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THE ORBIFOLD CHOW RING OF A

TORIC DELIGNE-MUMFORD STACK

LEV A. BORISOV, LINDA CHEN, AND GREGORY G. SMITH

Abstract. Generalizing toric varieties, we introduce toric Deligne-Mumford stacks
which correspond to combinatorial data. The main result in this paper is an explicit
calculation of the orbifold Chow ring of a toric Deligne-Mumford stack. As an ap-
plication, we prove that the orbifold Chow ring of the toric Deligne-Mumford stack
associated to a simplicial toric variety is a flat deformation of (but is not necessarily
isomorphic to) the Chow ring of a crepant resolution.

1. Introduction

The orbifold Chow ring of a smooth Deligne-Mumford stack, defined by Abramovich,
Graber and Vistoli [AGV], is the algebraic version of the orbifold cohomology ring
introduced by Chen and Ruan [CR1] [CR2]. By design, this ring incorporates numerical
invariants, such as the orbifold Euler characteristic and the orbifold Hodge numbers, of
the underlying singular space. The product structure is defined as the degree zero part
of the quantum product; in particular, it involves Gromov-Witten invariants. Inspired
by results in [Bat] and [Yas] and predictions in string theory, one expects that, in
nice situations, the orbifold Chow ring coincides with the Chow ring of a resolution
of singularities. Fantechi and Göttsche [FG] and Uribe [Uri] verify this conjecture
when the orbifold is Symn(S) where S is a smooth projective surface with KS = 0
and the resolution is Hilbn(S). The initial motivation for this project was to compare
the orbifold Chow ring of a simplicial toric variety with the Chow ring of a crepant
resolution.

To achieve this goal, we first develop the theory of toric Deligne-Mumford stacks.
Modeled on simplicial toric varieties, a toric Deligne-Mumford stack corresponds to
a combinatorial object called a stacky fan. As a first approximation, this object is a
simplicial fan with a distinguished lattice point on each ray in the fan. Hence, there is a
natural toric Deligne-Mumford stack associated to every simplicial toric variety. More
precisely, a stacky fan Σ consists of a simplicial fan Σ in Q⊗ZN and a map β : Zn → N
where n is the number of rays in Σ and N is a finitely generated abelian group. The
stacky fan Σ encodes a group action on a quasi-affine variety and the associated toric
Deligne-Mumford stack X (Σ) is the quotient. We show that many of the basic concepts,
such as open and closed toric substacks, line bundles, and maps between toric Deligne-
Mumford stacks, correspond to combinatorial notions. We expect many more results
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about toric varieties to lift to the realm of stacks and we hope that toric Deligne-
Mumford stacks, like toric varieties, will serve as a useful testing ground for general
theories.

Our description for the orbifold Chow ring of a toric Deligne-Mumford stack X (Σ)
parallels the “Stanley-Reisner” presentation for the Chow ring of a simplicial toric
variety. Specifically, the stacky fan Σ gives rise to the deformed group ring Q[N ]Σ. As
a Q-vector space, Q[N ]Σ is simply the group algebra of N . Since N is abelian, we write
Q[N ]Σ =

⊕
c∈N Q yc where y is a formal variable. For c ∈ N , c̄ denotes the image of c

in Q⊗Z N . Multiplication in Q[N ]Σ is defined by the equation:

yc1 · yc2 :=

{
yc1+c2 if there is σ ∈ Σ such that c̄1 ∈ σ and c̄2 ∈ σ;

0 otherwise.

If bi is the image under the map β : Zn → N of the ith standard basis vector, then we
endow Q[N ]Σ with a Q-grading by setting deg(yc) =

∑
b̄i∈σ

mi where σ is the minimal

cone in Σ containing c̄, each mi is a positive rational number and c̄ =
∑

b̄i∈σ
mib̄i. Let

A∗
orb

(
X (Σ)

)
be the orbifold Chow ring of X (Σ) with rational coefficients. Our main

results is:

Theorem 1.1. If X (Σ) is a complete toric Deligne-Mumford stack, then there is an

isomorphism of Q-graded rings:

A∗
orb

(
X (Σ)

) ∼= Q[N ]Σ〈∑n
i=1 θ(bi)y

bi : θ ∈ Hom(N,Z)
〉 .

In the context of differential geometry, Jiang [Jia] establishes the analogous result for
the weighted projective space P(1, 2, 2, 3, 3, 3).

Our proof of this theorem involves two steps. By definition, the orbifold Chow
ring A∗

orb

(
X (Σ)

)
is isomorphic as an abelian group to the Chow ring of the inertia

stack I
(
X (Σ)

)
. We first express I

(
X (Σ)

)
as a disjoint union of certain toric Deligne-

Mumford stacks and establish the isomorphism in Theorem 1.1 at the level of Q-
graded vector spaces. To compare the ring structures, we also express the moduli space
K0,3

(
X (Σ), 0

)
of 3-pointed twisted stable maps as a disjoint union of toric Deligne-

Mumford stacks. This combinatorial description allows us to compute the virtual
fundamental class of K0,3

(
X (Σ), 0

)
. We are then able to verify that multiplication in

the deformed group ring coincides with the product in the orbifold Chow ring.
The paper is organized as follows. In Section 2, we extend Gale duality to maps

of finitely generated abelian groups. This duality forms an essential link between
stacky fans and toric Deligne-Mumford stacks. Nevertheless, this theory is entirely
self-contained, requiring only basic homological algebra, and may be of interest in other
situations. The rudimentary theory of toric Deligne-Mumford stacks is developed in
Sections 3 and 4. Specifically, we detail the correspondence between stacky fans and
toric Deligne-Mumford stacks, we describe the open and closed toric substacks and
we express the inertia stacks as disjoint unions of toric Deligne-Mumford stacks. The
proof of Theorem 1.1 is given in Sections 5 and 6. Finally in Section 7, we use our main
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result to compare the orbifold Chow rings of a simplicial toric variety and its crepant
resolutions.

Conventions. Throughout this paper, we work over the field C of complex numbers
and consider Chow rings and orbifold Chow rings with rational coefficients.

Acknowledgments. We would like to thank Dan Abramovich, Bob Friedman, Bill
Fulton, Tom Graber, Paul Horja, Andrew Kresch, Martin Olsson, Hsian-Hua Tseng,
Howard Thompson and Ravi Vakil for useful discussions.

2. Gale Duality with Torsion

In this section, we extend Gale duality to finitely generated abelian groups. To orient
the reader, we recall the duality theory for vector configurations; see Theorem 6.14 in
[Zie]. If {b1 · · · bn} is a set of n column vectors which span Qd, then there exists a dual

configuration [a1 · · ·an] ∈ Q(n−d)×n such that 0→ Qd [b1···bn]T−−−−−→ Qn [a1···an]−−−−→ Qn−d → 0 is
a short exact sequence. The set of column vectors {a1, . . . , an} is uniquely determined
up to linear coordinates transformation in Qn−d. We generalize this to maps of finitely
generated abelian groups.

Let N be a finitely generated abelian group and consider a group homomorphism
β : Zn → N . The map β is determined by a finite subset {b1, . . . , bn} of N . We write
(−)⋆ for the functor HomZ(−,Z). The dual map β∨ : (Zn)⋆ → DG(β) is defined as
follows. Choose projective resolutions E and F of the abelian groups Zn and N . The
map β : Zn → N lifts to a morphism E → F and the associated mapping cone Cone(β)
fits into an exact sequence 0→ F → Cone(β)→ E[1]→ 0. Since E is projective, we
have the exact sequence 0→ E[1]⋆ → Cone(β)⋆ → F ⋆ → 0 and taking the long exact
sequence in cohomology produces the exact sequence:

(2.0.1) N⋆ β⋆

−−−→ (Zn)⋆ −→ H1
(
Cone(β)⋆

)
−→ Ext1

Z(N,Z) −→ 0 .

Set DG(β) := H1
(
Cone(β)⋆

)
and define the dual map β∨ : (Zn)⋆ → DG(β) to be the

second map in (2.0.1); both are well-defined up to natural isomorphism. Since Zn is
projective, β∨ is in fact the only nontrivial map from H i(E⋆) to H i+1

(
Cone(β)⋆

)
. This

abstract definition guarantees that (−)∨ is a contravariant functor; see Lemma 2.3.
On the other hand, there is an explicit description of the dual map β∨ and the

dual group DG(β). The structure theorem of finitely generated abelian groups implies

N ∼= Zd ⊕Z/q1Z⊕ · · · ⊕Z/qrZ. Hence, 0→ Zr Q−→ Zd+r → 0 is a projective resolution
of N and the map β : Zn → N lifts to a map Zn → Zd+r given by a matrix B. Since
Zn is projective, the complex with E0 = Zn and Ei = 0 for all i 6= 0 is a projective

resolution of Zn. With these choices, Cone(β) is the complex 0→ Zn+r [B Q]−−−→ Zd+r → 0
and we obtain the sequence (2.0.1) by applying the Snake Lemma to the diagram:

0 −−−→ (Zd+r)⋆ −−−→ (Zd+r)⋆ −−−→ 0
y

y[B Q]⋆
yQ⋆

0 −−−→ (Zn)⋆ −−−→ (Zn+r)⋆ −−−→ (Zr)⋆ −−−→ 0

.
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It follows that DG(β) = (Zn+r)⋆/ Im([B Q]⋆) and that the map β∨ is the composition
of the inclusion map (Zn)⋆ → (Zn+r)⋆ and the quotient map (Zn+r)⋆ → DG(β).

