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Chapter 1

INTRODUCTION TO

DIFFERENTIAL EQUATIONS

1.1 What differential equations are, and what it means to

solve them

1.1.1 The description of functions from R to Rn in terms of differential

equations.

If x(t) denotes the position of a particle of mass m at time t in R3, and if there is a force F(x) acting

on the particle when its position is x, then Newton’s Second Law tells us that

x′′(t) =
1

m
F(x(t)) . (1.1)

For example, if the force on the particle is due to the gravitational interaction with a point mass

M located at the origin, then according to Newton’s Universal Theory of Gravitation,

F(x) = −GMm
x

‖x‖3
,

where G is the gravitational constant, and then (1.1) becomes

x′′(t) = −GMm
x(t)

‖x(t)‖3
(1.2)

Newton showed that the only continuously twice differentiable curves in R3 that satisfy (1.2)

are ellipses and parabolas, and from his further analysis of the solution curves was able to deduce

Kepler’s Laws of Planetary Motion – one of the most significant advances in modern science.

As in this example, many functions of interest – the functions parameterizing planetary trajec-

tories in this case – are specified by natural laws in terms of some relation, expressed in terms of an

equation, between the function and its various derivatives. The equation (1.2) specifies just such a

relation between function and its the second derivative.

c© 2014 by the author.
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2 CHAPTER 1. INTRODUCTION TO DIFFERENTIAL EQUATIONS

The theory of differential equations is concerned with deducing as much information as possible

about the functions that satisfy the required relation. In many cases, as in this example, the functions

that solve the equation can be viewed as representing curves, and this gives a geometric perspective

on the subject that turns out to be very useful.

In some cases, one can find an explicit formula for the class of solution curves. In others cases one

cannot do this, but one can still deduce answers to important questions about the set of solutions.

For example, one can ask whether for a given force law F, there exist periodic solutions of (1.1). For

the specific force law in (1.2), we know the answer is “yes”: The elliptical solutions are periodic, but

the parabolic solutions are not. One way to see this is to explicitly find all solutions of (1.2), which

can be done in this case. But we shall see that there are other ways to answer such questions without

finding all of the solutions explicitly, which, in general, is not possible.

Before making general definitions, we turn to another example. Consider two points A = (x0, y0)

and B = (x1, y1) in the x, y plane. We suppose that x0 < x1 and y1 < y0 so that the straight line

segment from A to B “runs downhill to the right”.

Connect the points A and B with a “wire” that traces out the graph of a function y(x) with

y(x0) = y0 and y(x1) = y1, giving a “track” running from A to B:

Depending on the shape of the wire, specified by the function y(x), a bead sliding along the wire,

started from rest at A and acted upon only by gravity (and the forces keeping it on the wire) will

take a certain time T to reach B. The brachisochrone problem is to find the function y(x) that yields

the minimum time T of travel. We shall see that if such a curve exists, it must satisfy the differential

equation

y(x)
√

1 + |y′(x)|2 = C (1.3)

for some constant C.

The equation (1.3) is another example of a differential equation; it specifies a relation between

the function y(x) and its first derivative y′(x). As we shall see, when y(x) satisfies (1.3), its graph is

a cycloid.

Now let us write (1.3) in another way. Introduce the function

F (y, z) = y
√

1 + z2 − C .

Then (1.3) is equivalent to F (y(x), y′(x)) = 0, or, more briefly,

F (y, y′) = 0 (1.4)

Though it was not the case in this example, in other examples, we will have a relation among x,

y(x) and y′(x).

We shall solve this problem later on and see that there is indeed such a minimizing curve, but it is not obvious at

this point that such a curve exists.
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Definition 1 (First order differential equation for a real valued function). Let G be a real valued

function on (a, b) × R × R. A differentiable real valued function y(x) defined on (a, b) solves the

differential equation

G(x, y, y′) = 0 (1.5)

if it is that case that G(x, y(x), y′(x)) = 0 for all x ∈ (a, b). (We allow the cases a = −∞ and

b =∞.) The set of all functions solving the equation is its solution set.

If the function G(x, y, z) is continuously differentiable, we can often write G(x, y, y′) = 0 in a

better form. The equation G(x, y, z) = 0 specifies a surface in R3. Even more simply, if x is not

present, as in our example from the brachistochrone problem, F (y, z) = 0 specifies a curve in R2.

In fact, in the case of the brachistochrone problem, we can easily solve F (y, z) = 0 for z as a

function of y: We find

z = ±
√

(C/y)2 − 1 .

This gives us two differential equations of a more explicit form

y′ = −
√

(C/y)2 − 1 and y′ =
√

(C/y)2 − 1 .

The equation on the left, on which y′ is negative, describes the “downhill” part of the track, and the

one of the right, on which y′ is positive, describes the “uphill” part of the track, as we shall see.

While in this case we could solve F (y, z) = 0 for z as a function of y, we can more generally

invoke the Implicit Function Theorem to write z = f(y) for some continuously differentiable function

f . The Implicit Function Theorem says that if F (y, z) is continuously differentiable, and if

F (y0, z0) = 0 and
∂

∂z
F (y0, z0) 6= 0 , (1.6)

then there exists a continuously differentiable function f(y) with f(y0) = z0 and an open neighbor-

hood of (y0, z0) in which

F (y, z) = 0 ⇐⇒ z = f(y) .

Thus, under the conditions (1.6), there is an open neighborhood of (y0, z0) in which the differential

equation F (y, y′) = 0 is equivalent to an equation of the form

y′ = f(y) (1.7)

in the sense that they both have the same set of solution curves in this neighborhood.

For the more general equation G(x, y, y′) = 0, the same sort of reasoning leads to a local equiv-

alence with a differential equation of the form

y′ = g(x, y) . (1.8)

Definition 2 (First order autonomous and non-autonomous equations for real valued functions). The

differential equation (1.7) is the general first order autonomous differential equation in standard form.

The more general differential equation (1.8) is the general first order non-autonomous differential

equation in standard form.
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By “standard form” we mean that the equation explicitly gives the derivative y′ as a function

of y (in the autonomous case, in which the derivative only depends on the value of y itself) or as

an explicit function of x and y (in the non-autonomous case, in which the derivative depends on x

as well as the value of the function y itself). When, a first order equation for a real valued function

y is given in the general form (1.5), then it may require some work to express y′ as a function of

y, and, if necessary, x. It may only be possible to do this locally, and implicitly, using the implicit

function theorem. However, in almost all of the cases we consider here, the equation shall arise

from applications already in standard form, or else shall be easily put into standard form, as in our

example concerning the brachistochrone problem.

Example 1 (A very simple equation). Let f(x) be any given continuous function on R. The differ-

ential equation

y′(x) = f(x)

is very simple since the unknown function y does not appear on the right hand side. The Fundamental

Theorem of Calculus says that the equation is satisfied if and only if

y(x) = y(x0) +

∫ x

x0

f(z)dz .

or, in other words, if F is an anti-derivative of f , then the solutions set of this equation consists of

the functions

y = F (x) + c

where c is an arbitrary constant. For example, with f(x) = x2, we have

y(x) =
1

3
x3 + c ,

and this is the general solution to this equation.

