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Finding integral diagonal pairs in a two dimensional N–set

Lev A. Borisov and Renling Jin

Abstract

According to [1] an n-dimensional N–set is a compact subset A of Rn such that
for every x ∈ R

n there is y ∈ A with y − x ∈ Z
n. We prove that every two

dimensional N–set A must contain distinct points x, y such that x − y is in
Z
2 and x − y is neither horizontal nor vertical. This answers a question of P.

Hegarty and M. Nathanson.

For any sets A,B in an abelian group A±B denotes the set {a±b : a ∈ A and b ∈
B}. During one of the problem sessions in CANT (Combinatorial and Additive

Number Theory Workshop) 2009 M. Nathanson asked the following question which

was originally raised by P. Hegarty:

Question 1 Can we find an N –set A ⊆ R
2, i.e., a compact set A ⊆ R

2 with the

property that R2 = A+ Z
2, such that (A− A) ∩ Z

2 ⊆ (Z× {0}) ∪ ({0} × Z)?

Question 1 is motivated by the study of a general inverse problem in order to

determine which set E ⊆ Z
n can be represented by the form of (A−A)∩Z

n for some

N –set A. Notice that (A − A) ∩ Z
n contains the origin and is symmetric about the

origin. This inverse problem is completely solved in one dimensional case. It is shown

in [1] that a finite set E of positive integers is relatively prime if and only if there is

an N –set A ⊆ R such that E = (A − A) ∩ N. By the fundamental observation of

geometric group theory (see [1]) if A is an n-dimensional N –set, then (A − A) ∩ Z
n

is a finite set of generators of the group Z
n. Clearly, for a one dimensional N –set

A ⊆ R, (A − A) ∩ Z is a set of generators if and only if (A − A) ∩ N is relatively

prime. Hence the next logical step is to ask whether a symmetric set of generators of

Z
2 together with the origin (0, 0) can be represented by the form of (A−A) ∩Z

2 for

some two dimensional N –set A. For example, it is interesting to ask whether the set

E = {(0, 0),±(0, 1),±(1, 0)} can be represented by (A− A) ∩ Z
2 for some N –set A.

The main theorem in this paper will show that the answer is “no”. The following is

the main theorem.

Theorem 2 Every N –set A ⊆ R
2 contains x, y such that x− y ∈ (Z r {0})2.
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We need the following notation.

Definition 3 Let A,B ⊆ R
2.

1. A and B are called integral lattice congruent provided that A+ z = B for some

z ∈ Z
2. When we say “congruent” in this paper we always mean “integral lattice

congruent.”

2. A and B are called horizontally (vertically) congruent provided that A+ z = B

for some z ∈ Z× {0} (z ∈ {0} × Z).

3. (x, y) ∈ R
2 × R

2 is called an integral diagonal pair if x− y ∈ (Z r {0})2.

Proof of Theorem 2: Assume the contrary and let A ⊆ R
2 be the N –set which

does not contain any integral diagonal pairs. For each n ∈ N let

Bn =

{[

i

n
,
i+ 1

n

]

×
[

j

n
,
j + 1

n

]

: i, j ∈ Z

}

and

Kn(A) = {B ∈ Bn : B ∩ A 6= ∅}.

Our first step of the proof is to replace the set A by a set K, which is the union

of finitely many squares from Bn for some large n. For doing so we transform a

continuous problem to a discrete problem.

Lemma 4 There is N ∈ N such that for every n > N ,
⋃Kn(A) does not contain

any integral diagonal pairs.

Proof of Lemma 4: Since A is compact, we have that A−A is compact. Since A

does not contain integral diagonal pairs, there is ǫ > 0 such that

min{|x− y| : x ∈ A− A and y ∈ (Z r {0})2} > ǫ.
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Let N > 2
√
2/ǫ. For each x ∈ Kn(A) where Kn(A) =

⋃Kn(A) there is z ∈ A such

that |x− z| 6
√
2/n. Hence for each x ∈ Kn(A)−Kn(A) there is a z ∈ A− A such

that |x−z| 6 2
√
2/n. This implies that for every n > N , for any x ∈ Kn(A)−Kn(A)

and y ∈ (Z r {0})2 we have that |x − y| > ǫ − 2
√
2/n > 0. Therefore, Kn(A) does

not contain any integral diagonal pairs. 2

We use Lemma 4 and fix an n such that Kn contains no integral diagonal pairs.

We will omit the subscript n in Bn, Kn(A), etc. Since
⋃K(A) ⊇ A,

⋃K(A) is

compact, and
⋃K(A) does not contain integral diagonal pairs, we could replace A

chosen in the beginning by
⋃K(A) for the counterexample of Theorem 2. However,

for convenience, we can throw away some unnecessary squares in
⋃K(A). Let

k0 = min{|K| : K ⊆ K(A) and
⋃

K is an N –set}.