Example 2.1. The set {(2, 1), (−3, 0)} ∈ Z⊕ Z/2Z yields a map β : Z2 → Z⊕ Z/2Z.
In this case, Q = [ 0

2 ] and B = [ 2 −3
1 0 ]. Since the vector [ 6 4 −3 ]⋆ spans the integer kernel

of matrix [ 2 −3 0
1 0 2 ], we have DG(β) ∼= Z3/ Im

(
[ 2 −3 0
1 0 2 ]

⋆) ∼= Z and β∨ : Z2 → Z is given
by the matrix [ 6 4 ].

We are especially interested in the map β : Zn → N when it has a finite cokernel;
in other words, the elements {b1, . . . , bn} generate a finite index subgroup in N . The
next result shows that this assumption characterizes when (−)∨ is a dualizing functor.

Proposition 2.2. Let β : Zn → N be a homomorphism of finitely generated abelian

groups. The map β is naturally isomorphic to β∨∨ if and only if the cokernel of β is

finite. Moreover, if cokernel of β is finite, then the kernel of β∨ is N⋆.

Proof. Suppose that Coker(β) is not finite. The sequence (2.0.1) implies that the
Coker(β∨∨) is Ext1

Z(DG(β),Z). Since Ext1
Z(DG(β),Z) is finite, we see that β cannot

be isomorphic to β∨∨.
Conversely, assume that the cokernel of β is finite. To compute the map β∨∨, we

first construct a projective resolution of DG(β) = (Zn+r)⋆/ Im([B Q]⋆). Applying the
Snake Lemma to the diagram

0 −−−→ Zr −−−→ Zn+r −−−→ Zn −−−→ 0
∥∥∥

y[B Q]

yβ

0 −−−→ Zr Q−−−→ Zd+r −−−→ N −−−→ 0

establishes that Coker([B Q]) = Coker(β) and Ker([B Q]) = Ker(β). Hence, the

complex 0 → Ker(β) → Zn+r [B Q]−−−→ Zd+r → 0 is a projective resolution of Coker(β).
Since ExtiZ(Coker(β),Z) can be compute from this resolution and Coker(β)⋆ = 0, we

deduce that [B Q]⋆ is injective and 0 → (Zd+r)⋆
[B Q]⋆−−−→ (Zn+r)⋆ → 0 is a projective

resolution of DG(β).
Since the dual map β∨ is the composition of the inclusion map (Zn)⋆ → (Zn+r)⋆ and

the quotient map (Zn+r)⋆ → DG(β), it follows that DG(β∨) = (Zn+d+r)⋆⋆/ Im
[
In B⋆

0 Q⋆

]⋆

and β∨∨ is the composition of inclusion (Zn)⋆⋆ → (Zn+d+r)⋆⋆ and the quotient map
(Zn+d+r)⋆⋆ → DG(β∨). Because Zm is naturally isomorphic to (Zm)⋆⋆, it follows that
DG(β∨) is naturally isomorphic to (Zd+r/ Im(Q)) = N and β∨∨ is naturally isomorphic
to β. Lastly, our resolution of DG(β) also implies that H0

(
Cone(β)⋆

)
= 0 and thus the

long exact sequence which gives (2.0.1) proves the second part of the proposition. �

The functor (−)∨ is also well-behaved in short exact sequences.
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Lemma 2.3. Given a commutative diagram

(2.3.2)

0 −−−→ Zn1 −−−→ Zn2 −−−→ Zn3 −−−→ 0
yβ1

yβ2

yβ3

0 −−−→ N1 −−−→ N2 −−−→ N3 −−−→ 0

in which the rows are exact and the columns have finite cokernels, there is a commu-

tative diagram with exact rows

(2.3.3)

0 −−−→ (Zn3)⋆ −−−→ (Zn2)⋆ −−−→ (Zn1)⋆ −−−→ 0
yβ∨

3

yβ∨
2

yβ∨
1

0 −−−→ DG(β3) −−−→ DG(β2) −−−→ DG(β1) −−−→ 0

.

Proof. For 1 ≤ i ≤ 3, choose Ei := (Zni)[0] as a projective resolution of Zni . Using
the Horseshoe Lemma, the bottom row of (2.3.2) lifts to an exact sequence of pro-
jective resolutions 0 → F1 → F2 → F3 → 0. Hence, the diagram (2.3.2) yields to a
commutative diagram of cochain complexes with exact rows:

0 −−−→ E1 −−−→ E2 −−−→ E3 −−−→ 0
y

y
y

0 −−−→ F1 −−−→ F2 −−−→ F3 −−−→ 0

.

The functors (−)⋆ and Cone(−) produce a commutative diagram with exact rows and
columns:

(2.3.4)

0 0 0
y

y
y

0 −−−→ E3[1]⋆ −−−→ E2[1]⋆ −−−→ E1[1]⋆ −−−→ 0
y

y
y

0 −−−→ Cone(β3)
⋆ −−−→ Cone(β2)

⋆ −−−→ Cone(β1)
⋆ −−−→ 0

y
y

y

0 −−−→ F ⋆
3 −−−→ F ⋆

2 −−−→ F ⋆
1 −−−→ 0

y
y

y

0 0 0

.

Since Coker(βi) is finite and Ei = (Zni)[0], bothHj
(
Cone(βi)

⋆
)

= 0 andHj(Ei[1]⋆) = 0
for all j 6= 1 and 1 ≤ i ≤ 3. Hence, taking the cohomology of (2.3.4) yields (2.3.3). �
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3. Toric Deligne-Mumford Stacks

The purpose of this section is to associate a smooth Deligne-Mumford stack to certain
combinatorial data. This construction is inspired by the quotient construction for toric
varieties; for example see [Cox].

Let N be a finitely generated abelian group of rank d. We write N for the lattice
generated by N in the d-dimensional Q-vector space NQ := N ⊗Z Q. The natural map
N → N is denoted by b 7→ b̄. Let Σ be a rational simplicial fan in NQ; every cone
σ ∈ Σ is generated by linearly independent vectors. Let ρ1, . . . , ρn be the rays (one-
dimensional cones) in Σ. We assume that ρ1, . . . , ρn span NQ and we fix an element
bi ∈ N such that b̄i generates the cone ρi for 1 ≤ i ≤ n. The set {b1, . . . , bn} defines a
homomorphism β : Zn → N with finite cokernel. The triple Σ :=

(
N,Σ, β

)
is called a

stacky fan.
The stacky fan Σ encodes a group action on a quasi-affine variety Z. To describe

this action, let C[z1, . . . , zn] be the coordinate ring of An. The quasi-affine variety Z is
the open subset defined by the reduced monomial ideal JΣ :=

〈 ∏
ρi*σ zi : σ ∈ Σ

〉
; in

other words, Z := An−V(JΣ). The C-valued points of Z are the z ∈ Cn such that the
cone generated by the set {ρi : zi = 0} belongs to Σ. We equip Z with an action of the
group G := HomZ(DG(β),C∗) as follows. By applying HomZ(−,C∗) to the dual map
β∨ : (Zn)⋆ → DG(β) (see Section 2), we obtain a homomorphism α : G → (C∗)n. The
natural action of (C∗)n on An induces an action of G on An. Since V(JΣ) is a union of
coordinate subspaces, Z is G-invariant.

The quotient stack X (Σ) := [Z/G] is the Artin stack associated to the groupoid
s, t : Z × G ⇉ Z where s is the projection onto the first factor and t is given by the
G-action on Z. If S is a scheme, then the objects in [Z/G](S) are principal G-bundles
E → S with a G-equivariant map E → Z and the morphisms are isomorphisms which
preserve the map to Z. Since Z is smooth, X (Σ) is a smooth algebraic stack; see
Remark 10.13.2 in [LM]. The next result shows that X (Σ) is in fact a Deligne-Mumford
stack. We call X (Σ) the toric Deligne-Mumford stack associated to the stacky fan Σ.

Proposition 3.1. The quotient X (Σ) is a Deligne-Mumford stack.

Proof. By Corollary 2.2 in [Edi] (or Example 7.17 in [Vis]), it is enough to show that
the stablizisers of the geometric points of Z are finite and reduced. Lemma 3.2 shows
that the map Z×G→ Z×Z defined by (z, g) 7→ (z, z ·g) is a finite morphism. It follows
that each stabilizer is finite group scheme. Since we are working in characteristic zero,
all finite group schemes are reduced. �

Lemma 3.2. The map Z ×G→ Z × Z with (z, g) 7→ (z, z · g) is a finite morphism.