Example 2 (Solving a first order non-autonomous equation). Consider the equation

x+ yy′ = 0 . (1.9)

We could put this in standard form

y′ = −x
y
,

taking into account that trouble may arise at any x for which y(x) = 0. We cannot directly apply the

Fundamental Theorem of Calculus since now the right hand side involves the unknown function y.

However, we can reduce to this case by a change of variables. Introduce the new variable

z(x) =
1

2
y2(x) .

Then z′ = yy′ and our equation becomes

z′ = −x .

This can be solved by the Fundamental Theorem of Calculus: Integrating both sides, we find

z = −1

2
x2 + c ,
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or, in terms of y,

x2 + y2 = 2c . (1.10)

We could solve this for y as a function of x, but the geoemtric natrue of the graph of y(x) is already

evident in this form: Equation (1.10) describes a curve if and only if c > 0, in which case it describes

a centered circle of radius
√

2c. The family of such circles is the family of solution curves of this

equation, where by “solution curves”, we mean the curves obtaned by graphing the functions in the

solution set.

The way we solved (1.9) in Example 2 may look ad hoc, but the equation in this example falls

into several categories for which there are methods of solution, among which is the class of separable

equations. We treat the general case, and a specific example, next.

A separable equation is a first order equation that can be written in the form

f(y)y′ = g(x)

for some continuous functions f and g. Then, if F is any antiderivative of f , the equation can be

written as

(F (y(x)))′ = g(x) .

Then if G is any antiderivative of g, we can integrate both sides to obtain

F (y(x)) = G(x) + c

which may then be solved to find y(x). This is a very simple class of differential equations in that it

may be solved quite directly by the Fundamental Theorem of Calculus.

Example 3 (A separable equation). Consider the equation y′ = ex+y. Since ex+y = exey, the

equation can be written as

e−yy′ = ex .

Integrating both sides,

−e−y(x) = ex + c .

Evidently the constant c must be negative. Solving for y(x) we find

y(x) = − ln(−c− ex) .

The solution is only defined for x < ln(−c), and

lim
t→ln(−c)

y(x) =∞ .

For each y0 ∈ R, if c = −e−y0 − 1, y(0) = y0, and the value of x at which this solution “blows

up” is x = ln(e−y0 + 1), which is very small for large y0.

Much of the rest of this chapter will be concerned with the first order case, which is a cornerstone

of the whole theory. Before turning to that, we discuss two generalizations which give some hint about

the fundamental nature of the first order case.
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Let v be a continuous function on some open subset U ⊂ Rn with values in Rn. (We allow the

case U = Rn.) In many ways, the most fundamental equation of the whole subject is the equation

x′(t) = v(x(t)) (1.11)

To solve this equations means to find the set of all continuously differentiable functions x(t)

defined on some time interval (a, b) with values in U for which (1.11) is satisfied for all t ∈ (a, b).

The set of curves satisfying this equation is its solution set.

Given a continuously differentiable curve x(t), it is easy to check whether or not it is a solution

of (1.11) : Simply differentiate x(t), and then substitute x(t) into v(x). If the result is the same

for all t, x(t) is a solution, and otherwise not. Finding solutions is usually not so easy as checking

whether a given function is or is not a solution.

The function v(x) is a vector field, and can be thought of as specifying the velocity v of the

curve as it passes through the point x. This the problem of solving (1.11) is the problem of finding

a curve x(t) that has a specified velocity at each point through which it passes. In equation (1.11),

this velocity depends only on the position x. More generally it might depend on the time t, in which

case we would have the equation

x′(t) = v(t,x(t)) (1.12)

Definition 3 (First order autonomous and non-autonomous equations for Rn valued functions).

The differential equation (1.11) is the general first order autonomous system of differential equa-

tions in standard form. The more general differential equation (1.12) is the general first order

non-autonomous system of differential equations in standard form. In either case, the curves x(t)

satisfying the equations are called integral curves of the vector field.

Example 4 (Integral curves of a simple vector field). Consider the vector field on R2 given by

v(x, y) = (− y, x) .

Then the differential equation

x′(t) = v(x(t)) (1.13)

is an efficient way of writing the system of differential equations

x′(t) = −y(t)

y′(t) = x(t) .

One way to solve this is to introduce the function f(x) = ‖x‖2 = x2 + y2. Then by the multi-

variable chain rule,
d

dt
f(x(t)) = ∇f(x(t)) · x′(t) . (1.14)

Since ∇f(x, y) = (2x, 2y), when x(t) satisfies the equation, (1.14) becomes

d

dt
f(x(t)) = ∇f(x(t)) · v(x(t)) = 2(x(t), y(t)) · (− y(t), x(t)) = 0 .
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Therefore, f(x(t)) is constant along any integral curve of our vector field. This tells that the integral

curves must be circles. Fix any time t0 and define

r =
√
x2(t0) + y2(t0) .

If r = 0, then evidently x(t) = 0 for all t, which is indeed a solution. To find the other solutions, let

us suppose r > 0.

Then for all t, x(t) must lie on the centered circle of radius r, Therefore, for some function θ(t),

to be determined, it is the case that

x(t) = r( cos(θ(t)), sin(θ(t))) .

Now differentiate to find

x′(t) = θ′(t)r(− sin(θ(t)), cos(θ(t))) = θ′(t)v(x(t)) .

Therefore, x(t) satisfies (1.13) if and only if θ′(t) = 1. By the Fundamental Theorem of Calculus,

this is the case if and only if θ(t) = t + c. Thus we have that the solution set of our system of

equations is given by

x(t) = r((cos(t+ c), sin(t+ c))

where r ≥ 0, and c is arbitrary. Note in the case r = 0, x(t) = 0 for all t. This is a fixed point

solution or, what is the same thing, a steady state solution. We shall be particularly interested

in finding such solutions, if any, for other vector fields, and studying their stability, an important

concept to be studied in the next chapter.

The constant function f(x, y) = x2 + y2 was the key to solving this differential equation. One

might ask: Where did this come from? We shall develop several methods for finding such “constants

of the motion” later in the course. In fact, this equation describes a very simple case of Hamiltonian

flow which is important in physics, and for which there is always a constant energy function. This

is the method behind our solution, and we shall come to that in due course. Right now, our main

point is to make clear what is means to solve differential equations, and not so much to introduce

techniques for doing so.

Now let us return to our first example concerning Newton’s Second Law. This involves the second

order equation

x′′(t) =
1

m
F(x(t)) .

This is second order because it involves second derivatives.

We can reduce this to a first order system of equations by the method of reduction of order.

Define y = x′. Then, by definition, our equation is equivalent to the system

x′ = y

y′ =
1

m
F(x) .

