that the number of A_{6}-populations associated to T_{i} for generic z_{j} equals the multiplicity of $L_{\bar{\Lambda}_{\infty}}$ in $L_{\Lambda_{1}} \otimes \cdots \otimes L_{\Lambda_{n}}$, where L_{Λ} is the irreducible $s l_{7}$-module of highest weight Λ.

The population P is isomorphic to the space of full flags in V, the isomorphism is given by $F \rightarrow \boldsymbol{y}$ where $y_{i}=W^{\dagger}\left(F_{i}\right)$. See Section 5 of MV1 for details and proofs.
5.2. C_{3}-populations. Consider the root system of type C_{3}. Let α_{3} be the long root and α_{1}, α_{2} the short ones. We have

$$
\begin{array}{llr}
\left(\alpha_{1}, \alpha_{1}\right)=2, & \left(\alpha_{2}, \alpha_{2}\right)=2, & \left(\alpha_{1}, \alpha_{2}\right)=-1 \\
\left(\alpha_{2}, \alpha_{3}\right)=-2, & \left(\alpha_{1}, \alpha_{3}\right)=0, & \left(\alpha_{3}, \alpha_{3}\right)=4
\end{array}
$$

The root system C_{3} corresponds to the symplectic Lie algebra $s p_{6}$. The Weyl group of $s p_{6}$ is generated by simple reflections $s_{i}, i=1,2,3$. The shifted action of Weyl group on C_{3}-weights is

$$
s_{i} \cdot \lambda=\lambda-\left\langle\lambda+\rho, \alpha_{i}^{\vee}\right\rangle \alpha_{i},
$$

where $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=1$ for all i.
Fix polynomials $T_{i}(x)=\prod_{s=1}^{n}\left(x-z_{s}\right)^{m_{s}^{(i)}}$ where $i=1,2,3, x$ is a formal variable and $z_{i}, m_{s}^{(i)}$ are parameters.

A triple of polynomials $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}\right)$ is called generic if y_{i} have no multiple roots and if y_{i}, y_{i+1} have no common roots. A generic triple of polynomials \boldsymbol{y} is called a Bethe triple of type C_{3} if there exist polynomials $\tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}$ such that

$$
W\left(y_{1}, \tilde{y}_{1}\right)=T_{1} y_{2}, \quad W\left(y_{2}, \tilde{y}_{2}\right)=T_{2} y_{1} y_{3}^{2}, \quad W\left(y_{3}, \tilde{y}_{3}\right)=T_{3} y_{2}
$$

If \boldsymbol{y} is a Bethe triple and the triple $\boldsymbol{y}^{(i)}=\left(y_{1}, \ldots, \tilde{y}_{i}, \ldots, y_{3}\right)$ is generic then $y^{(i)}$ is also a Bethe triple of C_{3} type, see Theorem 3.7 in [MV1]. We call $\boldsymbol{y}^{(i)}$ an immediate descendent of \boldsymbol{y} in the direction i.

Let \bar{P} be the minimal set of Bethe triples which contains \boldsymbol{y} and such that for all $\tilde{\boldsymbol{y}} \in \bar{P}$ all immediate descendants $\tilde{\boldsymbol{y}}^{(i)}$ are also in \bar{P}.

The degrees of all coordinates of all triples of \bar{P} are simultaneously bounded. The C_{3}-population of Bethe triples originated at \boldsymbol{y} is the closure of \bar{P} in $(\mathbb{P}(\mathbb{C}[x]))^{3}$.

The set of population of Bethe triples associated with polynomials T_{i} is in one-to-one correspondence with the set of 7 -dimensional self-dual spaces of polynomials with no base points and ramification polynomials $T_{1}, T_{2}, T_{3}, T_{3}, T_{2}, T_{1}$. Given a population P and $\boldsymbol{y} \in P$, we define a 6 -tuple \boldsymbol{y}^{A} by

$$
\boldsymbol{y}^{A}=\left(y_{1}, y_{2}, y_{3}^{2}, y_{3}^{2}, y_{2}, y_{1}\right) .
$$

Then the self-dual space of polynomials V which corresponds to P is the kernel of $D\left(\boldsymbol{y}^{A}\right)$, given by (5.1).

Let Λ_{s} be the unique dominant integral C_{3}-weight such that $\left\langle\Lambda_{s}, \alpha_{i}^{\vee}\right\rangle=m_{s}^{(i)}$. Given a triple of polynomials \boldsymbol{y}, define the corresponding C_{3}-weight at infinity by

$$
\Lambda_{\infty}=\sum_{s=1}^{n} \Lambda_{s}-\sum_{i=1}^{3}\left(\operatorname{deg} y_{i}\right) \alpha_{i}
$$

The set of weights of infinity corresponding to elements of a population P form an orbit of Weyl group with respect to the shifted action.

Let $\bar{\Lambda}_{\infty}$ be the unique dominant weight in the orbit of Λ_{∞} under the shifted action of the Weyl group. It is conjectured in [MV1] that the number of C_{3}-populations associated to T_{i} for generic z_{j} equals the multiplicity of $L_{\bar{\Lambda}_{\infty}}$ in $L_{\Lambda_{1}} \otimes \cdots \otimes L_{\Lambda_{n}}$, where L_{Λ} is the irreducible $s p_{6}$-module of highest weight Λ.

The population P is isomorphic to the space of isotropic flags in V, the isomorphism is given by $F \rightarrow \boldsymbol{y}$ where $y_{i}=W^{\dagger}\left(F_{i}\right), i=1,2,3$. See Sections 6 and 7 of MV1 for details and proofs.
5.3. G_{2}-populations. Consider the root system of type G_{2}. Let α_{1} be the long root and α_{2} the short one. We have

$$
\left(\alpha_{1}, \alpha_{1}\right)=6, \quad\left(\alpha_{1}, \alpha_{2}\right)=-3, \quad\left(\alpha_{2}, \alpha_{2}\right)=2
$$

The Weyl group of G_{2} is generated by simple reflections s_{1}, s_{2}. The shifted action of Weyl group on G_{2}-weights is

$$
s_{i} \cdot \lambda=\lambda-\left\langle\lambda+\rho, \alpha_{i}^{\vee}\right\rangle \alpha_{i},
$$

where $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=1$ for all i.
Fix polynomials $T_{i}(x)=\prod_{s=1}^{n}\left(x-z_{s}\right)^{m_{s}^{(i)}}$, where $i=1,2, x$ is a formal variable and $z_{i}, m_{s}^{(i)}$ are parameters.

A pair of polynomials $\boldsymbol{y}=\left(y_{1}, y_{2}\right)$ is called generic if y_{i} have no multiple roots and no common roots. A generic pair of polynomials \boldsymbol{y} is called a Bethe pair of type G_{2} if there exist polynomials $\tilde{y}_{1}, \tilde{y}_{2}$ such that

$$
W\left(y_{1}, \tilde{y}_{1}\right)=T_{1} y_{2}, \quad W\left(y_{2}, \tilde{y}_{2}\right)=T_{2} y_{1}^{3} .
$$

If \boldsymbol{y} is a Bethe pair and the pair $\boldsymbol{y}^{(1)}=\left(\tilde{y}_{1}, y_{2}\right)$ (resp. $\boldsymbol{y}^{(2)}=\left(y_{1}, \tilde{y}_{2}\right)$) is generic then $\boldsymbol{y}^{(1)}$ (resp. $\boldsymbol{y}^{(2)}$) is also a Bethe pair of G_{2} type, see Theorem 3.7 in MV1. We call $\boldsymbol{y}^{(i)}$ an immediate descendent of \boldsymbol{y} in the direction i.

Let \bar{P} be the minimal set of Bethe triples which contains \boldsymbol{y} and such that for all $\tilde{\boldsymbol{y}} \in \bar{P}$ all immediate descendants $\tilde{\boldsymbol{y}}^{(i)}$ are also in \bar{P}.

The degrees of all coordinates of all tuples of \bar{P} are simultaneously bounded. The G_{2}-population of Bethe pairs originated at \boldsymbol{y} is the closure of \bar{P} in $(\mathbb{P}(\mathbb{C}[x]))^{2}$.

Let Λ_{s} be the unique dominant integral G_{2}-weight such that $\left\langle\Lambda_{s}, \alpha_{i}^{\vee}\right\rangle=m_{s}^{(i)}$. Given a pair of polynomials \boldsymbol{y}, define the corresponding G_{2}-weight at infinity

$$
\Lambda_{\infty}=\sum_{s=1}^{n} \Lambda_{s}-\sum_{i=1}^{2}\left(\operatorname{deg} y_{i}\right) \alpha_{i} .
$$

The set of weights of infinity corresponding to elements of a population P form an orbit of Weyl group with respect to the shifted action, see [MV1], Theorem 3.12.