Proof. The morphism of affine schemes α : G→ (C∗)n corresponds to the map of rings
C[(Zn)⋆] ∼= C[t±1

1 , . . . , t±1
n ] → C[DG(β)]. Since the cokernel of β∨ is finite, the ring

C[DG(β)] is integral over C[t±1
1 , . . . , t±1

n ] and G→ Im(α) is a finite morphism. Hence,
it suffices to prove that ξ : Im(α) × Z → Z × Z is also a finite morphism. Because

Ker(β∨) ∼= N⋆, we have Im(α) = Spec
(
C[t±1

1 , . . . , t±1
n ]/〈∏n

i=1 t
θ(bi)
i − 1 : θ ∈ N⋆〉

)
.
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We next show that ξ : Im(α)× Z → Z × Z is an affine morphism. For each σ ∈ Σ,
set zσ̂ :=

∏
ρi*σ zi and let Uσ := Cn − V(zσ̂). The coordinate ring of the open affine

subset Uσ is C[z1, . . . , zn, z
−1
σ̂ ] and the collection {Uσ : σ ∈ Σ} covers Z. Therefore,

{Uσ × Uσ′ : σ, σ′ ∈ Σ} is an open affine cover of Z × Z and Uσ × Uσ′ = SpecBσ,σ′

where Bσ,σ′ = C[z1, . . . , zn, z
−1
σ̂ , z′1, . . . , z

′
n, (z

′
σ̂′)

−1]. Since coordinate subspaces are
G-invariant, ξ−1(Uσ × Uσ′) is the affine set

G× (Uσ ∩ Uσ′) = SpecAσ,σ′ = Spec

(
C[t±1

1 ,...,t±1
n ,z1,...,zn,z

−1
σ̂
,z−1

σ̂′ ]〈∏n
i=1 t

θ(bi)
i −1 : θ∈N⋆

〉

)
.

The restriction of ξ to this affine set corresponds to the map of rings ζ : Bσ,σ′ → Aσ,σ′
given by zi 7→ zi and z′i 7→ tizi for 1 ≤ i ≤ n.

To prove that ξ is finite, we show that Aσ,σ′ is a finitely generated Bσ,σ′ -module.
Clearly, the zi ∈ Aσ,σ′ and (zσ̂)

−1 are integral over Bσ,σ′ . Since we have

ti = ζ
(
(zσ̂)

−1z′i
∏

ρj*σ′
j 6=i

zj

)
and t−1

i = ζ
(
(z′σ̂′)

−1zi
∏

ρj*σ′
j 6=i

z′j

)
,

both ti for b̄i 6∈ σ and t−1
i for b̄i 6∈ σ′ are integral over Bσ,σ′ . Thus, t±1

i is integral when
b̄i 6∈ σ ∪ σ′. The Separation Lemma (see Section 1.2 in [Ful]) implies there is a θ ∈ N⋆

such that θ(bi) > 0 if b̄i ∈ σ and b̄i 6∈ σ′; θ(bi) < 0 if b̄i 6∈ σ and b̄i ∈ σ′; and θ(bi) = 0 if

b̄i ∈ σ∩σ′. Hence, the relation
∏

i t
θ(bi)
i = 1 can be rewritten as t

θ(bi)
i =

∏
j 6=i t

−θ(bj)
j and

our assumptions on θ imply that the right hand side is integral over Bσ,σ′ . It follows
that t±1

i is integral over Bσ,σ′ when b̄i 6∈ σ ∩ σ′. Because σ ∩ σ′ is simplicial, b̄i ∈ σ ∩ σ′

implies that the relations {∏i t
θ(bi)
i = 1 : θ ∈ N⋆} allow one to express a power of t±1

i

as a product of t±1
j for b̄j 6∈ σ ∩ σ′. This shows that t±1

i for 1 ≤ i ≤ n is integral over

Bσ,σ′ . Lastly, we have (zσ̂′)
−1 = ζ((z′σ̂′)

−1)
∏

ρi*σ′ ti which implies Aσ,σ′ is integral over

Bσ,σ′ and completes the proof. �

Remark 3.3. In [Laf], a “toric stack” is defined to be the quotient of a toric variety
by its torus. Since such a quotient is never a Deligne-Mumford stack, X (Σ) is not a
“toric stack”.

Remark 3.4. The definition of X (Σ) does not depend on the fan Σ being simplicial.
However, X (Σ) is a Deligne-Mumford stack if and only if the fan Σ is simplicial.

As the next example indicates, our construction produces some classic Deligne-
Mumford stacks.

Example 3.5. Let Σ be the complete fan in Q and consider the subset
{
(2, 1), (−3, 0)

}

of N := Z ⊕ Z/2Z. This data defines a stacky fan Σ. From Example 2.1, we know
β∨ : Z2 → DG(β) ∼= Z is given by the matrix [ 6 4 ]. Furthermore, Z := A2 − {(0, 0)}
and λ ∈ G ∼= C∗ acts by (z1, z2) 7→ (λ6z1, λ

4z2). In this case, X (Σ) is precisely the
moduli stack of elliptic curves M1,1; see Page 126 in [DR].

To illustrate that a toric Deligne-Mumford stack depends on the set {bi}, we include
the following:
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Example 3.6. Let Σ be the complete fan in Q which implies Z := A2 − {(0, 0)}
and let N := Z ⊕ Z/3Z. If β1 : Z2 → N corresponds to the set {(1, 0), (−1, 1)} and
Σ1 =

(
N,Σ, β1

)
, then the dual map β∨

1 : Z2 → DG(β) ∼= Z is given by the matrix [ 3 3 ]
and λ ∈ G1

∼= C∗ acts by (z1, z2) 7→ (λ3z1, λ
3z2). On the other hand, if β2 : Z2 → N

corresponds to the set {(1, 0), (−1, 0)}, then β∨
2 : Z2 → DG(β) ∼= Z⊕Z/3Z is given by

[ 1 1
0 0 ] and (λ1, λ2) ∈ G2

∼= C∗ × µ3 acts by (z1, z2) 7→ (λ1z1, λ1z2). Therefore, for the
stacky fan Σ2 = (N,Σ, β2), X (Σ2) is the quotient of P1 by a trivial action of the Z/3Z

and X (Σ1) 6∼= X (Σ2).

The last result in this section makes the relationship between toric Deligne-Mumford
stacks and toric varieties more explicit. Recall that a coarse moduli space of a Deligne-
Mumford stack X is an algebraic space X with a morphism π : X → X such that

• for all algebraically closed fields k, the map π(k) : X (k)→ X(k) is a bijection;
• given any algebraic space X ′ and any morphism π′ : X → X ′, there is a unique

morphism χ : X → X ′ such that π′ = χ ◦ π.

Proposition 3.7. The toric variety X(Σ) is the coarse moduli space of X (Σ).

Proof. By Proposition 4.2 in [Edi], it is enough to show that the toric variety X(Σ) is
the universal geometric quotient of Z by G. Under the additional assumptions that
N = N and that the bi = b̄i are the unique minimal lattice points generating the rays
in Σ, this is Theorem 2.1 in [Cox]. The reader can verify that the proof presented in
[Cox] extends to our situation without any significant changes. �

4. Closed and Open Substacks

In this section, we explain how the stacky fan Σ encodes certain closed and open
substacks of X (Σ). These are the stack versions of the closed and open toric subvari-
eties of a toric variety. We also express the inertia stack I

(
X (Σ)

)
as a disjoint union

of certain closed substacks.
To describe the connection between the combinatorics of the stacky fan Σ and the

substacks of X (Σ), we use the theory of groupoids; see [Moe] for an introduction.
Recall that a homomorphism of groupoids Θ: (R′ ⇉ U ′) −→ (R ⇉ U) is called a
Morita equivalence if

(1) the square

R′ (s,t)−−−→ U ′ × U ′

Θ

y
yΘ×Θ

R
(s,t)−−−→ U × U

is Cartesian, and
(2) the morphism t ◦ pr1 : U ′ ×Θ,U,s R→ U is locally surjective (i.e. U has an open

covering {Ui → U} such that each Ui → U factors through U).

The key observation is that two groupoids are Morita equivalent if and only if the
associated stacks are isomorphic.
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Fix a cone σ in the fan Σ. Let Nσ be the subgroup of N generated by the set
{bi : ρi ⊆ σ} and let N(σ) be the quotient group N/Nσ. By extending scalars, the
quotient map N → N(σ) becomes the surjection NQ → N(σ)Q. The quotient fan Σ/σ
in N(σ)Q is the set {τ̃ = τ + (Nσ)Q : σ ⊆ τ and τ ∈ Σ} and the link of σ is the set
link(σ) := {τ : τ +σ ∈ Σ, τ ∩σ = 0}. For each ray ρi in link(σ), we write ρ̃i for the ray

in Σ/σ and b̃i for the image of bi in N(σ). To ensure that the quotient fan satisfies our
hypothesis for constructing toric Deligne-Mumford stacks, we require the following:

Condition 4.1. The rays ρ̃i span N(σ)Q.

Note that if Σ is a complete fan, then every cone σ satisfies Condition 4.1.
Let ℓ be the number of rays in link(σ) and let β(σ) : Zℓ → N(σ) be the map de-

termined by the set {b̃i : ρi ∈ link(σ)}. The quotient stacky fan Σ/σ is the triple(
N(σ),Σ/σ, β(σ)

)
.

Proposition 4.2. If σ is a cone in the stacky fan Σ which satisfies Condition 4.1,
then X (Σ/σ) defines a closed substack of X (Σ).

Proof. By definition, X (Σ) is [Z/G]. Let W (σ) be the closed subvariety of Z defined
by the ideal J(σ) := 〈zi : ρi ⊆ σ〉 in C[z1, . . . , zn]. The C-valued points of W (σ) are
the z ∈ Cn such that the cone spanned by {ρi : zi = 0} contains σ and belongs to Σ.
Hence, ρi 6⊆ σ ∪ link(σ) implies that zi 6= 0. Since J(σ) defines a coordinate subspace,
W (σ) is G-invariant and the groupoid W (σ)×G ⇉ W (σ) defines a closed substack of
X (Σ). It remains to show that X (Σ/σ) is the stack associated to W (σ)×G ⇉ W (σ).