If we introduce the phase space variable z := (x,y) in R6 (the vector whose first three entries

come from x, and whose second three entries come from y) and the vector field

w(z) = (y,m−1F(x)) ,



8 CHAPTER 1. INTRODUCTION TO DIFFERENTIAL EQUATIONS

then the system can be written as

z′ = w(z) ,

and so we can write the equation coming from Newton’s Second Law for a particle moving in R3 as

a first order system, but in 6 variables instead of 3. Solving the second order equation is really the

same problem as that of finding integral curves to the vector field w, and it turns out that this is a

very fruitful point of view.

This gives some hint of why the subject of finding integral curves of equations like z′ = w(z) is

fundamental to the whole subject, even though many of the differential equations that arise directly

in practice are second order. The method of reduction of order is useful also in equations where the

highest derivative is not given as an explicit function of the lower derivatives, as we shall see later in

this chapter.

We now return to the case of differential equations for real valued functions of a single variable.

Though often it is natural to take the independent variable to be x and the dependent variable to

be y, as in the brachistochrone problem, in the rest of this chapter we shall use the convention that

the independent variable is t and the dependent variable is x. This will make our discussion as

harmonious as possible with the higher dimensional case in which we seek integral curves x(t). It is

also often useful to think of t as time and x as position, though that is not necessary.

1.2 Some classes of explicitly solvable equations

1.2.1 First order linear equations

A differential equation of the form

x′(t) = p(t)x(t) + q(t) (1.15)

is called a first order linear equation: It is a first order equation in standard form, and the right hand

side is of the form px+ q, with coefficients that may depend on t. For each t, the graph of y = px+ q

is a line in the x, y plane.

Suppose that p(t) and q(t) are continuous on some interval (a, b). Then the Fundamental The-

orem of Calculus provided us with a continuously differentiable function p(t) such that P ′(t) = p(t)

also defined on (a, b).

We now compute,
d

dt

(
x(t)e−P (t)

)
= [x′(t)− p(t)x(t)] e−P (t) .

Since e−P (t) is never zero,

x′(t) = p(t)x(t) + q(t) ⇐⇒ [x′(t)− p(t)x(t)] e−P (t) = q(t)e−P (t) .

But by the calculation made above, this is the same as

d

dt

(
x(t)e−P (t)

)
= q(t)e−P (t) . (1.16)

Then by the Fundamental Theorem of Calculus, for any t0,(
x(t)e−P (t)

)
−
(
x(t0)e−P (t0)

)
=

∫ t

t0

b(s)e−P (s)ds
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Multiplying through by ep(t) and rearranging terms, we find

x(t) = eP (t)−P (t0)x(t0) +

∫ t

t0

eP (t)−P (s)q(s)ds .

This shows that for each given x0 and t0 ∈ (a, b), there is exactly one function x(t) defined on

(a, b) such that

x′(t) = p(t)x(t) + q(t) and x(t0) = x0 . (1.17)

The initial value problem for (1.15) is to solve (1.17), and we have just proved that there is always a

unique solution, and have even found a formula for it.

If we simply want the general solution of (1.15) we may return to (1.16)and apply the Funda-

mental Theorem of Calculus in antiderivative (as oppose to definite integral) form to write

(
xe−P

)
=

∫
qe−Pdt+ c ,

and hence (since P =
∫
pdt),

x = e
∫
pdt

(∫
qe−

∫
pdtdt+ c

)
. (1.18)

We summarize:

Theorem 1 (Existence and uniqueness for first order linear equations). Let p(t) and q(t) be contin-

uous functions on some interval (a, b) ⊂ R, where a = −∞ and b = ∞ are allowed. Then for every

x0 and t0 ∈ (a, b) there exists a unique solution to the initial value problem (1.17), and it is given

explicitly by

x(t) = e
∫ t
t0
p(s)ds

x(t0) +

∫ t

t0

e
∫ t
s
p(r)drq(s)ds

for all t ∈ (a, b) The general solution of the equation x′ = px + q is given by (1.18) where c is an

arbitrary constant.

The arbitrary constant c corresponds to the initial condition in the initial value problem in that

for any given x0 and t0, there will be exactly one value of c for which x(t0) = x0. Thus, to solve

the initial value problem, one may first find the general solution, and then chose the constant c, or

one may proceed directly to the solution using definite integrals. We shall illustrate both approaches

below.

The idea behind the formulas is easier to remember and apply than the formulas themselves.

The point to remember is if you write the equation in the form x′ − px = q, and multiply through

by e−P , where P ′ = p, the left hand side will be a total derivative, which allows x to be found by

integration.

Example 5 (Solving a first order linear equation). Consider the equation

x′ = −1

t
x+ t

on the interval t > 0. Find the general solution, and the solution with x(1) = 1.
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To do this, note that ln t is an antiderivative of 1/t. Thus, we should multiply(
x′ +

1

t
x

)
= t

through by eln t = t to obtain the equivalent equation

(x′t+ x) = t2 ,

which is
d

dt
(tx) = t2 .

Integrating both sides,

tx =
1

3
t3 + c .

Therefore, the general solution is

x(t) =
t2

3
+
c

t
.

Let us check this result: differentiating,

x′(t) =
2

3
t− c

t2
,

and
x(t)

t
=
t

3
+

c

t2
,

so that indeed, x′ + x/t = t for all choices of c.

Now to match the initial condition x(1) = 1, we evaluate the general solution at t = 1, and find

x(1) =
1

3
+ c .

We satisfy x(1) = 1 is and only if c = 2/3. More generally, we se that c = x(1)− 1/3.

It follows from (1.18) that the general solution of a first order linear equation is a family of curves

of the form

x(t) = cf(t) + g(t)

where c is an arbitrary constant and f(t) 6= 0 for any t ∈ (a, b). Thus, the curves x(t) for different

values of c never cross, and through each point in the vertical strip in the (t, x) plane given by

(a, b)× R, there is exactly one such curve.

Conversely, given any such family of curves we combine

x′(t) = cf ′(t) + g′(t) and c =
1

f(t)
(x(t)− g(t))

to deduce

x′(t) =
f ′(t)

f(t)
(x(t)− g(t)) + g′(t) =

[
f ′(t)

f(t)

]
x(t) +

[
g′(t)− f ′(t)

f(t)
g(t)

]
,

so that the curves x(t) are the solution curves of a first order linear equation.

The next figure shows the family of curves in the t, x plane specified by the equation from

Example 5 for 0 < t < 4 and −2 < x < 2.
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This field of flow lines extends over the entire right half of the t, x plane, though of course we

can only graph a fraction of it.

If we think of the equation as describing the motion of a point on the line, and the point is at

x0 at time t0, then by following the unique curve through (t0, x0), we can see where the particle is

at every other t > 0.

There is a convenient way to think about the information contained in this family of curves.

Consider any 0 < t0, t1. Consider the vertical lines t = t0 and t = t1. In the next figure we graph

them for t0 = 1 and t1 = 3.