Definition 5 We call K ⊆ B a minimal counterexample of Theorem 2 if |K| = k0,

K =
⋃K is an N –set, and K does not contain any integral diagonal pair.

It is easy to see that k0 = n2 because (1) every B ∈ B is congruent to some squares

in K and (2) any two squares B,B′ ∈ K are not congruent to each other due to the

minimality of k0. Notice that A may not be covered by a minimal counterexample of

Theorem 2. However, the assumption that the general counterexample A of Theorem

2 exists implies the existence of the minimal counterexample K ⊆ B of Theorem 2,

we can now forget about A and try to derive a contradiction based on the assumption

that the minimal counterexample K ⊆ B of Theorem 2 exists.

We observe that the boundary of the set K consists of a union of horizontal

and vertical segments of length 1

n
each, which come from the sides of the squares

of K. Each such segment is either horizontally congruent or vertically congruent to

exactly one other segment of the boundary. The kind of congruency has nothing to

do with the direction of the segment itself. The endpoints of each segment may be

congruent to up to four different points on the boundary of K which correspond to

the four adjacent squares on the torus R2/Z2. However, these points must all lie on

one horizontal line or all lie on one vertical line. Conversely, a collection of n2 small

squares, one in each congruency class, whose boundary satisfies the above properties

gives a minimum counterexample.
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Among all possible minimum counterexamples K we consider one with the lowest

total length of the boundary of K.

Consider the connected components Gi of int(K). To each Gi we associate the

area inside the outer boundary γi of Gi. Consider G0 which has the smallest such

area among all Gi. We claim that G0 is simply connected. Indeed, otherwise there

exists a square B, disjoint from the squares of G0 which lies inside γ0. Consider the

region Gi that contains the square B1 congruent to B. An integral shift Gi+ z makes

it contain B, but then Gi + z is a connected region strictly inside γ0. Thus the area

inside γi is smaller than that inside γ0, contradiction.

Now that we know that G0 is simply connected, its boundary is equal to its

outer boundary γ0 and is connected. Since each segment of the boundary is either

horizontally or vertically congruent, and the endpoint of a segment has the same type

of congruency, the whole γ0 has to have a constant congruency type. Assume that it

is horizontally congruent.

Consider a square B ⊆ G0 which lies in the lowest row of G0. Its bottom l is a

part of γ0. The square B1 that is adjacent to B at l no longer lies in G0. Moreover,

the corresponding congruent square B1+ z can not lie in G0 by our choice of the row.

Consider now a new set K′ defined by shifting all squares of G0 by z and by keeping

the rest of the squares. We claim that K′ is still a minimum counterexample. Indeed,

if we have a segment on the boundary of K ′ =
⋃K′, it could be either a segment of

the boundary of K or a segment of the boundary of K ′. Let us first examine its pairs

of boundary segments. If they didn’t come from γ0 or from segments congruent to γ0,

then they are unchanged by the switch from K to K′. If they come from γ0 or from a

congruent segment, then the switch may change their relative position. However, since

G0 was shifted horizontally and the relative position was a horizontal congruence, the

new pair of segments might either coincide (thus they are no longer boundary) or still

stay horizontally congruent. Similarly, the only boundary preimages of the corners of

the small squares of the torus that are affected by the change from K to K′ are in the

congruency class of an endpoint of a segment on γ0. All of these were in a horizontal

line in K, so they stay in a horizontal line in K ′. If in fact they all collapse to a point,

then we no longer have a point on the boundary, but certainly, we do not introduce

any integral diagonal pairs.

It remains to observe that l is no longer a boundary of K ′, so the length of the

boundary of K ′ is less than that of K, which contradicts the minimality in the choice
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of K. 2

The proof of Theorem 2 can be easily modified to prove the following generaliza-

tion.

Theorem 6 If A ⊆ R
2 is an N –set and l1, l2 are two one dimensional linear sub-

spaces of R2, then (A−A) ∩ Z
2 6⊆ l1 ∪ l2

Although we believe that the multi-dimensional version of Theorem 2 should be

true, we cannot find a proof. Thus we would like to make the following conjecture.

Conjecture 7 If A ⊆ R
3 is an N –set and p1, p2, p3 are three two dimensional linear

subspaces of R3, then (A−A) ∩ Z
3 6⊆ p1 ∪ p2 ∪ p3.

References

[1] M.B. Nathanson, An inverse problem in number theory and geometric group

theory, arXiv:0901.1458v2 [math.NT] 1 June 2009

[2] Z. Ljujic, C. Sanabria, A note on the inverse problem for the lattice points,

arXiv:1006.5740v1 [math.NT] 29 June 2010.

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

Department of Mathematics, College of Charleston, Charleston, SC 29424, USA

5

http://arxiv.org/abs/0901.1458
http://arxiv.org/abs/1006.5740