To begin, we construction a homomorphism from W (σ)×G ⇉ W (σ) to the defining
groupoid of X (Σ/σ). By renumbering the ρi, we may assume that ρ̃1, . . . , ρ̃ℓ are the
rays in link(σ). If C[z̃1, . . . , z̃ℓ] is the coordinate ring of Aℓ, then

JΣ/σ :=
〈∏

ρi*τ z̃i : σ ⊆ τ and τ ∈ Σ
〉
.

By definition, X (Σ/σ) := [Z(σ)/G(σ)] where Z(σ) := Aℓ − V(JΣ/σ) and G(σ) :=
HomZ(DG(β(σ)),C∗). Let m := dim σ. The description of the C-values points of
W (σ) shows the projection An → Aℓ induces a surjection ϕ0 : W (σ) → Z(σ) with
Ker(ϕ0) = (C∗)n−ℓ−m. Applying Lemma 2.3 to the commutative diagram

0 −−−→ Zn−ℓ −−−→ Zn −−−→ Zℓ −−−→ 0
yβ̃

yβ

yβ(σ)

0 −−−→ Nσ −−−→ N −−−→ N(σ) −−−→ 0

produces the commutative diagram with exact rows

(4.2.5)

0 −−−→ (Zℓ)⋆ −−−→ (Zn)⋆ −−−→ (Zn−ℓ)⋆ −−−→ 0
yβ(σ)∨

yβ∨

yβ̃∨

0 −−−→ DG(β(σ)) −−−→ DG(β) −−−→ DG(β̃) −−−→ 0

.
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Since the cone σ is simplicial, Nσ
∼= Zm and DG(β̃) ∼= Zn−ℓ−m. Applying the functor

HomZ(−,C∗) to (4.2.5) gives the diagram with split exact rows

0 −−−→ (C∗)n−ℓ−m −−−→ G
ϕ1−−−→ G(σ) −−−→ 0

y
yα

yα(σ)

0 −−−→ (C∗)n−ℓ −−−→ (C∗)n −−−→ (C∗)ℓ −−−→ 0

.

Hence, Φ := (ϕ0 × ϕ1, ϕ0) is a homomorphism of groupoids from W (σ)× G ⇉ W (σ)
to Z(σ)×G(σ) ⇉ Z(σ).

To prove that X (Σ/σ) is the stack associated to W (σ)× G ⇉ W (σ), it suffices to
show that Φ is a Morita equivalence. First, the commutative diagram

Z(σ)×G(σ)× (C∗)2(n−ℓ−m)
∼=←−−− W (σ)×G ϕ0×ϕ1−−−−→ Z(σ)×G(σ)

y(s,t,id)

y(s,t)

y(s,t)

Z(σ)× Z(σ)× (C∗)2(n−ℓ−m)
∼=←−−− W (σ)×W (σ)

ϕ0×ϕ0−−−−→ Z(σ)× Z(σ)

shows that W (σ)×G =
(
Z(σ)×G(σ)

)
×ϕ0×ϕ0,Z(σ)×Z(σ),(s,t)

(
W (σ)×W (σ)

)
. Second,

we have
(
Z(σ) × G(σ)

)
×s,Z(σ),ϕ0 W (σ) ∼= Z(σ) × G(σ) × Cn−ℓ−m which implies that

the map t ◦π1 :
(
Z(σ)×G(σ)

)
×s,Z(σ),ϕ0 W (σ)→ Z(σ) splits. Therefore, Φ is a Morita

equivalence and X (Σ/σ) defines a closed substack of X (Σ). �

Each cone σ in Σ also corresponds to an open substack of X (Σ). This substack
has a particularly nice description when dimσ = d := rankN so that σ is of maximal
dimension. In this case, let βσ : Zd → N be the map determined by the set {bi : ρi ⊆ σ}.
The induced stacky fan σ is the triple

(
N, σ, βσ

)
.

Proposition 4.3. If σ is a d-dimensional cone in the stacky fan Σ, then X (σ) defines

an open substack of X (Σ). Moreover, X (σ) is isomorphic the quotient of Cd by the

finite abelian group N(σ).

Proof. As in Lemma 3.2, let Uσ be the open subvariety of Z defined by the monomial
zσ̂ :=

∏
ρi*σ zi. The C-valued points of Uσ are the z ∈ Cn such that for each zi = 0

the ray ρi is contained in σ. Since V(zσ̂) is a union of coordinate subspaces, Uσ is
G-invariant and the groupoid Uσ × G ⇉ Uσ defines an open substack of X (Σ). It
remains to show that X (σ) is the stack associated to Uσ ×G ⇉ Uσ.

We construct a homomorphism from the defining groupoid of X (σ) to Uσ×G ⇉ Uσ.
Since σ is a d-dimensional simplicial cone, Jσ = 〈1〉 and Zσ := Ad. By definition,
X (σ) := [Zσ/Gσ] where Gσ := HomZ(DG(βσ),C

∗). The description of the C-values
points of Uσ yields a closed embedding ψ0 : Zσ → Uσ where

ψ0(Zσ) = Cd × 1 ⊂ Cd × (C∗)n−d ∼= Uσ .
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Applying Lemma 2.3 and the functor HomZ(−,C∗) to

0 −−−→ Zd −−−→ Zn −−−→ Zn−d −−−→ 0
yβσ

yβ

y

0 −−−→ N −−−→
id

N −−−→ 0

produces the commutative diagram:

(4.3.6)

0 −−−→ Gσ −−−→ G
ψ1−−−→ (C∗)n−d −−−→ 0

yασ

yα

yid

0 −−−→ (C∗)d −−−→ (C∗)n −−−→ (C∗)n−d −−−→ 0

.

Hence, Ψ := (ψ0 × ψ1, ψ0) is a homorphism of groupoids from Zσ × Gσ ⇉ Zσ to
Uσ ×G ⇉ Uσ and an element g ∈ G belongs to Gσ if and only if (Zσ · g) ∩ Zσ 6= ∅.

Next, we establish that Gσ
∼= N(σ). The definition of N(σ) gives the exact sequence

0 −→ Zd+r [Bσ Q]−−−−−→ Zd+r −→ N(σ) −→ 0

where Bσ is the submatrix of B whose columns correspond to the ρi ⊆ σ. Since
N(σ)⋆ = 0, we obtain the exact sequence

0 −→ (Zd+r)⋆
[Bσ Q]⋆−−−−−→ (Zd+r)⋆ −→ Ext1

Z

(
N(σ),Z

)
−→ 0

which implies that DG(β) = Ext1
Z

(
N(σ),Z

)
= HomZ

(
N(σ),Q/Z

)
. Hence, the group

Gσ is HomZ
(
HomZ

(
N(σ),Q/Z

)
,C∗

)
. We identify Q/Z with a subgroup of C∗ via the

map p 7→ exp(2π
√
−1p) to obtain a natural homomorphism from N(σ) to Gσ. By

expressing N(σ) as a direct sum of cyclic groups, one verifies that this map is an
isomorphism.

Finally, to prove that X (σ) is the stack associated to Uσ × G ⇉ Uσ, it suffices to
show that Ψ is a Morita equivalence. First, because an element g ∈ G belongs to Gσ

if and only if (Zσ · g) ∩ Zσ 6= ∅, the commutative diagram

Zσ ×Gσ
ψ0×ψ1−−−−→ Uσ ×Gy(s,t)

y(s,t)

Zσ × Zσ ψ0×ψ0−−−−→ Uσ × Uσ
establishes that Zσ × Gσ =

(
Zσ × Zσ

)
×ψ0×ψ0,Zσ×Zσ,(s,t)

(
Uσ × G

)
. Secondly, we have(

Uσ ×G
)
×s,Uσ,ψ0 Zσ

∼= Zσ ×G which implies that π1 :
(
Uσ ×G

)
×s,Uσ,ψ0 Zσ → Uσ ×G

corresponds to the closed immersion ψ0 × id : Zσ × G → Uσ × G. Lemma 3.2 implies
that t : Uσ × G → Uσ is finite. Since the action of Coker(ψ1) on ψ0(Zσ) surjects onto
Uσ, we deduce that t◦π1 :

(
Uσ×G

)
×s,Uσ,ψ0 Zσ → Uσ is a finite surjective morphism of

nonsingular varieties and hence flat. Because the geometric fibers of t ◦ π1 correspond
to Gσ, a finite set of reduced points, the map t ◦ π1 is also étale and therefore locally
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surjective. We conclude that Ψ is a Morita equivalence and X (σ) defines an open
substack of X (Σ). �

Remark 4.4. Assuming that every cone in Σ is contained in a d-dimensional cone,
Proposition 4.3 produces an étale atlas of X (Σ).

Remark 4.5. More generally, if Σ′ := (N ′,Σ′, β ′) and Σ := (N,Σ, β) are two stacky
fans, then a morphism of stacky fans is a homomorphism φ : N ′ → N satisfying:

• for each cone σ′ ∈ Σ′, there exists a σ ∈ Σ such that φQ(σ′) ⊆ σ where
φQ : N ′ ⊗Z Q→ N ⊗Z Q;
• for each b̄′i ∈ σ′, the element φQ(b̄′i) is an integer combination of the b̄i ∈ σ

where σ ∈ Σ is any cone that contains φQ(σ′).