The red lines are vertical, but an optical illusion may obscure this. In any case, since through

each point in the right half plane there is exactly one flow curve, we define a function Φt1,t0 from R
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to R as follows: Φt1,t0(x) is the intersection of the flow curve passing through (t0, x) with the line

t = t1. In our graph, locate the point at height x in the first vertical line. Follow the flow line through

this point until it intersects the line t = t1. The the height at this point – x(t1) on this curve – is

Φt1,t0(x). Notice that the final time t1 is on the left in the subscript, and the initial time is on the

right. We will soon see the utility of this. In any case, the definition does not require that t1 > t0;

one can follow flow lines to the left as well as to the right. We formalize the deifinition below:

Definition 4 (Flow transformation of a linear first order equation). Consider a first order linear

equation x′ = px+ p with p and q continuous on (a, b), For each t0 6= t1 in (a, b) define

Φt1,t0(x) = x(t1)

where x(t) is the unique solution to

x′ = px+ q with x(t0) = x .

In practical terms, computing a flow transformation amounts to solving the initial value problem

“in general”. We can, and will, work with flow transformations to other equations. We have special-

ized to first order linear equations at this point because this is the only class of equations for which

we have so far proved the existence and uniqueness of a solutions curve for arbitrary initial data.

Example 6 (Computing a flow transformation). Consider the equation

x′ = −1

t
x+ t

on the interval t > 0 that we considered in Example 5. There we found that the general solution to

this equation is

x(t) =
t2

3
+
c

t
.

where c is an arbitrary constant. We must choose c so that x(t0) = x. Evaluating at t = t0, we find

x =
t20
3

+
c

t0
which means c = t0x−

t30
3
.

Therefore, the solution curve passing through x at t = t0 is

x(t) =
t2

3
+

1

t

[
t0x−

t30
3

]
.

Evaluating this at t = t1, we find

Φt1,t0(x) =
t0
t1
x+

1

3

(
t21 −

t30
t1

)
.

Notice that the flow transformation is a very simple function of x, the starting point. For all

t0, t1 it is an affine function in x; i.e., its graph is a straight line. The slope and intercept of the line

do depend on t0 and t1, but still, the graph of x 7→ Φt1,t0(x) is a line.

Next, consider any t2 > 0. A Simple computation shows that for all x,

Φt2,t1 (Φt1,t0(x)) = Φt2,t0(x) . (1.19)
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The identity (1.19) that we derived in the previous example has a natural interpretation which

show that it is not an accident: If you start at height x at t = t0, an then follow the unique flow-line

to t = t1, and then follow the unique, and therefore same, flow-line from there to t = t2 you arrive

at the same height you would have by simply following the flow line directly from t = t0 to t = t2.

Thus, the identity (1.19) always is true as a consequence of the existence and uniqueness of soluion

curve given by Theorem 1.

Neither was it a coincidence that the flow transformations were linear for all t0, t1 in the last

example. By Theorem 1, the unique solution to x′ = px+ q passing through x at t = t0 is

x(t) = e
∫ t
t0
p(s)ds

x+

∫ t

t0

e
∫ t
s
p(r)drq(s)ds .

Therefore, in general

Φt1,t0(x) =
[
e
∫ t1
t0
p(s)ds

]
x+

[∫ t

t0

e
∫ t1
s
p(r)drq(s)ds

]
.

The flow map is important partly for what it tells us about the sensitivity to initial data. If solve

our equation with initial data x(t0) = x0, then at time t1, the value of the solutions is Φt1,t0(x), by the

definition of the flow transform. But if instead we solve our equation with initial data x(t0) = x+ h,

then at time t1, the value of the solutions is Φt1,t0(x+h). In the case of a first order linear equation,

Φt1,t0(x+ h)− Φt1,t0(x) =
[
e
∫ t1
t0
p(s)ds

]
h .

The right hand side does not depend on x, and it does not even depend on coefficient q(t). Provided

h is small compared to
[
e
∫ t1
t0
p(s)ds

]−1

, the left hand side will be small. In this sense, a small change

in the initial value does not lead to a large change in the solution, however if
[
e
∫ t1
t0
p(s)ds

]
becomes

large for some t1, then the solution will indeed be sensitive to the initial data. The derivative

d

dx
Φt1,t0(x)

gives a measure of the sensititvity of the dependence of the initial data for the flow from t0 to t1

which we regard as fixed. In this case, the sensitivity function

d

dx
Φt1,t0(x) = e

∫ t1
t0
p(s)ds ,

independent of x.

1.2.2 Bernoulli equations

A differential equation of the form

x′(t) = p(t)x(t) + q(t)xn(t) (1.20)

with n 6= 0, 1 is called a Bernoulli equation. If n = 0, 1, then (1.20) is a first order linear equation,

and we already know how to solve it.
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To solve a Bernoulli equation, introduce a new dependent variable y(t) defined by

y = x1−n . (1.21)

where we must have x 6= 0 for n > 1. (We do not assume that n is an integer, though this is

suggestion by this notation, which is traditional.) Then

x = y1/(1−n) and x′ =
1

1− n
yn/(1−n)y′ .

Therefore, in the new variable, (1.20) becomes

1

1− n
yn/(1−n)y′ = py1/(1−n) + qyn/(1−n) .

Dividing by (1− n)−1yn/(1−n), we obtain the first order linear equation

y′(t) = (1− n)p(t)y(t) + (1− n)q(t) (1.22)

Any solution of (1.20) with x(t0) = x0 6= 0 must satisfy x(t) 6= 0 on some open interval about

t = t0 since x(t) is continuous. Then the calculations above show that y(t) is well defined on this

interval, and that y(t) must satisfy (1.22) there with y(t0) = x1−n
0 . By Theorem 1, there exists a

unique solution to this initial value problem. Now let (a, b) be the maximal open interval about t0

on which y(t) 6= 0. Then everywhere on this interval x = y1/(1−n) is well defined and non-zero. By

what we have noted above, it must be the unique solution to (1.20) with x(t0) = x0. Outside this

interval, if n > 1, the solution may not exist, as we shall see in examples.

When applying the method, it is usually simplest to simply remember that the change of variables

y = z1−n will lead to a linear equation than it is to work with the formula we have derived for this

linear equation.

Example 7 (Solving a Bernoulli equation). Consider the equation

tx2x′ + x3 = t cos t , (1.23)

for t > 0. Dividing through by tx2 we see that, when we are not dividing by zero, our equation becomes

x′ = −x
t

+ x−2 cos t

This is a Bernoulli equation with n = −2. Thus, we shall make the change of variable y = x3, so

that x = y1/3. Now let us use this in the original equation, so we do not introduce trouble be dividing

by zero.

Since x2x′ = 1
3y
′, this equation becomes

y′ +
3

t
y = 3 cos t .

Since the antiderivative of 3/t is 3 ln t, we multiply through by e3 ln t = t3 to obtain the equivalent

equation
d

dt
(t3y) = 3t3 cos t .
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Integrating both sides, we find

y(t) = sin t+ 3t−1 cos t− 6t−2 sin t− 6t−3 cos t+ ct−3 . (1.24)

We have just proved that when x(t) solves (1.23) on (0, t), then y(t) = x3(t) is given by (1.24) for

some constant c: At no point did we run any risk of dividing by zero.