Let $\bar{\Lambda}_{\infty}$ be the unique dominant weight in the orbit of Λ_{∞} under the shifted action of the Weyl group. It is conjectured in MV1 that the number of G_{2}-populations associated to T_{i} for generic z_{j} equals the multiplicity of $L_{\bar{\Lambda}_{\infty}}$ in $L_{\Lambda_{1}} \otimes \cdots \otimes L_{\Lambda_{n}}$, where L_{Λ} is the irreducible G_{2} module of highest weight Λ.

Given a G_{2}-population P and $\boldsymbol{y} \in P$, we define a 3 -tuple \boldsymbol{y}^{C} by

$$
\boldsymbol{y}^{C}=\left(y_{1}, y_{2}, y_{1}\right) .
$$

The following lemma is obvious but very useful.
Lemma 5.1. A pair of polynomials \boldsymbol{y} is a Bethe pair of type G_{2} associated to polynomials T_{1}, T_{2} if and only if the triple of polynomials \boldsymbol{y}^{C} is a Bethe triple of type C_{3} associated to polynomials T_{1}, T_{2}, T_{1}. Moreover, we have an inclusion of populations $P(\boldsymbol{y}) \rightarrow P\left(\boldsymbol{y}^{C}\right)$ mapping $\tilde{\boldsymbol{y}} \mapsto \tilde{\boldsymbol{y}}^{C}$.

Assign to a G_{2}-population P the space $V=\operatorname{Ker}\left(D\left(\left((\boldsymbol{y})^{C}\right)^{A}\right)\right)$, where $\boldsymbol{y} \in P$ and D is defined by (5.1). Then V is a self-dual 7 -dimensional space of polynomials which does not depend on the choice of $\boldsymbol{y} \in P$. Moreover for any $\boldsymbol{y} \in P, y_{1} \in V$.

See MV1 for details and proofs.
5.4. The space of G_{2}-population. We show that the space of the G_{2}-population is self-self-dual.

Let P be a G_{2}-population and V the corresponding self-dual space of dimension 7 . We start with a description of degrees of polynomials in V first. The degrees of coordinates of pairs of polynomials in P are in one-to-one correspondence with the Weyl group orbit (with respect to the shifted action). It follows that there exists a pair $\boldsymbol{y} \in P$ such that $\operatorname{deg} \tilde{y}_{1}>\operatorname{deg} y_{1}$ and $\operatorname{deg} \tilde{y}_{2}>\operatorname{deg} y_{2}$. Such a pair corresponds to the dominant weight in the Weyl group orbit. Denote

$$
\operatorname{deg} y_{1}=a, \quad \operatorname{deg} y_{2}=b, \quad \operatorname{deg} T_{1}=t_{1}, \quad \operatorname{deg} T_{2}=t_{2}
$$

So we have $\operatorname{deg}(\boldsymbol{y})=(a, b), \operatorname{deg}\left(\boldsymbol{y}_{1}^{(2)}\right)=\left(a, 3 a-b+1+t_{2}\right)$ and $\operatorname{deg}\left(\boldsymbol{y}^{(1)}\right)=\left(b-a+1+t_{1}, b\right)$. In particular our choice of \boldsymbol{y} means

$$
\begin{equation*}
b+1+t_{1}>2 a, \quad 3 a+1+t_{2}>2 b . \tag{5.2}
\end{equation*}
$$

In what follows we consider successive descendents of a G_{2}-pair. Our notation $\boldsymbol{y}^{(1)(2)(1)}$ mean $\left(\left(\boldsymbol{y}^{(1)}\right)^{(2)}\right)^{(1)}$, etc.

Lemma 5.2. The degrees of polynomials in V are: $a,-a+b+1+t_{1}, 2 a-b+2+t_{1}+t_{2}$, $3+2 t_{1}+t_{2},-2 a+b+4+3 t_{1}+t_{2}, a-b+5+3 t_{1}+2 t_{2},-a+6+4 t_{1}+2 t_{2}$.

Proof. These are degrees of the first coordinates of the descendents: $\boldsymbol{y}, \boldsymbol{y}^{(1)}, \boldsymbol{y}^{(2)(1)}$, $\boldsymbol{y}^{(1)(2)(1)^{\prime}}, \boldsymbol{y}^{(1)(2)(1)}, \boldsymbol{y}^{(2)(1)(2)(1)}, \boldsymbol{y}^{(1)(2)(1)(2)(1)}$. Here by $\boldsymbol{y}^{(1)(2)(1)^{\prime}}$ we mean a difference between two different descendents.

The only non-trivial part here is to find the degree of $y_{1}^{(1)(2)(1)^{\prime}}$. Let $y_{1}^{(1) \pm}$ be two different immediate descendants such that $y_{1}^{(1)+}=y_{1}^{(1)-}+\alpha y_{1}$. Similarly, we will write ($)^{ \pm}$for two different descendants and denote the difference by ()'. We have the following Wronskians, with equalities up to signs.

$$
W\left(y_{1}, y_{1}^{(1) \pm}\right)=T_{1} y_{2}, W\left(y_{2}^{(1)(2) \pm}, y_{2}\right)=T_{2}\left(y_{1}^{(1) \pm}\right)^{3}, W\left(y_{1}^{(1)(2)(1) \pm}, y_{1}^{(1) \pm}\right)=T_{1} y_{2}^{(1)(2) \pm}
$$

From the last equation we conclude that

$$
F=W\left(y_{1}^{(1)(2)(1)^{\prime}}, y_{1}^{(1)+}\right)=T_{1} y_{2}^{(1)(2)^{\prime}}-\alpha W\left(y_{1}^{(1)(2)(1)-}, y_{1}\right) .
$$

We compute the degree of F. We calculate

$$
\begin{aligned}
W\left(F, T_{1} y_{2}\right)= & T_{1}^{2} T_{2}\left(\left(y_{1}^{(1)+}\right)^{3}-\left(y_{1}^{(1)-}\right)^{3}\right)-\alpha W\left(W\left(y_{1}^{(1)(2)(1)-}, y_{1}\right), W\left(y_{1}^{(1)-}, y_{1}\right)\right) \\
& =\alpha^{3} T_{1}^{2} T_{2} y_{1}^{3}+3 \alpha^{2} T_{1}^{2} T_{2} y_{1}^{2} y_{1}^{(1)-}+3 \alpha T_{1}^{2} T_{2} y_{1}\left(y_{1}^{(1)-}\right)^{2} \\
& \pm\left(y_{1}\right)\left(y_{1}^{(1)-}\right)^{-1} \alpha W\left(W\left(y_{1}^{(1)(2)(1)-}, y_{1}^{(1)-}\right), W\left(y_{1}^{(1)-}, y_{1}\right)\right) \\
= & \alpha^{3} T_{1}^{2} T_{2} y_{1}^{3}+3 \alpha^{2} T_{1}^{2} T_{2} y_{1}^{2} y_{1}^{(1)-}+(3 \pm 1) \alpha T_{1}^{2} T_{2} y_{1}\left(y_{1}^{(1)-}\right)^{2} .
\end{aligned}
$$

Here we have used the Wronskian identity $W\left(W\left(u_{1}, u_{2}\right), W\left(u_{1}, u_{3}\right)\right)=W\left(u_{1}, u_{2}, u_{3}\right) u_{1}$ which holds for all u_{1}, u_{2}, u_{3}.

Using (5.2) we see that the last term has the highest degree which means that the degree of $W\left(F, T_{1} y_{2}\right)$ equals $2 t_{1}+t_{2}+a+2 \operatorname{deg} y_{1}^{(1)}$. This implies that the degree of F equals $1-t_{1}-b+2 t_{1}+t_{2}+a+2 \operatorname{deg} y_{1}^{(1)}$ which in turn implies that

$$
\operatorname{deg}\left(y_{1}^{(1)(2)(1)^{\prime}}\right)=1-\operatorname{deg} y_{1}^{(1)}+\operatorname{deg} F=3+2 t_{1}+t_{2} .
$$

Since all the degrees in the statement of the lemma are present and different (written in the increasing order) by (5.2), the lemma is proved.

Lemma 5.3. Any G_{2}-population P is an algebraic variety of dimension 6 . The set of the first coordinates of pairs in P coincides with the set of isotropic vectors in V.