For each morphism φ : Σ′ → Σ, there is a morphism X (Σ′)→ X (Σ). Since we do not
make use of this construction, the proof is left to the reader.

For each d-dimensional cone σ in the stacky fan Σ, we define Box(σ) to be the set of
elements v ∈ N such that v̄ =

∑
ρi⊆σ

qib̄i for some 0 ≤ qi < 1. Hence, the set Box(σ) is

in one-to-one correspondence with the elements in the finite group N(σ). Let Box(Σ)
be the union of Box(σ) for all d-dimensional cones σ ∈ Σ. For each v ∈ N , we write
σ(v̄) for the unique minimal cone containing v̄.

Lemma 4.6. If Σ is a complete fan, then the elements v ∈ Box(Σ) are in one-to-one

correspondence with elements g ∈ G which fix a point of Z, and [Zg/G] ∼= X
(
Σ/σ(v̄)

)
.

Proof. By definition, an element v ∈ Box(Σ) corresponds to an element in N(τ) for
some d-dimensional cone τ ∈ Σ. In the proof of Proposition 4.3, we give an isomorphism
between N(τ) and and Gτ . Hence, there is a bijection sending v to an element g in
the subgroup Gτ ⊆ G. In addition, (4.3.6) implies that g act trivially on points z ∈ Z
with zi = 0 for all ρi ⊆ τ which shows that g fixes a point in Z.

Conversely, suppose g ∈ G fixes a point z ∈ Z. Since the action of G on Z is defined
via the map α : G→ (C∗)n where g 7→

(
α1(g), . . . , αn(g)

)
, we see that either αi(g) = 1

or zi = 0 for all 1 ≤ i ≤ n. The definition of Z guarantees that there exists a cone
in Σ containing all the rays ρi for which zi = 0. Let σ be the minimal cone with
this property. Because Σ is a simplicial fan, the ray ρi is contained in σ if and only
if αi(g) 6= 1. Thus, the closed subvariety W (σ) defined in Proposition 4.2 is equal
to the invariant subvariety Zg. Moreover, our choice of σ implies that the element
g stabilizes ψ0(Zτ ) for every d-dimensional cone τ which contains σ. It follows that
g corresponds to an element v ∈ Box(Σ). Finally, σ is clearly the intersection of all
maximal cones τ for which v corresponds to an element in N(τ). Therefore, σ = σ(v̄)
and Proposition 4.2 establishes that [Zg/G] = [W (σ)/G] ∼= X

(
Σ/σ(v̄)

)
. �

For a Deligne-Mumford stack X , its inertia stack I(X ) is defined to be the fibered
product X ×∆,X×X ,∆X where ∆ denotes the diagonal map. For a scheme S, an object
in I

(
X

)
(S) can be identified with pair (x, φ) where x is an object in X (S) and φ is

an automorphism of x. A morphism from (x, φ)→ (x′, φ′) is a morphism γ : x→ x′ in
X (S) such that γ ◦ φ = φ′ ◦ γ. Since we are working over C, the inertia stack I(X ) is
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naturally isomorphic to the stack of representable morphisms from constant cyclotomic
gerbes to X ; see Section 4.4 in [AGV].

Proposition 4.7. If Σ is a complete fan, then I
(
X (Σ)

)
=

∐
v∈Box(Σ)X

(
Σ/σ(v̄)

)

where σ(v̄) is the minimal cone in Σ containing v̄.

Proof. Let S be a connected scheme. An object x of X (Σ)(S) is a principal G-bundle
E → S with a G-equivariant morphism f : E → Z. An automorphism φ is an auto-
morphism of the principal G-bundle E → S that is compatible with E → Z. Since S
is connected, φ corresponds to multiplication by an element g ∈ G. Moreover, because
f is G-equivariant and f = f ◦ φ, the map f factors through Zg. Hence, the principal
G-bundle E → S with E → Zg is an object in [Zg/G](S).

For an arbitrary scheme S and an object in I
(
X (Σ)

)
(S), we can assign an object

in
∐

g∈G[Zg/G](S) by considering the connected components of S. Finally, Lemma 4.6

shows that Zg 6= ∅ if and only if g corresponds to an element v ∈ Box(Σ) and that
[Zg/G] ∼= X

(
Σ/σ(v̄)

)
. �

Remark 4.8. By combining Proposition 3.7 and Proposition 4.7, we see that the
coarse moduli space of I

(
X (Σ)

)
is isomorphic to the disjoint union of X

(
Σ/σ(v̄)

)
for

all v ∈ Box(Σ). In particular, we recover the description of the twisted sectors in
Section 6 of [Pod].

5. Module Structure on A∗
orb

(
X (Σ)

)

The goal of this section to describe the orbifold Chow ring of a complete toric Deligne-
Mumford stack as an abelian group. Throughout this section, we assume all fans are
complete and simplicial and all Chow rings have rational coefficients.

We first introduce the deformed group ring Q[N ]Σ associated to the stacky fan
Σ =

(
N,Σ, β

)
. As a vector space, Q[N ]Σ is simply the group ring Q[N ]; in other

words, Q[N ]Σ =
⊕

c∈N Q · yc where y is a formal variable. Multiplication in Q[N ]Σ is
defined as follows:

(5.0.7) yc1 · yc2 :=

{
yc1+c2 if there exists σ ∈ Σ such that c̄1 ∈ σ and c̄2 ∈ σ;

0 otherwise.

We endow Q[N ]Σ with a Q-grading as follows: if c̄ =
∑

ρi⊆σ(c̄)mib̄i where σ(c̄) is the

minimal cone in Σ containing c̄, then deg(yc) :=
∑
mi ∈ Q.

Given a stacky fan Σ, we denote by SΣ the subring of Q[N ]Σ generated over Q

by the monomials ybi. Since Σ is simplicial, the ring SΣ is isomorphic to the quo-
tient Q[x1, . . . , xn]/IΣ where the ideal IΣ is generated by the square-free monomials
xi1xi2 · · ·xis with ρi1 + · · ·+ ρis 6∈ Σ. In particular, SΣ is a Z-graded ring and IΣ is the
Stanley-Reisner ideal associated to Σ.

To describe the Chow ring of X (Σ), we need certain line bundles corresponding to
the rays ρ1, . . . , ρn. Since the category of coherent sheaves on X (Σ) is equivalent to
the category of G-equivariant sheaves on Z (Example 7.21 in [Vis]), we can define Li
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for 1 ≤ i ≤ n to be the line bundle on X (Σ) corresponding to the trivial line bundle
C×Z on Z with the G-action on C is given by the ith component αi of α : G→ (C∗)n.

We first calculate the non-orbifold Chow ring of X (Σ).

Lemma 5.1. If X (Σ) is a complete toric Deligne-Mumford stack, then there is an

isomorphism of Z-graded rings

SΣ〈∑n
i=1 θ(b̄i) · ybi : θ ∈ N⋆

〉 −→ A∗
(
X (Σ)

)

defined by ybi 7→ c1(Li).

Proof. For 1 ≤ i ≤ n, let ai denote the unique minimal lattice generator of ρi in Σ and
let ℓi be the positive integer satisfying the relation b̄i = ℓiai. The Jurkiewicz-Danilov
Theorem (see Page 134 in [Oda]) states that there is a surjective homomorphism of
graded rings from Q[x1, . . . , xn] to A∗

(
X(Σ)

)
given by xi 7→ Di where Di is the torus

invariant Weil divisor on X(Σ) associated with ρi. The kernel of this map is the
ideal IΣ plus the ideal generated by the linear relations

∑n
i=1 θ(ai) · xi for all θ ∈ N⋆.

Example 6.7 in [Vis] establishes a natural isomorphism A∗
(
X (Σ)

) ∼= A∗
(
X(Σ)

)
defined

by c1(Li) 7→ ℓ−1
i ·Di. Since we have

∑n
i=1 θ(ai) · ℓi · xi =

∑n
i=1 θ(b̄i) · xi for all θ ∈ N⋆,

the composition of these two isomorphism establishes the claim. �

This lemma allow us to establish Theorem 1.1 at the level of Q-graded Q-vector
spaces. More precisely, we prove the following the result. If M is a Q-graded module
and c is a rational number, then we write M [c] for the cth shift of M ; its defined by
the formula M [c]c′ = Mc′+c.

Proposition 5.2. If X (Σ) is a complete toric Deligne-Mumford stack, then there is

an isomorphism of Q-graded Q-vector spaces:

Q[N ]Σ

〈∑n
i=1 θ(bi) · ybi : θ ∈ N⋆〉

∼=
⊕

v∈Box(Σ)

A∗
(
X (Σ/σ(v̄))

)[
deg(yv)

]
.

Proof. The definition of SΣ and Box(Σ) implies that Q[N ]Σ =
⊕

v∈Box(Σ) y
v · SΣ. We

first analyze the individual summands. Fix an element v ∈ Box(Σ) and let τ := σ(v̄)
be the minimal cone in Σ containing v̄. It follows from the definition of multiplication
in the deformed group ring that yv ·SΣ is isomorphic to the quotient of SΣ by the ideal
generated by the elements yc where c lies outside the cones in Σ containing τ .