Thus, we learn that the general solution of (1.23) is given by

x(t) =
(
sin t+ 3t−1 cos t− 6t−2 sin t− 6t−3 cos t+ ct−3

)1/3
. (1.25)

It is interesting to look at the solution curves of both (1.24) and (1.25), which we plot below. On

the left, we show that solution curves for (1.24) with 0 < t < 15, −8 < y < 8, and on the right for

(1.25) with 0 < t < 15, −2 < x < 2, which is the corresponding region since y = x3.

Whenever y(t) crosses through zero, so does x(t), but with an infinite derivative since y 7→ y1/3

has an infinite derivative at y = 0. Indeed, we see the flow curves on the right always cross the

horizontal axis with an infinite slope. Still, the flows curves are continuous with a well defined

tangent everywhere.

Example 8 (The flow transformation for a Bernoulli equation). Since the Bernouli equation of the

previous example has a unique solution curve passing through each pointin the right half plane, for all

t0, t1 > 0, we have a well defined flow transformation Φt1,t0 : For any x ∈ R, Φt1,t0(x) is the height

at which the soltiion curve with x(t0) = x intersects the line t = t1. We can compute a formula for

it. To simplify the formula, let g(t) denote the function

g(t) := sin t+ 3t−1 cos t− 6t−2 sin t− 6t−3 cos t .

By (1.25), the solution with x(t0) = x is

x(t) =

(
g(t) + [x3 − g(t0)]

t30
t3

)1/3

.
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Therefore,

Φt1,t0(x) =

(
g(t1) + [x3 − g(t0)]

t30
t31

)1/3

.

This is no longer al linear funtion of x, but notice that when t1 is large compared to |x| and t0,

Φt1,t0(x) = (g(t1))
1/3

,

independent of x. In this sense, all solutions look like x(t) = sin1/3(t) for large t. There are no

periodic solutions, but all solutions approach this particular periodic function when the time t becomes

sufficiently large (depending on c).

We will see many example of equations whose solutions do something very complicated over a

short time interval, but then “settle down” to some simple sort of long-time behavior.

Example 9 (Solving another Bernoulli equation). Consider the equation

x′ = x2 . (1.26)

There are a number of ways to solve this, but it is a Bernoulli equation, so let us use the corresponding

change of variables. Since n = 2, we define

y = x1−n = x−1 .

This change of variables is singular if x = 0, but note any solution of this equation is monotone

increasing, so that any solution x(t) with x(t0) = x0 > 0 satisfies x(t) > x0 > 0 for all t > t0. We

compute:

x′ = − 1

y2
y′ and x2 =

1

y2
,

so (1.26) becomes
1

y2
y′ = − 1

y2
.

Hence, as long as y(t) 6= 0, y′(t) = −1 and so

y(t) = x−1
0 − (t− t0) ,

and then

x(t) =
x0

1− x0(t− t0)
.

Notice that when

t = t0 +
1

x0
,

the denominator vanishes, and the solution curve develops a vertical asymptote, at which point the

function is undefined.

While for linear first order equations with continuous coefficients defined on all of R, all of the

solutions are defined for all times t. As we see with this example, this need not be the case for non-

linear equations. Although v(x) = x2 is defined and continuous on all of R, there are no solutions of

x′ = x2 that are defined for all times t ∈ R except the trivial solution x(t) = 0 for all t.
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Finally, let us compute the flow transformation Φt0,t1(x) for this equation. We have computed

that solution passing through x at t = t0 is given by

x(t) =
x

1− x(t− t0)
,

which is defined on (−∞, t0 + 1/x) when x > 0 and on (t0 + 1/x,∞) when x < 0. Thus,

Φt1,t0(x) =
x

1− x(t1 − t0)
,

with t1 ∈ (−∞, t0 + 1/x) when x > 0 and t1 ∈ (t0 + 1/x,∞) when x < 0.

A simple calculation of the sensitivity function gives

d

dx
Φt1,t0(x) =

1

(1− x(t1 − t0))2
.

Notice that the sensitivty function depends on x in this case, and it diverges as t1 approches t0 + 1/x.

A samll change in initial data can result in a large change in the position at a later time for this

equation – or even lead to blow-up before time t1.

Because of the uniqueness, it is still true that as long as both t1, t2 belong to (the same) one of

the intervals,

Φt2,t1 (Φt1,t0(x)) = Φt2,t0(x) .

1.2.3 Ricatti equations

A differential equation of the form

x′(t) = p(t) + q(t)x(t) + r(t)x2(t) (1.27)

is called a Ricatti equation.

This may appear only mildly more complicated than the first order linear equation since the

right hand side is a quadratic, instead of linear, functions of x(t). Unfortunately, there is no general

method for solving Ricatti equations.

However, there a general method for deducing the general solution of a Ricatti equation from

any one particular solution. Thus, if one can somehow find one solution, one can find the general

solution – or at least express it in terms of explicit integrals.

Here is how this works. Suppose that x1(t) is some solution of (1.27). We seek the general

solution in the form x = x1 + u. If both x and x1 satisfy (1.27) then

(x1 + u)′ − p− q(x1 + u)− r(x1 + u)2 = 0 .

Both the left hand side equals

[x′1 − p− qx1 − rx2
1] + [u′ − (q + 2rx1)u− ru2] .

Since x1 solves (1.27), we are left with

u′ − (q + 2rx1)u− ru2 = 0 .
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In summary, if x and x1 are any two solution of (1.27), the u = x− x1 is a solution of

u′(t) = [q(t) + 2r(t)x1(t)]u(t) + r(t)u2(t) (1.28)

which is a Bernoulli equation with n = 2, and hence solvable with the substitution z = u−1.

Thus, the general solution of (1.27) will be

x1(t) + u(t)

where x1 is our particular solution of (1.27) and u is the general solution of the Bernoulli equation

(1.28).

Of course this is only useful if one can find a particular solution. In practice this is often possible.

Consider the equation

x′(t) = −1

t
x(t) +

1

t3
x2(t) + 2t . (1.29)

Since all of the coefficients are powers of t, it is natural to see of there is a solution of the form

x1 = ctα

for some constants c and α. Inserting this into the equation, we find

αctα−1 = −ctα−1 + c2t2α−3 + 2t .

All of the powers of t will be equal if

α− 1 = 2α− 3 = 1 ,

which is satisfied for α = 2. The equation then reduces to 2c = −c + c2 + 2, which is the same as

(c − 2)(c − 1) = 0. Hence both t2 and 2t2 are solutions. We can use either one to find the general

solution. In the next example, we carry this out.

Example 10 (Solving a Ricatti equation). We will now find the general solution to (1.29). As we

have explained above,

x1 = t2

is a particular solution. In this example, we have

p = 2t , q = −1

t
, r =

1

t3
.

Thus

q + 2rx1 = −1

t
+ 2

1

t3
t3 =

1

t
,

and (1.28) becomes

u′ =
1

t
u+

1

t3
u2 .

Then with z = u−1, so that u′ = −z−2z′ this becomes

−z−2z′ =
1

t
z−1 +

1

t3
z−2 ,
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and multiplying through by −z2 we obtain the linear equation

z′ +
1

t
z = − 1

t3
.