Proof. Population P is an algebraic variety by Corollary 3.13 in MV1.
Denote $J=\left\{y_{1} \mid\left(y_{1}, y_{2}\right) \in P\right\}$. Denote as before $I \subset V$ the set of isotropic vectors. Since the first coordinates of pairs in a G_{2}-population are also the first coordinates of triples in a C_{3}-population we have $J \subseteq I$. In particular $\operatorname{dim} J \leq \operatorname{dim} I=5$.

Consider the obvious projection of algebraic varieties $P \rightarrow J$. It is well known that for any polynomial $q(x) \in \mathbb{C}[x]$ the set of planes of polynomials $H \in G r(2, \mathbb{C}[x])$ such that the Wronskian $W(H)$ is a scalar multiple of $q(x)$, is finite. E.g. this follows from Theorem 3.18 in MV1. Applied to $q(x)=T_{2} y_{1}^{3}$, it shows that the fibers of $P \rightarrow J$ are at most 1-dimensional and we have $\operatorname{dim} P \leq \operatorname{dim} J+1=6$.

Now we show the opposite inequality. We have the following chain of descendents and their degrees:

$$
\begin{aligned}
\operatorname{deg}\left(\boldsymbol{y}^{(1)}\right) & =\left(b-a+1+t_{1}, b\right), \\
\operatorname{deg}\left(\boldsymbol{y}^{(1)(2)}\right) & =\left(b-a+1+t_{1}, 2 b-3 a+4+3 t_{1}+t_{2}\right), \\
\operatorname{deg}\left(\boldsymbol{y}^{(1)(2)(1)}\right) & =\left(b-2 a+4+3 t_{1}+t_{2}, 2 b-3 a+4+3 t_{1}+t_{2}\right), \\
\operatorname{deg}\left(\boldsymbol{y}^{(1)(2)(1)(2)}\right) & =\left(b-2 a+4+3 t_{1}+t_{2}, b-3 a+9+6 t_{1}+3 t_{2}\right), \\
\operatorname{deg}\left(\boldsymbol{y}^{(1)(2)(1)(2)(1)}\right) & =\left(-a+6+4 t_{1}+2 t_{2}, b-3 a+9+6 t_{1}+3 t_{2}\right), \\
\operatorname{deg}\left(\boldsymbol{y}^{(1)(2)(1)(2)(1)(2)}\right) & =\left(-a+6+4 t_{1}+2 t_{2},-b+10+6 t_{1}+4 t_{2}\right) .
\end{aligned}
$$

We prove that the dimension of the set of the descendents in the above chain increases by one. We recall that all our pairs are considered as elements in $\mathbb{P} \mathbb{C}[x]^{2}$.

The point is that given a pair $\left(y_{1}, y_{2}\right)$ on line k we can uniquely recover the pair on the line $(k-1)$ that gave rise to $\left(y_{1}, y_{2}\right)$. Indeed, one of the coordinates is always unchanged, and the other is uniquely determined by the degree restriction. Indeed, they are obtained by doing the reverse move from $\left(y_{1}, y_{2}\right)$ which results in a smaller degree than before. Such move is always at best unique.

On the other hand, for every $\left(y_{1}, y_{2}\right)$ on line k there are \mathbb{C} ways to extend it to line $(k+1)$. This shows that the dimension of the set of descendants on line $(k+1)$ is one bigger than that on line k.

Our chain has length 6 and therefore $\operatorname{dim} P \geq 6$. It follows that $\operatorname{dim} P=6$ and $\operatorname{dim} J=5$. Since $\mathbb{P} I$ is an irreducible algebraic variety of dimension 5 and $J \subset \mathbb{P} I$, we see that $\bar{J}=\mathbb{P} I$. On the other hand J is closed.

Theorem 5.4. The space V is self-self-dual.
Proof. To check the condition of Definition 4.3, we consider the sequence of C_{3} reproductions of the triple (y_{1}, y_{2}, y_{1}) in the directions $1,2,3$. Namely we have polynomials \tilde{y}_{i} such that

$$
W\left(y_{1}, \tilde{y}_{1}\right)=T_{1} y_{2}, \quad W\left(y_{2}, \tilde{y}_{2}\right)=T_{2} \tilde{y}_{1} y_{1}^{2}, \quad W\left(\tilde{y}_{3}, y_{1}\right)=T_{1} \tilde{y}_{2} .
$$

Then the triple ($\tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}$) is in a C_{3}-population. And in particular \tilde{y}_{3} is a divided Wronskian of an isotropic 3 -space.

To show $\tilde{y}_{3} \in V$ we act on \tilde{y}_{3} by the differential operator $D\left(y_{1}, y_{2}, y_{3}^{2}, y_{3}^{2}, y_{2}, y_{1}\right)$. Applying the right factors \tilde{y}_{3} becomes (up to a constant) \tilde{y}_{2} / y_{1} then $y_{1} \tilde{y}_{1} / y_{2}$, then 1 and then 0 . Therefore \tilde{y}_{3} is in V which by definition is the kernel of this differential operator.

Next we show that a generic $v \in V$ is \tilde{y}_{3} for a suitable G_{2}-pair $\left(y_{1}, y_{2}\right)$. Since everything is algebraic we just have to show that the set of such v (up to a scalar multiple) has dimension 6. We have 6-dimensional G_{2}-population. There exists a six-dimensional subset of the variety of G_{2} pairs, such that each produces a variety of \tilde{y}_{3} which has dimension at least 3 . Indeed, the dimension is exactly 3 if we start with the dominant pair (y_{1}, y_{2}) satisfying $\operatorname{deg} y_{1}=a, \operatorname{deg} y_{2}=b$ as in Lemma 5.2. To show that the dimension is at least three for a generic G_{2} pair of the type $\mathbf{y}^{(1)(2)(1)(2)(1)(2)}$ of Lemma 5.3, observe that at each step of the reproduction we can keep the descendant arbitrarily close to the previous pair, in terms of the projective space, by adding a big multiple of y_{i}. Hence, there is an open set in the space of $\mathbf{y}^{(1)(2)(1)(2)(1)(2)}$ which is contained in a neighborhood of $\left(y_{1}, y_{2}\right)$. Since the dimension 3 condition is clearly an open one, we see that every G_{2} pair which is close enough to $\left(y_{1}, y_{2}\right)$ satisfies it.

Now fix \tilde{y}_{3}. We need to show that the dimension of the variety of G_{2}-pairs $\left(y_{1}, y_{2}\right)$ which produce \tilde{y}_{3} is at most 3 . Note, that without loss of generality we can assume that \tilde{y}_{3} is non-isotropic. Indeed, if we start with the dominant element of the G_{2}-population $\left(y_{1}, y_{2}\right)$ then $\operatorname{deg} \tilde{y}_{3}=3+2 t_{1}+t_{2}$ and \tilde{y}_{3} is non-isotropic. Since the condition of being is nonisotropic is open, it holds for the general descendants of the G_{2} pairs in the neighborhood of $\left(y_{1}, y_{2}\right)$.

Let F be the isotropic flag which corresponds to the C_{3}-triple $\left(y_{1}, y_{2}, y_{1}\right)$ and let u_{1}, \ldots, u_{7} be a Witt basis corresponding to F, such that we have $u_{1}=y_{1}, W^{\dagger}\left(u_{1}, u_{2}\right)=y_{2}$ and $W^{\dagger}\left(u_{1}, u_{2}, u_{3}\right)=y_{1}^{2}$.

It follows that there exist constants C_{1}, C_{2}, C_{3} such that the C_{3}-triple ($\tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}$) corresponds to the flag \tilde{F}, which is related to the basis

$$
\left\{\tilde{u}_{1}=u_{1}+C_{1} u_{2}, \tilde{u}_{2}=u_{2}+C_{2} u_{3}, \tilde{u}_{3}=u_{3}+C_{3} u_{4}+C_{3}^{2} u_{5} / 2, \tilde{u}_{4}, \tilde{u}_{5}, \tilde{u}_{6}, \tilde{u}_{7}\right\}
$$

see Lemmas 6.14-6.16 in MV1. In particular, $W^{\dagger}\left(\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}\right)=\tilde{y}_{3}^{2}$.
There are only finitely many 3 -spaces of polynomials with Wronskian $\tilde{y}_{3}^{2} T_{1}^{2} T_{2}$. The 3 -space U spanned by $\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}$ is one of them. Note that the intersection of F_{3} and U contains $\tilde{u}_{1}, \tilde{u}_{2}$ and therefore is at least 2-dimensional.