Let SΣ/τ denote the subring of Q[N(τ)]Σ/τ generated by yb̃i for ρi ∈ link(τ). By
renumbering the rays in Σ, we may assume that ρ̃1, . . . , ρ̃ℓ are the rays in link(τ). Recall

that b̃i is the image of bi in N(τ). For each ray ρi ∈ τ , choose an element θi ∈ N⋆ such
that θi(bi) = 1 and θi(bj) = 0 for all b̄i 6= b̄j ∈ τ . Consider the map defined by

ybi 7→






yb̃i for ρi ⊆ link(τ);

−∑ℓ
j=1 θi(bj) · yb̃j for ρi ⊆ τ ;

0 for ρi 6⊆ τ ∪ link(τ).
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Since this map is compatible with the multiplicative structures on SΣ and SΣ/τ , it
induces a surjective homomorphism from SΣ to SΣ/τ . Clearly, the kernel contains the

elements θi(bi) · ybi +
∑ℓ

j=1 θi(bj)y
bj for all ρi ∈ τ and the elements yc where c lies

outside the cones in Σ containing τ . Given any other element of the kernel, we can use
these relations to obtain a linear combination of monomials yw with w̄ ∈ link(τ) which
also belongs to the kernel. However, this is only possible if all the coefficients of yw are
zero which implies that the given elements generate the kernel.

Since Lemma 5.1 establishes that

SΣ/τ

〈∑ℓ
i=1 θ̃(b̃i) · yb̃i : θ̃ ∈ N(τ)⋆〉

∼= A∗
(
X (Σ/τ )

)
,

we have a surjective Q-graded Q-linear map from yv · SΣ to A∗
(
X (Σ/τ )

)
[deg(yv)]

whose kernel is generated by the elements θi(bi) · ybi +
∑ℓ

j=1 θi(bj)y
bj for all ρi ∈ τ

and the pullbacks of the linear relations
∑ℓ

i=1 θ̃(b̃i) · yb̃i where θ̃ ∈ N(τ)⋆. Finally,
taking the direct sum over all v ∈ Box(Σ) produces a surjective Q-graded Q-linear
map from Q[N ]Σ to

⊕
v∈Box(Σ)A

∗
(
X (Σ/σ(v̄))

)[
deg(yv)

]
whose kernel is generated by

the elements
∑n

i=1 θ(bi) · ybi where θ ∈ N⋆. �

Remark 5.3. Although the elements θi in the proof of Proposition 5.2 are not uniquely
determined, the possible choices differ by elements in N(τ)⋆. It follows that the sur-
jection from yv · SΣ to SΣ/τ [deg(yv)] is not canonically defined, but surjection from

yv · SΣ to A∗
(
X (Σ/τ )

)[
deg(yv)

]
is.

Remark 5.4. The degree shift in Proposition 5.2 is also called the age of the compo-
nent of the inertia stack.

6. The Product Structure on A∗
orb

(
X (Σ)

)

In this section, we study multiplication in A∗
orb

(
X (Σ)

)
. Specifically, we complete

the proof of Theorem 1.1 by showing that multiplication in the deformed group ring
coincides with the orbifold product.

To compare the two products, we first give a combinatorial description of the moduli
space K := K0,3

(
X (Σ), 0

)
of 3-pointed twisted stable maps of genus zero and degree

zero to X (Σ). The moduli space K is a proper Deligne-Mumford stack with a smooth
projective coarse moduli space; see Theorem 3.6.2 in [AGV]. In addition, Lemma 6.2.1
in [AGV] gives three evaluation maps denoted evi : K → I

(
X (Σ)

)
for 1 ≤ i ≤ 3.

Proposition 4.7 shows that I
(
X (Σ)

)
=

∐
v∈Box(Σ)X

(
Σ/σ(v̄)

)
, so we can index the

components of K by the images of the evaluation maps. Let Kv1,v2,v3 be the component
of K such that evi maps to X

(
Σ/σ(v̄i)

)
for 1 ≤ i ≤ 3.

For brevity, we write v1 + v2 + v3 ≡ 0 to indicate that there exists a cone σ ∈ Σ
containing v̄i for 1 ≤ i ≤ 3 such that the sum v1 + v2 + v3 belongs to the subgroup Nσ

in N .
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Proposition 6.1. If X (Σ) is a complete toric Deligne-Mumford stack, then

K =
∐

(v1,v2,v3)∈Box(Σ)3

v1+v2+v3≡0

X
(
Σ/σ(v̄1, v̄2, v̄3)

)
,

where σ(v̄1, v̄2, v̄3) is the minimal cone in Σ containing v̄1, v̄2 and v̄3.

Proof. We begin by examining the geometric points of K. A C-valued point of K is
a representable morphism f from a twisted curve C to X (Σ) such that the induced
map on coarse moduli spaces sends P1 to a point x ∈ X(Σ). Hence, the map f
factors through a closed substack BG′ in X (Σ) where G′ ⊆ G is the isotropy group
of x ∈ X (Σ) and BG′ is the classifying stack [x/G′]. Corollary 1.6.2 in [LM] shows
that the morphism from C to BG′ is also representable which implies that the fibered

product Ĉ := C×BG′ x is a scheme. Since C is smooth, we see that Ĉ is a smooth curve,
although it is typically disconnected. Let H be the subgroup of G′ that acts trivially on

the set of connected components of Ĉ. Since G′ is abelian, the group H is the stabilizer

of each connected component of Ĉ. By choosing a connected component C of Ĉ, we
obtain C ∼= [C/H]. Assuming the points {0, 1,∞} in P1 correspond to the markings
on C, the properties of a twisted curve imply that the map C → P1 is an isomorphism
over P1−{0, 1,∞}. It follows that C is a proper smooth Galois cover of P1 with Galois
group H branched over 0, 1 and ∞. Specifically, if γ1, γ2, γ3 are the generators of the
fundamental group of P1 − {0, 1,∞} corresponding to counterclockwise loops around
0, 1, ∞ respectively, then C is induced by a homomorphism π1(P

1 − {0, 1,∞}) → G
sending γ1 to gi such that g1 · g2 · g3 = 1 and gi generate H as a subgroup of G.

By definition, the map evi is induced by the representable morphism from the cy-
clotomic gerbe in C lying over the corresponding point in P1 to X (Σ); recall that over
C the inertia stack I(X (Σ) is canonically isomorphic to the stack of representable
morphisms from a constant cyclotomic gerbe to X (Σ). Hence, the evaluation map evi
sends f to the geometric point (x, gi) in the inertia stack. Because gi belongs to the
isotropy group of x, it fixes a point in Z. Thus, Lemma 4.6 shows that gi corresponds
to an element vi ∈ Box(Σ) and evi maps to the component [Zgi/G] = X

(
Σ/σ(v̄i)

)
of

the inertia stack. Moreover, the condition that g1 · g2 · g3 = 1 means that there exists a
cone σ ∈ Σ containing v̄1, v̄2, v̄3 and the sum v1 + v2 + v3 belongs to the subgroup Nσ

in N . Therefore, the component Kv1,v2,v3 is nonempty if and only if v1 + v2 + v3 ≡ 0.
The morphisms evi : Kv1,v2,v3 → X

(
Σ/σ(v̄i)

)
are compatible with the inclusion maps

into X (Σ) for 1 ≤ i ≤ 2 which yields a morphism

e : Kv1,v2,v3 → X
(
Σ/σ(v̄1)

)
×X (Σ) X

(
Σ/σ(v̄2)

)
= [Zg1/G]×[Z/G] [Z

g2/G] .

Because H is the subgroup of G generated by g1 and g2 (note: g3 = g−1
1 g−1

2 ), we
have Zg1 ×Z Zg2 = Z〈g1,g2〉 = ZH . It follows that [Zg1/G] ×[Z/G] [Zg2/G] = [ZH/G].
Our analysis of the geometric points of K shows that e induces a bijection between
the C-valued points of the coarse moduli spaces of Kv1,v2,v3 and [ZH/G]. Since both
Kv1,v2,v3 and [ZH/G] are smooth Deligne-Mumford stacks, their coarse moduli spaces
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have at worst quotient singularities. Applying Theorem VI.1.5 in [Kol], we deduce
that, in fact, e produces an isomorphism between the coarse moduli spaces.

To prove that e is an isomorphism of stacks, it remains to show that e gives an
isomorphism between the isotropy groups of C-valued points. Indeed, since K is smooth
(see page 18 in [AGV]) and e is representable, the isomorphism follows from a similar
statement for the lifting of e to the atlases. Proposition 7.1.1 in [ACV] indicates
that the automorphism group of a twisted stable curve is the direct product of the
automorphism groups of the nodes which implies that our curve C has only the trivial
automorphism. Hence, an isotropy of the twisted stable map f : C → BG′ ⊆ X (Σ)
corresponds to a diagram

E
φ−−−→ E ′

y
y

C C
where φ is a G′-equivariant map of principal G′-bundles over C. Since C is connected,
the map φ is multiplication by an element of G′. Therefore, the isotropy group of the
map f is precisely G′ which completes the proof. �

Proposition 6.1 also provides a presentation for the universal twisted stable curve
over K. To describe the universal curve, we focus on the component Kv1,v2,v3. As above,
we write H for the subgroup of G corresponding to {v1, v2, v3} and C → P1 for the
associated Galois cover. Consider the quotient stack

Uv1,v2,v3 := [(ZH × C)/(G×H)] = [ZH/G]× [C/H] .