Since 1/t has the antiderivative ln t, we multiply through by eln t = t to obtain

(tz)′ = − 1

t2
.

Integrating both sides, we find

tz =
1

t
+ c .

Therefore, since z = u−1,

u =

(
1

t2
+
c

t

)−1

=
t2

ct+ 1
,

and the general solution is

x(t) = x1(t) + u(t) = t2 +
t2

ct+ 1
=
ct3 + 2t2

ct+ 1
.

It is interesting to note that c = 0 give the other particular solution that we found, while the

solution x1 is obtain only in the limit c→ infty, which brings out an important point about general

solutions: It may be necessary to consider limiting values of the arbitrary constants.

The only part of this method that requires any ingenuity – and also some luck – is finding a

particular solution. Consider another example

x′ =
2 cos2 t− sin2 t+ x2

2 cos t
.

is a Ricatti equation since the right hand side is quadratic in x, but it is not a Bernoulli equation.

Since the coefficients are powers of sin t and cos t, it is natural to try a simple expression composed

of these. Notice that with the choice x = sin t, the right hand side simplifies to cos t, and so

x1(t) = sin t is a particular solution.

The general idea is to try something simple for x1 that is “built out of” the coefficients. As in

the main example, it is often good to leave powers and multiples unspecified, and use the equation

to determine possible values for them

1.2.4 Reduction of order

Some second order differential equations can be reduced to first order equations that we know how

to solve. The general second order equation for a real valued function x of a real variable t is of the

form

F (t, x, x′, x′′) = 0

for some function F on (some subset of) R4.

There are two cases in which one may reduce this to a first order equation by standard methods:

(1) The case in which F does not depend on x; i.e., when the equation has the form

F (t, x′, x′′) = 0 .
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(2) The case in which F does not depend on t; i.e., when the equation has the form

F (x, x′, x′′) = 0 .

The first case is the simplest. Introduce y = x′ and then the equation becomes

F (t, y, y′) = 0

which is first order. If it is a first order equation that we know how to solve, we do this to find

y(t) = x′(t). Then we integrate to find x(t).

Example 11 (Reduction of order (depdentent varialbe x not present)). Consider the equation

tx′′ − x′ = t3 .

Substituting in y = x′ it becomes

y′ − 1

t
y = t3 .

This is a linear first order equation. Multiplying through by t, we obtain

(ty)′ = t3 ,

and so

x′ = y =
1

4
t3 +

c1
t
.

Integrating once more,

x =
1

16
t4 + c1 ln t+ c2 .

Notice that we have two arbitrary constant in our general solution of this second order equation.

When the independent variable t is missing, the idea is a little different: We introduce y = x′ as

before, but now we think of y = x′ as a function of x. By the chain rule

x′′ =
d

dt
x′ =

d

dt
y =

dy

dx

dx

dt
= y

dy

dx
.

Then F (x, x′, x′′) = 0 becomes

F

(
x, y, y

dy

dx

)
= 0 .

which can be written in the form

G

(
x, y,

dy

dx

)
= 0 .

This is a first order equation for y as a function of x. If we can solve this, we then have an explicit

equation for y as a function of x, and since y = x′, this is a first order equation for x.

Example 12 (Reduction of order (indepdentent varialbe t not present)). Consider the equation

x′′ + ω2x = 0 (1.30)

where ω > 0 is a parameter. Neither t nor x′ appear explicitly in this equation. It is the fact that t

does not appear that we use here.
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Let y = x′ so that

x′′ = y
dy

dx
.

Then our equation becomes

y
dy

dx
= −ω2x .

This can be written as
d

dx

(
y2

2

)
= −ω2x .

Integrating both sides, we find
y2

2
= −ω2x

2

2
+ C ,

and so

y2 + ω2x2 = 2C ,

where evidently the constant of integration must be non-negative. The case C = 0 is trivial, and so

let us write 2C = r2 for r > 0

Remembering that y = x′, we arrive at the first order equation

ω2x2 + (x′)2 = r2 .

It follows that (ωx(t), x′(t)) lies on the circle of radius r for all t. Therefore, for some function θ(t),

(ωx(t), x′(t)) = r( sin θ(t), cos θ(t))) .

Since (ωx(t))′ = ωx′(t), it follows that

(sin θ(t))′ = ω cos(θ(t)) ,

and this means that θ′(t) = ω, so that θ(t) = ωt+ θ0 for some constant θ0. Altogether,

x(t) = r sin(ωt+ θ0)

r ≥ 0, θ0 ∈ [0, 2π) is the general solution of the eqaution.

The equation(1.30) is very important, and there are many ways to solve it. Some of these

are simpler than the present method, but we have chosen to illustrate the method on a simple and

important example. You may have been able to see right away that r sin(ωt+ θ0) is a solution. It is

important ot understnad how the analysis above shows that this is the general solution.

1.3 Exercises

1.1 Find the general solution of the differential equation

tx′ = 3x+ t4

for t > 0. Find the correspoding flow transformation, and the particular solution with x(1) = 2.
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1.2 Find the general solution of the differential equation

(1 + t2)x′ + 2tx = cot t

for 0 < t < π. Find the correspoding flow transformation, and the particular solution with x(π/2) =

2.

1.3 The equation (ex − 2tx)x′ = x2 is not linear, but think of t as a function of x, and recall that

d

dx
t(x) =

1

x′(t(x))
.

Use this to rewrite the equation as a linear first order eqaution for t(x), and solve this.

1.4 Use the method of the previous exercise to solve x− tx′ = x′x2ex.

1.5 Find the general solution of tx′ + x = t3x3.

1.6 Find the general solution of x′ = 1
3x+ e−2tx−2. Also find the corresponding flow transformation,

and the particular soluiton with x(0) = 2.

1.7 Find the general solution of x′+ 4
tx = t3x2, t > 0. Also find the corresponding flow transformation

Φt1,t0(x) for theose pairs of t0 and t1 for which it is defined. and the particular soluiton with x(1) = 2.

1.8 For 0 < c < 1/4, and x0 > 0, find the solution to

x′ = x(1− x)− c , x(0) = x0 .

Show that for all x0 ≥
1

2
−
√

1

4
− c, the solution exists for all t, and compute limt→∞ x(t) for

such x0. What happens for smaller (positive) values of x0?

1.9 Find the solution of

x′(t) = tx
4− x
1 + t

x(0) = x0 > 0 .

Also compute limt→∞ x(t) for each x0.

1.10 Find the general solution of the Ricatti eqaution

x′ = −2

t
x+ t3x2 + t−5 .

1.11 Find the general solution of the Ricatti eqaution

x′ =
2 cos2 t− sin2 t+ x2

2 cos t
.