Now we observe that for any 2-dimensional subspace $U_{1} \subset U$ there are at most finitely many isotropic 3 -spaces F_{3} such that $U_{1} \subset F_{3} \cap U$ and $\sqrt{W^{\dagger}\left(F_{3}\right)} \in F_{3}$. Indeed, the family of isotropic 3-spaces F_{3} such that $U_{1} \subset F_{3} \cap U$ is isomorphic to a non-degenerate conic in a $\mathbb{P}\left(U_{1}^{\perp} / U_{1}\right) \cong \mathbb{P}^{2}$. Note that the space U belongs to this family and does not contain $\sqrt{W^{\dagger}(U)}=\tilde{y}_{3}$ because y_{3} is non-isotropic. Therefore our family is a proper subvariety in a non-degenerate conic, thus it is a finite set of points.

The dimension of the variety of 2-planes in U is 2 and each F_{3} produces a family of G_{2}-pairs of dimension 1 , since $y_{1}=\sqrt{W^{\dagger}\left(F_{3}\right)}$ up to a scalar. It follows that the dimension
of the variety of G_{2}-pairs which produce a given \tilde{y}_{3} is at most 3 . Thus the variety of all possible \tilde{y}_{3} has dimension at least 6 as needed.

Finally, we show that \tilde{y}_{3} is orthogonal to U. Recall that $\tilde{u}_{1}=\tilde{y}_{1}, W\left(\tilde{u}_{1}, \tilde{u}_{2}\right)=T_{1} \tilde{y}_{2}$. We denote $d=W\left(\tilde{u}_{1}, \tilde{u}_{3}\right) / T_{1}$, then $W\left(\tilde{y}_{2}, d\right)=T_{2} \tilde{y}_{1} \tilde{y}_{3}^{2}$.

We calculate (up to constants):

$$
\begin{gathered}
W\left(\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}, \tilde{y}_{3}\right)=\tilde{y}_{1}^{-2} W\left(W\left(\tilde{y}_{1}, \tilde{u}_{2}\right), W\left(\tilde{y}_{1}, \tilde{u}_{3}\right), W\left(\tilde{y}_{1}, \tilde{y}_{3}\right)\right) \\
=\tilde{y}_{1}^{-2} W\left(T_{1} \tilde{y}_{2}, T_{1} d, W\left(\tilde{y}_{1}, \tilde{y}_{3}\right)\right)=T_{1}^{3} \tilde{y}_{1}^{-2} W\left(\tilde{y}_{2}, d, T_{1}^{-1} W\left(\tilde{y}_{1}, \tilde{y}_{3}\right)\right) \\
=T_{1}^{3} \tilde{y}_{1}^{-2} \tilde{y}_{2}^{-1} W\left(W\left(\tilde{y}_{2}, d\right), W\left(\tilde{y}_{2}, T_{1}^{-1} W\left(\tilde{y}_{1}, \tilde{y}_{3}\right)\right)\right) \\
=T_{1}^{3} \tilde{y}_{1}^{-2} \tilde{y}_{2}^{-1} W\left(T_{2} \tilde{y}_{1} \tilde{y}_{3}^{2}, T_{1}^{-2} W\left(W\left(y_{1}, \tilde{y}_{3}\right), W\left(\tilde{y}_{1}, \tilde{y}_{3}\right)\right)\right) \\
=T_{1}^{3} \tilde{y}_{1}^{-2} \tilde{y}_{2}^{-1} W\left(T_{2} \tilde{y}_{1} \tilde{y}_{3}^{2}, T_{1}^{-2} \tilde{y}_{3} y_{1}^{-1} W\left(W\left(y_{1}, \tilde{y}_{3}\right), W\left(y_{1}, \tilde{y}_{1}\right)\right)\right) \\
=T_{1}^{3} \tilde{y}_{1}^{-2} \tilde{y}_{2}^{-1} W\left(T_{2} \tilde{y}_{1} \tilde{y}_{3}^{2}, T_{1}^{-2} \tilde{y}_{3} y_{1}^{-1} W\left(T_{1} \tilde{y}_{2}, T_{1} y_{2}\right)\right) \\
=T_{1}^{3} \tilde{y}_{1}^{-2} \tilde{y}_{2}^{-1} W\left(T_{2} \tilde{y}_{1} \tilde{y}_{3}^{2}, \tilde{y}_{3} y_{1}^{-1} T_{2} \tilde{y}_{1} y_{1}^{2}\right)=T_{1}^{3} T_{2}^{2} \tilde{y}_{2}^{-1} \tilde{y}_{3}^{2} W\left(\tilde{y}_{3}, y_{1}\right) \\
=T_{1}^{4} T_{2}^{2} \tilde{y}_{3}^{2}=T_{1}^{4} T_{2}^{2} W^{\dagger}\left(\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{2}\right) .
\end{gathered}
$$

The orthogonal complement U^{\perp} of U is the unique 4-dimensional subspace of V such that $U \subset U^{\perp}$ and $W^{\dagger}\left(U^{\perp}\right)=W^{\dagger}(U)$. Therefore U^{\perp} is the span of $u_{1}, u_{2}, u_{3}, \tilde{y}_{3}$. In particular $\tilde{y}_{3} \perp U$. This shows that V satisfies the condition of Definition 4.3,

Theorem 5.4 shows that V has the skew-symmetric 3 -form by Theorem 4.12. Thus for each element \boldsymbol{y} of population P we have a G_{2}-isotropic flag F in V such that

$$
F_{1}=W^{\dagger}\left(F_{6}\right)=y_{1}, \quad W^{\dagger}\left(F_{2}\right)=W^{\dagger}\left(F_{5}\right)=y_{2}, \quad W^{\dagger}\left(F_{3}\right)=W^{\dagger}\left(F_{4}\right)=y_{1}^{2}
$$

Theorem 5.5. The population P is isomorphic to the variety $F^{\Perp}(V)$ of G_{2}-isotropic flags in V. In particular V is isomorphic to the flag variety of group G_{2}.
Proof. We already know that $P \subset F^{\Perp}(V)$. In addition $\operatorname{dim} P=\operatorname{dim} F^{\Perp}(V)=6$. The variety $F^{\Perp}(V)$ is a \mathbb{P}_{1}-bundle over an irreducible conic of isotropic vectors and therefore is irreducible. It follows that $P=F^{\Perp}(V)$.

The space $F^{\Perp}(V)$ is isomorphic the G_{2}-isotropic flag variety by Proposition 3.8.
Let P be a G_{2}-population and $\boldsymbol{y} \in P$ such that Λ_{∞} is dominant integral. Let F^{∞} be the unique full flag of V such that the degrees of polynomials in F_{i} are not larger that the degrees of polynomials in F_{i+1}.
Proposition 5.6. The closure of all elements of P with the weights at infinity equal $w \cdot \Lambda_{\infty}$ is the Bruhat cell $G_{w}^{F^{\infty}}$.
Proof. Completely parallel to the proof of Corollary 5.23 in MV1.
Theorem 5.7. The set of G_{2}-populations associated to polynomials T_{1}, T_{2} is in one to one correspondence with the set of self-self-dual spaces of polynomials of dimension 7 with ramification polynomials $T_{1}, T_{2}, T_{1}, T_{1}, T_{2}, T_{1}$.

Proof. Consider a G_{2}-isotropic flag F. Then if the pair $\left(F_{1}, W^{\dagger}\left(F_{2}\right)\right)$ is generic then it is a G_{2} Bethe pair. Therefore, we only have to show that each self-self-dual space contains a G_{2}-isotropic flag F such that $\left(F_{1}, W^{\dagger}\left(F_{2}\right)\right)$ form a generic pair. It is parallel to the proof of Theorems 7.5 and 7.10 in MV1.
5.5. Another description of self-self-dual spaces. We show that Definition 4.3 is equivalent to a simple condition on 3 -Wronskians.