If S is a scheme, then the objects in Uv1,v2,v3(S) are principal (G×H)-bundles E → S
with a (G × H)-equivariant map E → ZH × C. The twisted projection map π from
Uv1,v2,v3 to Kv1,v2,v3 = [ZH/G] is defined as follows: If H acts on E via the map
h 7→ (h−1, h) ∈ G×H , then E/H is a principal G-bundle over S. To obtain an object
in Kv1,v2,v3(S), observe that the (G × H)-equivariant map E → ZH × C induces a
G-equivariant map fromE/H to ZH . By verifying that π is compatible with morphisms
in Uv1,v2,v3(S) and Kv1,v2,v3(S), we conclude that π is a morphism of stacks. With these
definitions, we have

Corollary 6.2. The universal twisted stable curve over Kv1,v2,v3 ∼= [ZH/G] is given by

the twisted projection map π : Uv1,v2,v3 = [(ZH × C)/(G×H)]→ [ZH/G].

Proof. Fix a map S → [ZH/G] where S is a scheme and consider the fibered product
D := Uv1,v2,v3 ×[ZH/G] S. Assuming that S → [ZH/G] corresponds to the principal

G-bundle E → S with a G-equivariant map E → ZH , we have D = [(E×C)/(G×H)]
where the (G×H)-action is given by (e, c, g, h) 7→ (e·gh−1, c·h). The twisted projection
map π induces a map D → [E/G] = S. Because the anti-diagonal action of H on E×C
is free, the quotient Y := (E × C)/H is a scheme. Hence, we have D = [Y/G] where
the G-action on Y is induced by the action on E×C. Since H acts trivially on ZH , the
G-equivariant map E → ZH induces a G-equivariant map Y → ZH which shows that
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D maps to [ZH/G] ⊆ [Z/G] = X (Σ). Moreover, if R = R1+R2+R3 is the ramification
divisor of the Galois cover C → P1, then the image of the open set E×(C−R) gives an
open substack of [Y/G] which is isomorphic to S×

(
P1−{0, 1,∞}

)
. By definition, the

evaluation map evi from D to the inertia stack I
(
X (Σ)

)
arises from the representable

morphism from [(E×Ri)/(G×H)] to X (Σ). In particular, evi is induced by the closed
embedding [ZH/G] → [Zgi/G] ∼= X

(
Σ/σ(v̄i)

)
. We conclude that Uv1,v2,v3 is a family

of twisted stable curves over [ZH/G] with a map f : Uv1,v2,v3 → X (Σ) and evaluation
maps evi : Uv1,v2,v3 → X

(
Σ/σ(v̄i)

)
⊆ I

(
X (Σ)

)
for 1 ≤ i ≤ 3.

Let U ′ denote the universal family of twisted stable curves over Kv1,v2,v3 . By the
universal mapping property of U ′, there exists a map µ : [ZH/G]→ Kv1,v2,v3 such that

µ∗(U ′) −−−→ U ′

y
y

[ZH/G]
µ−−−→ Kv1,v2,v3

is a Cartesian diagram. Combining definition of e with the first paragraph, we see that
e ◦ µ = id. Since Proposition 6.1 shows that e is an isomorphism, we conclude that µ
is also an isomorphism and Uv1,v2,v3 is isomorphic to U ′. �

Next, we describe the virtual fundamental class on K. Let Lk denote the line bundle
on X (Σ) corresponding to the line bundle C×Z on Z where the G-action on C given
by the kth component αk of α : G→ (C∗)n.

Proposition 6.3. Let Kv1,v2,v3 be a component of the moduli space K. If the integers

mk ∈ {1, 2} are defined by the relation v1 + v2 + v3 =
∑

ρi∈σ(v̄1 ,v̄2,v̄3)mkbk in N , then

the virtual fundamental class of the component Kv1,v2,v3 is
∏

mk=2

c1(Lk)
∣∣
X (Σ/σ(v̄1,v̄2,v̄3))

.

Proof. Let f be the natural map from Uv1,v2,v3 to X (Σ) and let π : Uv1,v2,v3 → [ZH/G]
be the twisted projection map. Since Kv1,v2,v3 is smooth, the virtual fundamental class
of K is given by the top Chern class of the bundle R1π∗f

∗(TX (Σ)); see Section 6.2 in
[AGV]. To calculate this Chern class, observe that the pullback of the tangent bundle
f ∗(TX (Σ)) corresponds to a (G × H)-equivariant bundle V on ZH × C; V is a trivial
vector bundle of rank n where the (G×H)-action is induced by the map α : G→ (C∗)n

on it basis. Let p : ZH × C → ZH be the projection map and let pH∗ be the invariant
pushforward (pushing forward and taking invariant sections). Since the associated
derived functor R1pH∗ sends (G×H)-equivariant sheaves on ZH × C to G-equivariant
sheaves on ZH , it suffices to compute R1pH∗ (V).

LetWk be the trivial line bundle on ZH×C with (G×H)-action induced by the kth
component αk of α : G → (C∗)n and consider the following exact sequence of vector
bundles on ZH × C:

0 −→ p∗(TZH ) −→ V −→
⊕

ρk∈σ(v̄1,v̄2,v̄3)

Wk −→ 0 .
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Since the H-invariant part of R1p∗p
∗(TZH) = R1p∗(OZH×C)⊗ TZH is trivial, it suffices

to calculate R1pH∗ (Wk). Given a point z ∈ ZH , the restriction of Wk to z × C is
isomorphic to the trivial line bundle Lk on C with the the H-action induced by αk.
Since the Leray spectral sequence degenerates, we have H1(C,Lk) ∼= H1(P1, p′∗Lk)
where p′ : C → P1 is the Galois cover. Because vj ∈ Box(Σ) for 1 ≤ j ≤ 3, there
are aj,k ∈ Q such that 0 ≤ aj,k ≤ 1 and v̄j =

∑
aj,kb̄k where ρk ∈ σ(v̄1, v̄2, v̄3). By

hypothesis, we have v1 + v2 + v3 ≡ 0 which means that a1,k + a2,k + a3,k is an integer
between 0 and 2. Lemma 4.6 establishes that vj corresponds to an element gj ∈ G
and the proof of Proposition 4.3 shows that αk(gi) = exp(2π

√
−1aj,k). It follows that

pH∗
(
Wk

∣∣
z×C

)
is isomorphic to OP1(−ak,1 − ak,2 − ak,3). Since

dimH1
(
P1,OP1(−ak,1 − ak,2 − ak,3)

)
= 1 when a1,k + a2,k + a3,k = 2,

we deduce that, in this case, R1pH∗ (Wk) is the line bundle C × Z on Z where the G-
action on C given by the kth component αk. When a1,k+a2,k+a3,k 6= 2, the cohomology
group vanishes and R1pH∗ (Wk) is zero. Therefore, we have

R1π∗f
∗(TX (Σ)) ∼=

⊕

mk=2

Lk
∣∣
[ZH/G]

and taking the top Chern class completes the proof. �

Remark 6.4. The calculation of the virtual class in Proposition 6.3 is analogous to
the factors c(g, h) used by Fantechi and Göttsche for the orbifold cohomology of global
quotients [FG].

We end this section with a proof of Theorem 1.1. Let ι : I
(
X (Σ)

)
→ I

(
X (Σ)

)

denote the natural involution on the inertia stack defined by (x, φ) 7→ (x, φ−1) and let
ěv3 := ι ◦ ev3 be the twisted evaluation map; see Section 4.5 in [AGV]. If γ1, γ2 ∈
A∗

(
I
(
X (Σ)

)
, then the orbifold product (Definition 6.2.2 in [AGV]) is

γ1 ∗ γ2 := (ěv3)∗
(
ev∗

1(γ1) ∪ ev∗
2(γ2) ∪ [K]vir

)

where [K]vir denotes the virtual fundamental class on K. This definition agrees with
the definition of the quantum product in degree zero.

Remark 6.5. Proposition 6.1 shows that the component Kv1,v2,v3 of the moduli stack
is nonempty if and only if v1 + v2 + v3 ≡ 0. Hence, if γ1 ∈ A∗

(
X (Σ/σ(v̄1)

)
and

γ2 ∈ A∗
(
X (Σ/σ(v̄2)

)
, then the orbifold γ1 ∗ γ2 is nonzero only if there is a cone in Σ

containing v̄1 and v̄2.

Proof of Theorem 1.1. By combining Proposition 4.7 and Proposition 5.2, we obtain
the following isomorphism of Q-graded Q-vector spaces:

A∗
orb

(
X (Σ)

)
=

⊕

v∈Box(Σ)

A∗
(
X (Σ/σ(v̄))

)[
deg(yv)

] ∼= Q[N ]Σ

〈∑n
i=1 θ(bi) · ybi : θ ∈ N⋆〉 .

It remains to show that the orbifold product agrees with the product structure on the
deformed group ring. Since the elements of Box(Σ) generates A∗

orb

(
X (Σ)

)
as a module
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over the ybi, it suffices to show that yc ∗ ybi = yc · ybi and yv1 ∗ yv2 = yv1 · yv2 where
c ∈ N and v1, v2 ∈ Box(Σ).

