Nathanson heights in finite vector spaces

Let p be a prime, and let \mathbb{Z}_{p} denote the field of integers modulo p. The Nathanson height of a point $v \in \mathbb{Z}_{p}^{n}$ is the sum of the least nonnegative integer representatives of its coordinates. The Nathanson height of a subspace $V \subseteq \mathbb{Z}_{p}^{n}$ is the least Nathanson height of any of its nonzero points. In this talk, I will investigate the range of the Nathanson height function using a variety of techniques from additive combinatorics. In particular, I will show that on subspaces of \mathbb{Z}_{p}^{n} of codimension one, the Nathanson height function can only take values about $p, p / 2, p / 3, \ldots$ I prove this by showing a similar result for the coheight on subsets of \mathbb{Z}_{p}, where the coheight of $A \subseteq \mathbb{Z}_{p}$ is the minimum number of times A must be added to itself so that the sum contains 0 . I will also present some open questions and conjectures related to the Nathanson height, and indicate a few possible directions for future research.

[^0]
[^0]: Josh Batson