Theorem 5.8. A self-dual space of polynomials is self-self-dual if and only if

$$
\left\{u^{2} \mid u \in V\right\}=\left\{W^{\dagger}\left(u_{1}, u_{2}, u_{3}\right) \mid u_{i} \in V,\left(u_{i}, u_{j}\right)=0\right\}
$$

Proof. The only if part is Corollary 4.7
We need to show the if part. Let V be a self-dual space. Recall that such a space corresponds to a C_{3}-population. Let u_{1}, \ldots, u_{7} be a basis of V such that $\operatorname{deg} u_{i}<\operatorname{deg} u_{i+1}$ and $B\left(u_{i}, u_{j}\right)=(-1)^{i+1} \delta_{i}^{8-j}$. Then $W^{\dagger}\left(u_{1}, u_{2}, u_{3}\right)$ has the smallest degree among all divided 3 -Wronskians and therefore we get $W^{\dagger}\left(u_{1}, u_{2}, u_{3}\right)=c u_{1}^{2}$. It follows that $\left(y_{1}, y_{2}\right)$, where $y_{1}=u_{1}, y_{2}=W^{\dagger}\left(u_{1}, u_{2}\right)$ has the reproduction properties of a G_{2}-pair. Namely there exist $\tilde{y}_{1}=u_{2}$ and $\tilde{y}_{2}=c_{1} W^{\dagger}\left(u_{1}, u_{3}\right)$ such that $W\left(y_{1}, \tilde{y}_{1}\right)=y_{2} T_{1}$ and $W\left(y_{2}, \tilde{y}_{2}\right)=y_{1}^{3} T_{2}$. The pair $\left(y_{1}, y_{2}\right)$ may be not generic and therefore it is not a G_{2}-pair in general.

However the triples $\left(y_{1}, \tilde{y}_{2}, y_{1}\right)$ and $\left(\tilde{y}_{1}, y_{2}, \tilde{y}_{1}\right)$ are clearly in the same C_{3}-population and therefore correspond to some isotropic flags. In particular, these two triples again have the reproduction properties of a G_{2}-pair.

It follows that the condition of Definition 4.3 is satisfied by the same argument as in Theorem 5.4.
5.6. Examples of self-self-dual spaces. The simplest example of a self-self-dual space of polynomials is the space of polynomials V of degree at most 6 . This space clearly corresponds to the population originated at the G_{2}-pair $(1,1)$ where $T_{1}=T_{2}=1$.

More generally, for every pair of integers $m<n$ a space spanned by monomials $1, x^{m}, x^{n}, x^{m+n}, x^{2 m+n}, x^{2 n+m}, x^{2 m+2 n}$ is self-self-dual. It corresponds to the population which originates at $(1,1)$ where $T_{1}=x^{m-1}$ and $T_{2}=x^{n-m-1}$.

6. Standard bases of self-SElf-dual spaces

We recall that every self-dual space V has a basis $\left\{v_{1}, \ldots, v_{7}\right\}$ such that the divided 6 -Wronskians are explicitly given by

$$
W^{\dagger}\left(v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{7}\right)=v_{8-i} .
$$

Such a basis is called a Witt basis. The basis $\left\{v_{i}\right\}$ is a Witt basis if and only if $B\left(v_{i}, v_{j}\right)=$ $(-1)^{i+1} \delta_{i}^{8-j}$, see MV1.

In this section we show that every self-self-dual space has a Witt basis $\left\{v_{1}, \ldots, v_{7}\right\}$ such that the all divided 3 -Wronskians are given explicitly as a certain explicit linear
combination of $v_{i} v_{j}$, see Table 1 below. We call such a basis a standard basis. A Witt basis is a standard basis if and only if the 3 -form has the standard form, see Corollary 6.11 below.
6.1. Standard dominant bases. We keep the notation of Lemma 5.2. We also introduce

$$
m=-2 a+b+1+t_{1}, \quad n=a-b+2+t_{1}+t_{2} .
$$

Then $m<n$ and the degree list of Lemma 5.2 can be written as

$$
a, a+m, a+n, a+m+n, a+2 m+n, a+m+2 n, a+2 m+2 n
$$

First, we need we choose a Witt basis of V which is compatible with degrees.
Lemma 6.1. The space V has a Witt basis $\left\{v_{1}, \ldots, v_{7}\right\}$ of degrees

$$
a, a+m, a+n, a+m+n, a+2 m+n, a+m+2 n, a+2 m+2 n
$$

and leading coefficients

$$
\begin{aligned}
& 1, \quad \frac{1}{m}, \quad \frac{1}{n(n-m)}, \quad \frac{1}{(m+n) n m}, \quad \frac{1}{(2 m+n)(m+n)(2 m) m} \\
& \frac{1}{(m+2 n)(2 n)(m+n) n(n-m)}, \quad \frac{1}{(2 m+2 n)(m+2 n)(2 m+n)(m+n) m n}
\end{aligned}
$$

respectively.
Proof. By Lemma 6.6, Lemma 6.7 in [MV1, there exists a Witt basis with the above degrees. Then we scale the basis elements so that the leading coefficients are as above. It is easy to check that the leading terms of the 6 -Wronskians are equal to the leading terms of the corresponding basis elements and therefore after the scaling we again obtain a Witt basis.

A Witt basis $\left\{v_{1}, \ldots, v_{7}\right\}$ of V with the above degrees and leading coefficients is called a standard dominant basis if

$$
W^{\dagger}\left(v_{1}, v_{5}, v_{6}\right)=\frac{1}{4} v_{4}^{2}, \quad W^{\dagger}\left(v_{2}, v_{3}, v_{7}\right)=\frac{1}{2} v_{4}^{2} .
$$

Lemma 6.2. Let V be self-self-dual. Then there exists a standard dominant basis of V with degrees and leading terms specified by Lemma 6.1.
Proof. By Corollary 4.7, there are two ways of writing v_{4}^{2} as a divided Wronskian of an isotropic three-space, up to a constant. We call the corresponding spaces U_{1} and U_{2}. For each U_{i} we can find a basis $\left\{f_{i, 1}, f_{i, 2}, f_{i, 3}\right\}$ of increasing degrees. Moreover, without loss of generality we can assume that the leading coefficients and the degrees of the f_{i} are among those of Lemma 6.1. Since $f_{i, j}$ are isotropic their degrees are not equal to the degree of v_{4}.

It is easy to see that we must have

$$
\operatorname{deg} f_{i, 1}+\operatorname{deg} f_{i, 2}+\operatorname{deg} f_{i, 3}=3 a+3 m+3 n
$$

This implies that for each i the degrees are either $(a, a+2 m+n, a+m+2 n)$ or $(a+$ $m, a+n, a+2 m+2 n)$. It is impossible to have degrees from the first list for both i since that would imply that $U_{1} \cap U_{2} \ni v_{1}$. Similarly, if both U_{i} had degrees from the second list, we would have $\operatorname{dim} U_{i} \cap \operatorname{Span}\left(v_{1}, v_{2}, v_{3}\right)=2$, which again implies $U_{1} \cap U_{2} \neq 0$. As a result, we can assume that $f_{1,1}, f_{2,1}, f_{2,2}, v_{4}, f_{1,2}, f_{1,3}, f_{2,3}$ have degrees and leading terms of Lemma 6.1

The above basis is a a Witt basis provided that $B\left(f_{1, i}, f_{2, j}\right)=0$ if $i+j \neq 3$ and $B\left(f_{1,1}, f_{2,3}\right)=B\left(f_{1,2}, f_{2,2}\right)=-B\left(f_{1,3}, f_{2.1}\right)=1$.

Most of these equalities hold automatically. For example, $f_{1,2}=v_{5}+\ldots$ and $f_{2,2}=$ $v_{3}+\ldots$ where the dots denote linear combinations of v_{i} with lower i. This implies that $B\left(f_{1,2}, f_{2,2}\right)=1$ in view of the pairing of v_{i}.

There are exactly three equalities that are not true for a generic choice of $f_{i, j}$. Namely, we may not have

$$
B\left(f_{1,2}, f_{2,3}\right)=0, \quad B\left(f_{1,3}, f_{2,2}\right)=0, \quad B\left(f_{1,3}, f_{2,3}\right)=0
$$

Then we get $B\left(f_{1,3}, f_{2,2}\right)=0$ by adding an appropriate scalar multiple of $f_{2,1}$ to $f_{2,2}$. Note that such an addition operation does not change the leading term.

Similarly, to get $B\left(f_{1,2}, f_{2,3}\right)=0$ and $B\left(f_{1,3}, f_{2,3}\right)=0$ we add an appropriate linear combination of $f_{2,1}$ and $f_{2,2}$ to $f_{2,3}$. This finishes the proof.