We first consider the product yc ∗ ybi where c ∈ N . By taking advantage of the
linear relations

∑n
i=1 θ(bi) · ybi for θ ∈ N⋆, we reduce to the case that bi does not lie

in the minimal cone σ(c̄) containing c̄. Let v be the representative of c in Box(Σ). By
Remark 6.5, the only contribution to the product yc ∗ ybi comes from the component
Kv,0,v′ where v′ ∈ Box(Σ) is defined by the equation v + v′ =

∑
ρi∈σ(c̄) bi. Hence,

Kv,0,v′ is isomorphic to X
(
Σ/σ(c̄)

)
, both ev1, ěv3 : X

(
Σ/σ(c̄)

)
→ X

(
Σ/σ(c̄)

)
are the

identity map and ev2 : X
(
Σ/σ(c̄)

)
→ X (Σ) is the closed embedding. The restriction

of ybi from X (Σ) to X
(
Σ/σ(c̄)

)
is equal to yb̃i if b̄i and σ(c̄) lie in a cone of Σ and

is equal to zero otherwise. Since Proposition 6.3 shows the the virtual fundamental
class is 1, if ev∗

2(y
bi) 6= 0 then yc ∗ ybi is simply multiplication in A∗(X

(
Σ/σ(c̄)

)
and

Proposition 5.2 shows that this agrees with multiplication in the deformed group ring.
Moreover, when ev∗

2(y
bi) = 0, we have yc ∗ ybi = 0 = yc · ybi.

Next, consider the product yv1 ∗ yv2 where v1, v2 ∈ Box(Σ). If v̄1 and v̄2 are not
contained in a cone, then Remark 6.5 implies that yv1 ∗ yv2 = 0 and (5.0.7) implies
that yv1 · yv2 = 0. On the other hand, suppose the cone σ ∈ Σ contains v̄1 and v̄2.
Let v3 ∈ Box(Σ) be the element such that v̄3 ∈ σ(v̄1, v̄2) and v1 + v2 + v3 ≡ 0; in
other words, there exists integers mi such that v1 + v2 + v3 =

∑
ρi∈σ(v̄1,v̄2,v̄3)

mibi and
1 ≤ mi ≤ 2. Proposition 6.1 shows that the component Kv1,v2,v3 is isomorphic to
X

(
Σ/σ(v̄1, v̄2, v̄3)

)
and the evaluation map evi correspond to the closed embedding

X
(
Σ/σ(v̄1, v̄2, v̄3)

)
→ X

(
Σ/σ(v̄i)

)
. If I is the set of indices i such that mi = 2, then

Proposition 6.3 shows that the virtual fundamental class on X
(
Σ/σ(v̄1, v̄2, v̄3)

)
is the

product of the pullbacks of the divisor classes ybi where i ∈ I. Because of the degree
shift, the class yvi ∈ A∗

orb

(
X (Σ)

)
is identified with the class 1 ∈ A∗

(
X

(
Σ/σ(v̄i)

))
and

yv1 ∗yv2 is the image of the virtual fundamental class under the twisted evaluation map
ěv3. In particular, if J denotes the set of indices i such that b̄i ∈ σ(v̄1, v̄2) but bi 6∈ σ(v̄3),
then unravelling the identification maps shows that yv1 ∗ yv2 = yv̌3 ·∏i∈I y

bi ·∏j∈J y
bj

where v̌3 is the representation of −v3 in ∈ Box(Σ). The factor yv̌3 arises from the
involution ι : I

(
X (Σ)→ I

(
X (Σ)

)
. Since v̌3 +

∑
i∈I bi+

∑
j∈J bj = v1 +v2, we conclude

that yv1 ∗ yv2 = yv1 · yv2 . �

7. Applications to Crepant Resolutions

In this section, we relate the orbifold Chow ring to the Chow ring of a crepant
resolution by showing that both rings are fibres of a flat family. This provide a new
proof that the graded components of these Chow rings have the same dimension. On
the other hand, we also establish that these Chow rings are not generally isomorphic.

IfX(Σ) is a complete simplicial toric variety, then there is an associated toric Deligne-
Mumford stack. Specifically, the fan Σ gives rise to a stacky fan Σ = (N,Σ, β) where
N is the distinguished lattice in the vector space containing Σ and β : Zn → N is the
map defined by the minimal lattice points on the rays in Σ. Proposition 3.7 shows that
X(Σ) is the coarse moduli space of X (Σ). The toric variety X(Σ) is Gorenstein and
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X(Σ′)→ X(Σ) is a crepant resolution if and only if there is Σ-linear support function
h′ : Qd → Q such that h′(0) = 0 and h′(bi) = −1 for 1 ≤ i ≤ m.

Theorem 7.1. Let X(Σ) be a complete simplicial Gorenstein toric variety and let

X (Σ) be the associated toric Deligne-Mumford stack. If Σ′ is a regular subdivison of

Σ such that X(Σ′) is a crepant resolution of X(Σ), then there is a flat family T → P1

of schemes such that T0
∼= SpecA∗

orb

(
X (Σ)

)
and T∞ ∼= SpecA∗

(
X(Σ′)

)
.

Proof. Set d := dimX(Σ). Let b1, . . . , bn be minimal lattice points on the rays in Σ
and let bn+1, . . . , bm be the minimal lattice points on the additional rays in Σ′. Since Σ′

is a regular subdivision of Σ, there is a Σ′-linear support function h : N → Z such that
h(bi) = 0 for 1 ≤ i ≤ n, h(bi) > 0 for n+ 1 ≤ i ≤ m and h(c1 + c2) ≥ h(c1) + h(c2) for
all lattice points c1, c2 lying in the same cone of Σ. Moreover, the inequality is strict
unless c1 and c2 lie in the same cone of Σ′.

Consider the quotient of (Q[t, t−1])[N ]Σ := Q[t, t−1]⊗Q Q[N ]Σ by the relations

(7.1.8)
m∑

i=1

θ(bi) y
bi th(bi) = 0 for all θ ∈ N⋆,

as a family parametrized by t. Since h(bi) = 0 if and only if 1 ≤ i ≤ n, the limit as t→ 0
is the quotient Q[N ]Σ/

〈∑n
i=1 θ(bi)y

bi : θ ∈ N⋆
〉

which is isomorphic to A∗
orb

(
X (Σ)

)
by

Theorem 1.1. To calculate the limit as t → ∞, we consider a different basis for
(Q[t])[N ]Σ. Let y̆c := yc th(c) for c ∈ N . Under this change of basis, the relations
(7.1.8) become

∑m
i=1 θ(bi)y̆

bi and the product becomes:

y̆c1 · y̆c2 =

{
y̆c1+c2 th(c1)+h(c2)−h(c1+c2) if there exists σ ∈ Σ such that c1, c2 ∈ σ,

0 otherwise.

Since h(c1 + c2) ≥ h(c1) + h(c2) and equality holds if and only if c1 and c2 lie in the
same cone of Σ′, we obtain the following as t tends to ∞:

y̆c1 · y̆c2 =

{
y̆c1+c2 if there exists σ′ ∈ Σ′ such that c1, c2 ∈ σ′,

0 otherwise;

which is isomorphic to A∗
(
X(Σ′)

)
by Lemma 5.1.

Finally, the generic freeness lemma (Theorem 14.4 in [Eis]) implies that there exists
an element p(t) ∈ Q[t] such that (Q[t, t−1, p(t)−1])[N ]Σ/

〈∑m
i=1 θ(bi) y

bi th(bi) : θ ∈ N⋆
〉

is a free Q[t, t−1, p(t)−1]-module. Thus, we obtain the required flat family T → P1 by
extending this family over the roots of p(t). �

We end with an example in which A∗
(
X(Σ′)

)
is not isomorphic to A∗

orb

(
X (Σ)

)
.

Example 7.2. Let N = Z2 and let Σ ⊆ R2 be the complete fan in which the rays are
generated by the lattice points b1 := (1, 0), b2 := (0,−1) and b3 := (−1, 2). Hence, the
toric variety X(Σ) is the weighted projective space P(1, 2, 1) and the associated toric
Deligne-Mumford stack is the quotient [(C3 − {0})/C∗] where the action is given by
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(z1, z2, z3) · λ = (λz1, λ
2z2, λz3). If we simply write xi for the element ybi ∈ Q[N ], then

Theorem 1.1 implies that

A∗
orb

(
X (Σ)

) ∼= Q[x1, x2, x3, x4]〈
x1x3 − x2

4, x2x4, x1 − x3,−x2 + 2x3

〉 ∼= Q[x3, x4]〈
x2

3 − x2
4, x3x4

〉 .

Let Σ′ be the fan obtained from Σ by inserting the ray generated by b4 := (0, 1). It
follows that X(Σ′) is the Hirzeburch surface F2, X(Σ′)→ X(Σ) is a crepant resolution
(it blows down the (−2)-curve in F2), and Lemma 5.1 gives:

A∗
(
X(Σ′)

) ∼= Q[x1, x2, x3, x4]〈
x1x3, x2x4, x1 − x3,−x2 + 2x3 + x4

〉

∼= Q[x3, x4]〈
x2

3, 2x3x4 + x2
4

〉 =
Q[x3, x4]〈

x2
3, (x3 + x4)2

〉 .

Since there is a degree one element x ∈ A∗
(
X(Σ′)

)
such that x2 = 0 and A∗

orb

(
X (Σ)

)

does not contain such an element, we conclude that A∗
orb

(
X (Σ)

)
6∼= A∗

(
X(Σ′)

)
.
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functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972),
Lecture Notes in Mathematics 349, Springer, Berlin, 1973, pp. 143–316.

[Edi] Dan Edidin, Notes on the construction of the moduli space of curves, Recent progress in
intersection theory (Bologna, 1997), Birkhäuser Boston, Boston, MA, 2000, pp. 85–113.
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