1.12 Find the general solution of the eqaution xx′′ + (x′)2 = 0.

1.13 Find the general solution of the eqaution x′′ = 1 + (x′)2.

1.14 Find the general solution of the eqaution tx′′ = x′ + (x′)3.

1.15 Find the general solution of the eqaution t2x′′ = 2tx′ + (x′)2.



Chapter 2

FLOWS ON THE REAL LINE

2.1 Vector fields on the real line

2.1.1 Monotonicity on maximal intervals

We have already introduced the differential equation

x′(t) = v(x(t))

in which v is a continuous vector field on Rn, and for which we seek to find all of the curves x(t)

in Rn that satisfy this equation. We have claimed that this equation is fundamental to the whole

theory of differential equations. This claim will be justified later. Our main goal now is to build an

understanding of this equation in the simplest case, that in which n = 1.

When n = 1, our equation reduces to

x′(t) = v(x(t)) . (2.1)

We now begin a thorough investigation of this equation in the case in which v(x) is a continuous

function of x. The first observation to make is that if for any x0, v(x0) = 0, then x(t) := x0 for all t

is a solution of (2.1) for all t.

Definition 5 (Equilibrium point and steady-state solutions). If v is a continuous vector field on R,

and v(x0) = 0, then x0 is called an equilibrium point for v. For any t0 ∈ R, the function x(t) = x0

for all t is a solution of x′(t) = v(x(t)) with x(t0) = x0. Such a constant solution, where the constant

value is necessarily an equilibrium point, is called a steady-state solution of x′(t) = v(x(t)).

In most cases we consider, the equilibrium points will be isolated (and usually finite in number),

and they divide the line into a class of intervals that we now introduce, in which motion necessarily

takes place.

Definition 6 (Maximal interval for v). We say that an interval (a, b) is a maximal interval for v if

v(x) 6= 0 for any x ∈ (a, b), and if either a = −∞ or v(a) = 0 and either v(b) = 0 or b =∞.

c© 2014 by the author.
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For example, if v(x) = x(1 − x), then there are three maximal intervals: (−∞, 0), (0, 1) and

(1,∞). For v(x) = 1 + x2, there is only one maximal interval, namely (−∞,∞). Since we suppose

that v is continuous, each x such that v(x) 6= 0 belongs to a unique maximal interval for v.

Suppose that (a, b) is a maximal interval for v and that x0 ∈ (a, b). Then v(x0) 6= 0. Let us

suppose, to be concrete, that v(x0) > 0. Then since v is continuous and v(x) 6= 0 for any x ∈ (a, b),

it follows from the Intermediate Value Theorem that v(x) > 0 for all x ∈ (a, b).

Therefore, if x(t) is any solution of x′(t) = v(x(t)) with x(t0) = x0, then x′(t) > 0, which means

that x(t) is strictly monotone increasing, as long as x(t) stays in the interval (a, b). On any interval

on which x(t) is strictly monotone (increasing or decreasing), it is one to one and hence an invertible

functions onto its range. Therefore, there exists the inverse function t(x) defined on (a, b).

Thus, under the assumption that that v is positive on (a, b) x(t) and t(x) both exists and are

both strictly increasing functions. Define

Ta = lim
x→a

t(x) and Tb = lim
x→b

t(x) .

Then x(t) is an invertible function from (Ta, Tb) onto (a, b), and t(x) is an invertible function from

(a, b) onto (Ta, Tb).

In case v is negative on (a, b), both functions are decreasing, so that with Ta and Tb defined as

above, Tb < Ta, and x(t) is an invertible function from (Tb, Ta) onto (a, b), and t(x) is an invertible

function from (a, b) onto (Tb, Ta).

All of the information about the solution x(t) in the time interval (Ta, Tb) (or, if v is negative on

(a, b), (Tb, Ta)), is contained in the inverse function t(x). It turns out that there is a simple integral

formula for t(x) that can be used to study the issue of existence and uniqueness for the equation

x′ = v(x).

First, let us consider an example in which is it easy to find x(t) and t(x).

Example 13 (Solution on a maximal interval). Consider the differential equation

x′(t) = x(1− x) and x(t0) = x0 with x(t0) ∈ (0, 1) , (2.2)

so that v(x) = x(1− x). As we have noted above, (0, 1) is a maximal interval for v.

Our equation is separable: Since on (0, 1)

1

x(1− x)
=

1

1− x
+

1

x
=

d

dx
F (x) where F (x) = ln

(
x

1− x

)
,

our differential equation can be written as

d

dt
F (x(t)) = 1 .

Integrating both sides, we find F (x(t))− F (x(t0)) = t− t0. Then since x(t0) = x0, we have

F (x(t)) = F (x0) + t− t0 . (2.3)

We now solve this for x(t). Exponentiating both sides of F (x) = y, we find

x

1− x
= ey and hence x =

ey

1 + ey
.
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Therefore, taking y = F (x0) + t− t0, ey = x0

1−x0
et−t0 .

x(t) =
x0e

t−t0

(1− x0) + x0et−t0
. (2.4)

You should verify that this is a solution, and that x(t0) = x0. Next, note that x(t) is defined for

all t, and

lim
t→−∞

x(t) = 0 and lim
t→∞

x(t) = 1 .

Therefore, x(t) is a strictly monotone increasing function from (−∞,∞) onto (0, 1), and hence is a

one-to-one function from (−∞,∞) onto (0, 1). Therefore, it has a well defined inverse function t(x).

Going back to (2.3) we see that t(x) = t0 + F (x)− F (x0). Then since F (x)− F (x0) =
∫ x
x0

1
v(z)dz,

t(x) = t0 +

∫ x

x0

1

v(z)
dz . (2.5)

Note that ∫ 1

x0

1

v(z)
dz =∞ and

∫ 0

x0

1

v(z)
dz = −∞

for any x0 ∈ (0, 1), so T0 = −∞ and T1 =∞, as we found above working directly with x(t).

A brief summary of the content of this subsection is that a continuous vector field on the line

may have one or more equilibrium points, and these divide the line into maximal intervals (if there

is at least one equilibrium point). At each equilibrium point, there is at least one solution, the

corresponding steady-state solution, but there may be others. As long as any solution x(t) stays

inside a maximum interval, it is strictly monotone – increasing or decreasing, depending on the sign

of v in that interval – and hence has a well defined inverse function t(s). In the next section we shall

see how to find t(x) and then x(t).

2.1.2 Barrow’s formula

The formula (2.5) we derived at the end of the last example gives an explicit integral expression,

not for x(t), but instead, for t(x). But then if the integral can be done explicitly, one can invert to

recover x(t). The formula (2.5) is known as Barrow’s formula.

Theorem 2 (Barrow’s Theorem). Let v be continuous and let (a, b) be a maximal interval for v and

let x0 ∈ (a, b). Fix any t0 ∈ R and define the function t(x) on (a, b) by Barrow’s formula (2.5). Then

t(x) is a strictly monotone function on (a, b), so that

Ta = lim
x→a

t(x) and Tb = lim
x→b

t(x) (2.6)

both exist.