Example 6.3. Let V be the space of polynomials of degree at most 6 . Recall that V is self-self-dual. Then the basis

$$
\left\{1, x, \frac{x^{2}}{2!}, \frac{x^{3}}{3!}, \frac{x^{4}}{4!}, \frac{x^{5}}{5!}, \frac{x^{6}}{6!}\right\}
$$

is standard dominant.
6.2. 3-Wronskians in standard bases. Fix a standard dominant basis $\left\{v_{1}, \ldots, v_{7}\right\}$ in V. We identify the spinor space \hat{V} with the polynomials in odd variables \hat{v}_{5}, \hat{v}_{6} and \hat{v}_{7} as before. We recall that v_{5}, v_{6}, v_{7} act by multiplications by $\hat{v}_{5}, \hat{v}_{6}, \hat{v}_{7}$ respectively, v_{1}, v_{2}, v_{3} act by differentiations $-\partial / \partial \hat{v}_{7}, \partial / \partial \hat{v}_{6},-\partial / \partial \hat{v}_{5}$ respectively, and v_{4} acts by $\frac{1}{\sqrt{2}}(-1)^{\operatorname{deg}}$, where deg is the degree of the odd polynomial.

Formula (2.3) allows us to fix the explicit form of the pairing \hat{B}. Namely,

$$
\hat{B}\left(\hat{1}, \hat{v}_{5} \hat{v}_{6} \hat{v}_{7}\right)=\hat{B}\left(\hat{v}_{6}, \hat{v}_{5} \hat{v}_{7}\right)=1, \quad \hat{B}\left(\hat{v}_{7}, \hat{v}_{5} \hat{v}_{6}\right)=\hat{B}\left(\hat{v}_{6} \hat{v}_{7}, \hat{v}_{5}\right)=-1,
$$

and all other pairings of basis elements are zero.
Recall that by Proposition 4.6 there is an invariant surjection $\psi: \hat{V} \rightarrow V$ such that if $\psi(\rho(U))=f$ then the divided Wronskian of U is proportional to f^{2}.

Lemma 6.4. The point p corresponding to the invariant surjection ψ is given by the formula $p=\hat{v}_{5} \hat{v}_{6}+\frac{1}{\sqrt{2}} \hat{v}_{7}$.

Proof. The polynomial v_{4}^{2} is proportional to the divided Wronskians of the spans of $\left(v_{1}, v_{5}, v_{6}\right)$ and $\left(v_{2}, v_{3}, v_{7}\right)$. Applying the spinor embedding ρ we obtain the lines $\mathbb{C} \hat{v}_{5} \hat{v}_{6}$
and $\mathbb{C} \hat{v}_{7}$ in \hat{V}. Since the invariant surjection is a projection from a point p, we see that, up to a constant multiple,

$$
p=\hat{v}_{5} \hat{v}_{6}+\alpha \hat{v}_{7}
$$

for some $\alpha \in \mathbb{C}$.
Consider the isotropic vector $v_{1}+\beta v_{2}$. Its square can be uniquely up to constant written as a divided Wronskian of the annihilator of $\left(v_{1}+\beta v_{2}\right) \cdot p$. Since

$$
\left(v_{1}+\beta v_{2}\right) \cdot p=\left(-\partial / \partial \hat{v}_{7}+\beta \partial / \partial \hat{v}_{6}\right) \cdot\left(\hat{v}_{5} \hat{v}_{6}+\alpha \hat{v}_{7}\right)=-\alpha \hat{1}-\beta \hat{v}_{5},
$$

the corresponding isotropic 3 -space is spanned by $v_{1}, v_{2}, \alpha^{2} v_{3}+\sqrt{2} \alpha \beta v_{4}+\beta^{2} v_{5}$. Therefore, we must have

$$
W^{\dagger}\left(v_{1}, v_{2}, \alpha^{2} v_{3}+\sqrt{2} \alpha \beta v_{4}+\beta^{2} v_{5}\right)=c(\beta)\left(v_{1}+\beta v_{2}\right)^{2} .
$$

Comparing the leading coefficients of both sides, we obtain that $c(\beta)$ is a constant. Moreover, we must have

$$
\alpha^{2} W^{\dagger}\left(v_{1}, v_{2}, v_{3}\right)=c v_{1}^{2}, \quad \alpha W^{\dagger}\left(v_{1}, v_{2}, v_{4}\right)=\sqrt{2} c v_{1} v_{2}, \quad W^{\dagger}\left(v_{1}, v_{2}, v_{5}\right)=c v_{2}^{2}
$$

for some constant c. Comparing the leading coefficients on the both sides of the last two equations, we obtain the equalities

$$
\alpha \frac{m(m+n) n}{m(m+n) m n}=c \sqrt{2} \frac{1}{m}, \quad \frac{m(2 m+n)(m+n)}{m(2 m+n)(m+n)(2 m) m}=c \frac{1}{m^{2}},
$$

which give $c=\frac{1}{2}, \alpha=\frac{1}{\sqrt{2}}$.
The explicit knowledge of p and \hat{B} allows us to calculate all divided 3-Wronskians in the standard dominant basis. The next theorem is the main result of this section.

Theorem 6.5. The Wronskians of the basis elements of a standard dominant basis of V are given in the Table 1 below.
Proof. The theorem essentially amounts to the calculation of the map ϕ of Proposition 4.10, since by Corollary 4.11 the divided Wronskian map to $\mathbb{C}[x]$ is a composition of the map $\frac{1}{2} \phi$ and the multiplication map $S y m^{2} V \rightarrow \mathbb{C}[x]$.

Since we have fixed $p=\hat{v}_{5} \hat{v}_{6}+\frac{1}{\sqrt{2}} \hat{v}_{7}$ and \hat{B}, by Proposition $4.10 \phi=C \nu$. From the definition of the standard dominant basis, we have $\phi\left(v_{1} \wedge v_{2} \wedge v_{3}\right)=v_{1} \otimes v_{1}$. We compute $\nu\left(v_{1} \wedge v_{2} \wedge v_{3}\right):$

$$
\begin{aligned}
& \left\langle\nu^{*}\left(v_{1} \wedge v_{2} \wedge v_{3}\right),\left(\sum_{i=1}^{7} \alpha_{i} v_{i}\right) \otimes\left(\sum_{i=1}^{7} \alpha_{i} v_{i}\right)\right\rangle= \\
& \quad=\hat{B}\left(v_{1} v_{2} v_{3}\left(\sum_{i=1}^{7} \alpha_{i} v_{i}\right) \cdot\left(\hat{v}_{5} \hat{v}_{6}+\frac{1}{\sqrt{2}} \hat{v}_{7}\right),\left(\sum_{i=1}^{7} \alpha_{i} v_{i}\right) \cdot\left(\hat{v}_{5} \hat{v}_{6}+\frac{1}{\sqrt{2}} \hat{v}_{7}\right)\right) \\
& \quad=\hat{B}\left(\alpha_{7} \hat{1},\left(\sum_{i=1}^{7} \alpha_{i} v_{i}\right) \cdot\left(\hat{v}_{5} \hat{v}_{6}+\frac{1}{\sqrt{2}} \hat{v}_{7}\right)\right)=\hat{B}\left(\alpha_{7} \hat{1}, \alpha_{7} \hat{v}_{5} \hat{v}_{6} \hat{v}_{7}\right)=\alpha_{7}^{2}=\left(B\left(v_{1}, \sum_{i=1}^{7} \alpha_{i} v_{i}\right)\right)^{2}
\end{aligned}
$$

123	124	125	126	127
v_{1}^{2}	$v_{1} v_{2}$	$\frac{1}{2} v_{2}^{2}$	$-\frac{1}{2} v_{1} v_{4}+\frac{1}{2} v_{2} v_{3}$	$-v_{1} v_{5}+\frac{1}{2} v_{2} v_{4}$
134	135	136	137	145
$v_{1} v_{3}$	$\frac{1}{2} v_{1} v_{4}+\frac{1}{2} v_{2} v_{3}$	$\frac{1}{2} v_{3}^{2}$	$-v_{1} v_{6}+\frac{1}{2} v_{3} v_{4}$	$\frac{1}{2} v_{2} v_{4}$
146	147	156	157	167
$\frac{1}{2} v_{3} v_{4}$	$-\frac{1}{2} v_{1} v_{7}-\frac{1}{2} v_{2} v_{6}$	$\frac{1}{4} v_{4}^{2}$	$-\frac{1}{2} v_{2} v_{7}+\frac{1}{2} v_{4} v_{5}$	$-\frac{1}{2} v_{3} v_{7}+\frac{1}{2} v_{4} v_{6}$
234	$+\frac{1}{2} v_{3} v_{5}+\frac{1}{4} v_{4}^{2}$	235	237	245
$v_{1} v_{4}$	$v_{1} v_{5}+\frac{1}{2} v_{2} v_{4}$	$v_{1} v_{6}+\frac{1}{2} v_{3} v_{4}$	$\frac{1}{2} v_{4}^{2}$	$v_{2} v_{5}$
246	247	256	257	267
$\frac{1}{2} v_{1} v_{7}+\frac{1}{2} v_{2} v_{6}$	$v_{4} v_{5}$	$\frac{1}{2} v_{2} v_{7}+\frac{1}{2} v_{4} v_{5}$	v_{5}^{2}	$-\frac{1}{2} v_{4} v_{7}+v_{5} v_{6}$
$+\frac{1}{2} v_{3} v_{5}+\frac{1}{4} v_{4}^{2}$	346	347	356	357
345	$v_{3} v_{6}$	$v_{4} v_{6}$	$\frac{1}{2} v_{3} v_{7}+\frac{1}{2} v_{4} v_{6}$	$\frac{1}{2} v_{4} v_{7}+v_{5} v_{6}$
$-\frac{1}{2} v_{1} v_{7}+\frac{1}{2} v_{2} v_{6}$	$45 \frac{1}{2} v_{3} v_{5}-\frac{1}{4} v_{4}^{2}$	4567	467	567
367	$\frac{1}{2} v_{4} v_{7}$	$v_{5} v_{7}$	$v_{6} v_{7}$	$\frac{1}{2} v_{7}^{2}$
v_{6}^{2}				

Table 1. The entry under $i j k$ is $W^{\dagger}\left(v_{i}, v_{j}, v_{k}\right)$.

Therefore $\nu\left(v_{1}, v_{2}, v_{3}\right)=v_{1} \otimes v_{1}$, so $C=1$ and $\phi=\nu$.
It is now routine to calculate all divided Wronskians. We calculate $W^{\dagger}\left(v_{1}, v_{4}, v_{7}\right)$ as an example and leave the rest to the reader.

$$
\begin{aligned}
& \left\langle\nu^{*}\left(v_{1} \wedge v_{4} \wedge v_{7}\right),\left(\sum_{i=1}^{7} \alpha_{i} v_{i}\right) \otimes\left(\sum_{i=1}^{7} \alpha_{i} v_{i}\right)\right\rangle= \\
& \quad=\hat{B}\left(v_{1} v_{4} v_{7}\left(\sum_{i=1}^{7} \alpha_{i} v_{i}\right) \cdot\left(\hat{v}_{5} \hat{v}_{6}+\frac{1}{\sqrt{2}} \hat{v}_{7}\right),\left(\sum_{i=1}^{7} \alpha_{i} v_{i}\right) \cdot\left(\hat{v}_{5} \hat{v}_{6}+\frac{1}{\sqrt{2}} \hat{v}_{7}\right)\right) \\
& \quad=\hat{B}\left(-\alpha_{1} \frac{1}{2} \hat{1}+\alpha_{2} \frac{1}{\sqrt{2}} \hat{v}_{5}+\alpha_{3} \frac{1}{\sqrt{2}} \hat{v}_{6}+\alpha_{4} \frac{1}{2} \hat{v}_{5} \hat{v}_{6},\right. \\
& \left.\quad-\alpha_{1} \frac{1}{\sqrt{2}} \hat{1}-\alpha_{2} \hat{v}_{5}-\alpha_{3} \hat{v}_{6}+\alpha_{4}\left(\frac{1}{\sqrt{2}} \hat{v}_{5} \hat{v}_{6}-\frac{1}{2} \hat{v}_{7}\right)+\alpha_{5} \frac{1}{\sqrt{2}} \hat{v}_{5} \hat{v}_{7}+\alpha_{6} \frac{1}{\sqrt{2}} \hat{v}_{6} \hat{v}_{7}+\alpha_{7} \hat{v}_{5} \hat{v}_{6} \hat{v}_{7}\right) \\
& \quad=-\frac{1}{2} \alpha_{1} \alpha_{7}-\frac{1}{2} \alpha_{2} \alpha_{6}+\frac{1}{2} \alpha_{3} \alpha_{5}+\frac{1}{4} \alpha_{4}^{2} .
\end{aligned}
$$

This implies that
$\phi\left(v_{1} \wedge v_{4} \wedge v_{7}\right)=\frac{1}{4}\left(-v_{1} \otimes v_{7}-v_{7} \otimes v_{1}-v_{2} \otimes v_{6}-v_{6} \otimes v_{2}+v_{3} \otimes v_{5}+v_{5} \otimes v_{3}+v_{4} \otimes v_{4}\right)$. Hence $W^{\dagger}\left(v_{1}, v_{4}, v_{7}\right)=-\frac{1}{2} v_{1} v_{7}-\frac{1}{2} v_{2} v_{6}+\frac{1}{2} v_{3} v_{5}+\frac{1}{4} v_{4}^{2}$.

A basis $\left\{v_{1}, \ldots, v_{7}\right\}$ of V is called standard if the divided 3 -Wronskians $W^{\dagger}\left(v_{i}, v_{j}, v_{k}\right)$ are given in Table 1. A standard dominant basis is standard.

Proposition 6.6. Let V be a self-dual space with a standard basis. Then V is self-selfdual.

Proof. Define $\phi_{V}: \Lambda^{3} V \rightarrow S y m^{2} V$ by the formulas in Table 1 . Let U be any self-selfdual space with a standard basis $\left\{u_{1}, \ldots, u_{7}\right\}$ and the map $\phi_{U}: \Lambda^{3} U \rightarrow S_{m}{ }^{2} U$. Define the map $\iota: U \rightarrow V$ sending $u_{i} \mapsto v_{i}$. Then it induces the maps $\Lambda^{3} U \rightarrow \Lambda^{3} V$ and $S_{y m}{ }^{2} U \rightarrow S^{2} m^{2} V$ which obviously intertwine ϕ_{U} and ϕ_{V}. The image of any isotropic 3 -space in U is a tensor square of an element in U. Therefore the image of any isotropic 3 -space in V is a tensor square of an element in V. It follows that divided Wronskian of any isotropic 3 -space in V is a a square of an element of V. Now the proposition follows from Theorem 5.8.

For a self-self-dual space V the knowledge of only a few 3 -Wronskians is sufficient to decide whether a Witt basis $\left\{v_{1}, \ldots, v_{7}\right\}$ is self-dual.

Lemma 6.7. A Witt basis $\left\{v_{1}, \ldots, v_{7}\right\}$ of a self-self-dual space is standard if and only if

$$
\begin{gathered}
W^{\dagger}\left(v_{2}, v_{3}, v_{7}\right)=\frac{1}{2} v_{4}^{2}, W^{\dagger}\left(v_{1}, v_{5}, v_{6}\right)=\frac{1}{4} v_{4}^{2} \\
W^{\dagger}\left(v_{1}, v_{2}, v_{3}\right)=v_{1}^{2}, W^{\dagger}\left(v_{1}, v_{2}, v_{4}\right)=v_{1} v_{2}, W^{\dagger}\left(v_{1}, v_{2}, v_{5}\right)=\frac{1}{2} v_{2}^{2} .
\end{gathered}
$$

Proof. The if part is a tautology. To prove the only if part, notice that the first two Wronskians assure that $p=\hat{v}_{5} \hat{v}_{6}+\alpha v_{7}$. As in the proof of Lemma 6.4 we look at

$$
W^{\dagger}\left(v_{1}, v_{2}, \alpha^{2} v_{3}+\sqrt{2} \alpha \beta v_{4}+\beta^{2} v_{5}\right)=c(\beta)\left(v_{1}+\beta v_{2}\right)^{2} .
$$

Since $v_{1}^{2}, v_{1} v_{2}, v_{2}^{2}$ are linearly independent, the last three Wronskians assure $\alpha=\frac{1}{\sqrt{2}}$. Then the argument of Theorem 6.5 goes through, since it only uses $W^{\dagger}\left(v_{1}, v_{2}, v_{3}\right)=v_{1}^{2}$ to fix the constant.
6.3. 3-form in a standard basis. Now we read off the explicit formula for the trilinear form w of Theorem 4.12 in the standard basis $\left\{v_{i}\right\}$.

Proposition 6.8. For $i<j<k$ we have $w\left(v_{i}, v_{j}, v_{k}\right)=0$ except for

$$
\begin{array}{r}
w\left(v_{2} \wedge v_{4} \wedge v_{6}\right)=w\left(v_{1} \wedge v_{4} \wedge v_{7}\right)=-w\left(v_{3} \wedge v_{4} \wedge v_{5}\right)= \\
=-w\left(v_{1} \wedge v_{5} \wedge v_{6}\right)=-\frac{1}{2} w\left(v_{2} \wedge v_{3} \wedge v_{7}\right)=\frac{1}{4}
\end{array}
$$

Proof. Since w and w_{ψ} are $G_{2}(p)$-invariant, by Lemma $3.3 w$ is a constant multiple of w_{ψ}. Therefore, there exists a constant C, such that

$$
w(a \wedge b \wedge c)=C \hat{B}(a b c \cdot p, p)
$$

As we saw in the proof of Lemma 6.7, $p=\hat{v}_{5} \hat{v}_{6}+\frac{1}{\sqrt{2}} \hat{v}_{7}$, so we need to calculate

$$
\frac{1}{\sqrt{2}}\left(\hat{B}\left(a b c \cdot \hat{v}_{5} \hat{v}_{6}, \hat{v}_{7}\right)+\hat{B}\left(a b c \cdot \hat{v}_{7}, \hat{v}_{5} \hat{v}_{6}\right)\right)+\hat{B}\left(a b c \cdot \hat{v}_{5} \hat{v}_{6}, \hat{v}_{5} \hat{v}_{6}\right)+\frac{1}{2} \hat{B}\left(a b c \cdot \hat{v}_{7}, \hat{v}_{7}\right) .
$$

Since $\hat{B}\left(q_{1}, q_{2}\right)$ is zero unless the degrees of q_{i} add up to three, the first of these terms is nonzero only if the degree of $a b c$ is zero, which can only happen if it is of the form $v_{\leq 3} v_{4} v_{\geq 5}$. It is also easy to see that the term is zero unless $a b c$ is of the form $v_{i} v_{4} v_{8-i}$, for which it equals $\left(-\frac{1}{2}\right)$ for $i=1,2$ and $\frac{1}{2}$ for $i=3$.

The last two terms are nonzero only for $a b c=v_{2} v_{3} v_{7}$ and $a b c=v_{1} v_{5} v_{6}$ respectively, when they equal 1 and $\frac{1}{2}$ respectively. Finally, from $W^{\dagger}\left(v_{1}, v_{5}, v_{6}\right)=\frac{1}{4} v_{4}^{2}$ and $B\left(v_{4}, v_{4}\right)=$ -1 we obtain the constant: $C=-\frac{1}{2}$.

Note that the value $w(a \wedge b \wedge c)$ can be computed by applying B to the corresponding element in Table 1. For example,

$$
w\left(v_{1} \wedge v_{4} \wedge v_{7}\right)=-\frac{1}{2} B\left(v_{1}, v_{7}\right)-\frac{1}{2} B\left(v_{2}, v_{6}\right)+\frac{1}{2} B\left(v_{3}, v_{5}\right)+\frac{1}{4} B\left(v_{4}, v_{4}\right)=\frac{1}{4} .
$$

Corollary 6.9. Let w_{1} be any non-degenerate skew-symmetric 3-form in a 7-dimensional space V associated to a non-degenerate bilinear form B. Then there is a basis $\left\{v_{1}, \ldots, v_{7}\right\}$ of V such that $B\left(v_{i}, v_{j}\right)=(-1)^{i+1} \delta_{i}^{8-j}$ and w_{1} is a scalar multiple of the form described in Proposition 6.8.

Proof. By Proposition 3.7, the group $S L(V)$ acts transitively on the set of all nondegenerate forms considered up to a constant. That implies the corollary.

Next we describe the set of standard bases in a self-self-dual space V.
Proposition 6.10. The group $G_{2}(p)$ acts transitively on the set of standard bases.
Proof. The group $G_{2}(p)$ acts on the set of standard bases by Proposition 4.9, Any two standard bases can be mapped to each other by an element g of the orthogonal group $S O(V)$. But then g preserves the 3 -form and therefore belongs to $G_{2}(p)$ by Lemma 3.5, Therefore the action is transitive.

Corollary 6.11. A basis $\left\{v_{1}, \ldots, v_{7}\right\}$ of a self-self-dual space V is standard if and only if $B\left(v_{i}, v_{j}\right)=(-1)^{i+1} \delta_{i}^{8-j}$ and the 3 -form has the form described in Proposition 6.8.
Proof. Follows from Proposition 6.10,
Corollary 6.12. Let basis $\left\{v_{1}, \ldots, v_{7}\right\}$ in V be standard and let F_{i} be the span of v_{1}, \ldots, v_{i}. Then F is a G_{2}-isotropic flag.

Proof. Follows from Proposition 6.10,
Corollary 6.13. For every G_{2}-isotropic flag $F \in \mathcal{F}^{\Perp}$, there exists a standard basis $\left\{v_{1}, \ldots, v_{7}\right\}$, such that v_{1}, \ldots, v_{i} span F_{i}.

Proof. The group G_{2} acts transitively on \mathcal{F}^{\Perp} by Proposition 3.8 and on the set of standard bases by Proposition 6.10. One standard basis exists by Lemma 6.2 It is related to a G_{2}-isotropic flag by Corollary 6.12. Then this basis is mapped by G_{2}-action to a standard basis related to any other given G_{2}-isotropic flag.

We finish with a description of the reproduction procedure in a standard basis.
Let $\left\{v_{1}, \ldots, v_{7}\right\}$ be a standard basis and let (y_{1}, y_{2}) be the corresponding element of the G_{2}-population, $y_{1}=v_{1}, y_{2}=W^{\dagger}\left(v_{1}, v_{2}\right)$.

Proposition 6.14. For any $c \in \mathbb{C}$ the two bases of V given by

$$
\begin{aligned}
& \left\{v_{1}+c v_{2}, v_{2}, v_{3}+2 c v_{4}+2 c^{2} v_{5}, v_{4}+2 c v_{5}, v_{5}, v_{6}+c v_{7}, v_{7}\right\}, \\
& \left\{v_{1}, v_{2}+c v_{3}, v_{3}, v_{4}, v_{5}+c v_{6}, v_{6}, v_{7}\right\}
\end{aligned}
$$

are standard. The corresponding flags are in a bijective correspondence with the set of the immediate descendents $\left(\tilde{y}_{1}, y_{2}\right)$ and $\left(y_{1}, \tilde{y}_{2}\right)$ of $\left(y_{1}, y_{2}\right)$ in the first and in the second directions respectively.

Proof. It is straightforward to check that the new bases are standard using Table 1 and Lemma 6.7. To check that they correspond to the descendants, the only non-trivial check is $W\left(y_{2}, \tilde{y}_{2}\right)=T_{2} y_{1}^{3}$ (up to a constant) for the second direction. Since $y_{2}=W^{\dagger}\left(v_{1}, v_{2}\right)$ and $\tilde{y}_{2}=W^{\dagger}\left(v_{1}, v_{2}+c v_{3}\right)$, we have

$$
\begin{gathered}
W\left(y_{2}, \tilde{y}_{2}\right)=T_{1}^{-2} W\left(W\left(v_{1}, v_{2}\right), W\left(v_{1}, v_{2}+c v_{3}\right)\right)=T_{1}^{-2} v_{1} W\left(v_{1}, v_{2}, v_{2}+c v_{3}\right) \\
=c T_{1}^{-2} T_{1}^{2} T_{2} v_{1}^{3}=c T_{2} v_{1}^{3}=c T_{2} y_{1}^{3}
\end{gathered}
$$

References

[A] J.F. Adams, Lectures on exceptional Lie groups. With a foreword by J. Peter May. Edited by Zafer Mahmud and Mamoru Mimura. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1996.
[B] N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4-6, Springer-Verlag, 1988.
[GH] P. Griffiths, J. Harris, Principles of algebraic geometry, Wiley Classics Library Edition, 1994.
[GOV] E.B. Vinberg, V.V. Gorbatsevich, A.L. Onishchik, Structure of Lie groups and Lie algebras, Current problems in mathematics. Fundamental directions, 41, 5-259, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990.
[MV1] E. Mukhin and A. Varchenko, ical Points of Master Functions and Flag Varieties, preprint math.QA/0209017 (2002), 1-49.
[MV2] E. Mukhin and A. Varchenko, Solutions to the $X X X$ type Bethe Ansatz Equations and Flag Varieties, preprint math.QA/0211321 (2002), 1-32.
[S] J.-P. Serre, On the fundamental group of a unirational variety, J. London Math. Soc. 34 (1959), 481-484.
L.B.: Mathematics Department, University of Wisconsin-Madison, 480 Lincoln Dr, Madison, WI 53706-1388, USA,
BORISOV@MATH.WISC.EDU
E.M.: Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, 402 North Blackford St, Indianapolis, IN 46202-3216, USA, MUKHIN@MATH.IUPUI.EDU