If v is positive on (a, b), then Ta < t0 < Tb, and if x(t) is the inverse function to t(x), then x(t)

is a solution of

x′(t) = v(x(t)) and x(t0) = x0 . (2.7)

Moreover, every solution to (2.7) that is defined on any subinterval of (Ta, Tb) containing t0 equals

the restriction of x(t) to this subinterval. In particular, there is a unique solution of (2.7) defined on

(Ta, Tb). If v is negative on (a, b), the same conclusion is valid provided we interchange Ta and Tb.
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Proof. We suppose first that v is positive on (a, b), and define the function t(x) on (a, b) by Barrow’s

formula. For any x ∈ (a, b) other than x0, let J be the closed interval with endpoints x0 and x, which

is either [x0, x] in case x0 < x < b, or else [x, x0] in case a < x < x0.

Since v is continuous on J , it has a minimum value attained somewhere in J , and since v is

positive everywhere on (a, b), and hence everywhere on J , there is a c > 0 so that v(x) ≥ c for all

x ∈ J . Therefore, 1/v(x) is continuous and bounded on J . It follows that∫ x

x0

1

v(z)
dz

is a proper integral for each x ∈ (a, b). Thus,

t(x) = t0 +

∫ x

x0

1

v(z)
dz

does define a function on (a, b). By the Fundamental Theorem of Calculus, this function is differen-

tiable, and
d

dx
t(x) =

1

v(x)
. (2.8)

Since the right hand side is continuous, t(x) is continuously differentiable on (a, b). Since v(x) > 0

on (a, b), t(x) is strictly monotone increasing on (a, b). Therefore, the limits defining Ta and Tb in

(2.6) both exist with Ta = −∞ and Tb = ∞ allowed, and t(x) is an invertible function from (a, b)

onto (Ta, Tb).

Since t(x) is differentiable, by the Inverse Function Theorem of single variable calculus, x(t) is

differentiable and
d

dt
x(t) =

(
d

dx
t(x)

)−1 ∣∣∣∣
x=x(t)

.

By (2.8), (
d

dx
t(x)

)−1 ∣∣∣∣
x=x(t)

= v(x(t)) ,

which shows that x′(t) = v(x(t)), and clearly t(x0) = t0, so x(t0) = x0.

Now suppose that y(t) is a continuously differentiable function defined on some interval (S, T )

with t0 ∈ (S, T ). Suppose also that

y′(t) = v(y(t)) and y(t0) = x0 ,

and that y(t) ∈ (a, b) for all t ∈ (S, T ).

Then for all t ∈ (S, T ), y′(t) = v(y(t)) > 0, and so y(t) is strictly monotone and hence it is

an invertible function from (S, T ) onto its range. Let t(y) be the inverse function. By the Inverse

Function Theorem of single variable calculus, t(y) is differentiable, and

d

dy
t(y) =

(
d

dt
y(t)

)−1 ∣∣∣∣
t=y(t)

=
1

v(y)
.

Then by the Fundamental Theorem of Calculus,

t(y)− t(x0) =

∫ y

x0

1

v(z)
dz
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for all y such that y = y(t) for some t ∈ (S, T ). That is, t(y) is given by Barrow’s formula, and hence

y(t) is the inverse of the function defined by Barrow’s formula. In other words, y(t) = x(t) on its

domain of definition (S, T ). This proves the uniqueness of the solution – for as long as it stays inside

(a, b).

The theorem we have just proved shows that when v is continuous and v(x0) 6= 0, the initial

value problem

x′(t) = v(x(t)) and x(t0) = x0 . (2.9)

has a solution that is unique for as long as x(t) stays inside the maximal interval (a, b) that contains

x0. In particular, if Ta = −∞ and Tb =∞ (or the other way around) so that x(t) never leaves (a, b),

then there is a unique solution, period, defined for all t ∈ R.

However, if a solution of (2.9) reaches either a or b in finite time, then there will be non-uniqueness

of solutions.

Example 14. Consider the vector field in the real line given by

v(x) =


√
x2 − 1 x < −1
√

1− x2 1 < x < 1
√
x2 − 1 x > 1

It is easy to see that v(x) is continuous, and that ( −∞, 0), ( − 1, 1) and (1,∞) are maximal

intervals for v(x).

Consider the initial value problem

x′(t) = v(x) , x(0) = 0 . (2.10)

By Barrow’s formula,

t(x) =

∫ x

0

1√
1− z2

dx = arcsin(x)

for all x ∈ (− 1, 1). Therefore,

x(t) = sin(t) .

One easily checks that this does satisfy both the equation and the initial condition. However,

lim
t→π/2

x(t) = 1 and lim
t→−π/2

x(t) = −1 .

That is, at times t = ±π/2, our solution reaches the boundary of the maximal interval. In other

words, we have that T−1 = π/2 and T1 = −π/2.

On the interval (T−1, T1) = ( − π/2, π/2), the solution is unique, however, there are infinitely

many choices for how to continue the solution outside this interval, as we now explain.

Since v(±1) = 0, the solution is instantaneously at rest when it reaches x = ±1. One solution is

to let it stay at rest: That is, define

x(t) =


−1 t < π/2

sin(t) −π/2 ≤ t ≤ π/2

1 t > π/2 .
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However, since for x > 1, we can integrate (x2 − 1)−1/2, we can use Barrow’s formula to define a

solution of

x′ = v(x) , x(π/2) = 1 (2.11)

for t > π/2 by

t(x)− π/2 =

∫ x

1

1√
z2 − 1

dz = ln
(
x+

√
x2 − 1

)
,

and hence

x+
√
x2 − 1 = et−π/2 .

We can solve this for x. To simplify the notation during the computations, let a := et−π/2. Then√
x2 − 1 = a− x .

Squaring both sides, x2 − 1 = a2 − 2ax+ x2, so that x = (a2 + 1)/2a, and hence

x(t) = cosh(t− π/2) . (2.12)

We can easily check that (2.12) does define a solution of (2.11): x′(t) = sinh(t−π/2) =
√

cosh2(t− π/2)− 1,

and x(π/2) = 1.

Therefore,

x(t) =


−1 t < π/2

sin(t) −π/2 ≤ t ≤ π/2

cosh(t− π/2) t > π/2 .

is also a solution of (2.10).

Here is a plot of this solution, which is strictly monotone increasing, but takes an “instantaneous

rest” at t = π/2 before continuing upwards:

In fact, the same sort of computations we have made just above show that x(t) := cosh(t − T )

solves x′(t) =
√
x2(t)− 1 with x(T ) = 1 for all t ≥ T . (We deduced this above for the specific choice
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of T = π/2. But then for any T > π/2,

x(t) =



−1 t < π/2

sin(t) −π/2 ≤ t ≤ π/2

1 π/2 ≤ t ≤ T

cosh(t− π/2) t > T .

also gives a solution of (2.10): This solution proceed from x = 0 to x = 1 in time t = π/2. It then

“takes a rest”, staying at x = 1 until t = T , at which time it resumes motion to the right. Since

T > π/2 is arbitrary, there are infinitely many such solutions.

Here is a plot of such a solution with T = 3:

The previous example shows that even when v(x) is continuous on the whole real line, it may not

be the case that through each point in the t, x plane there is exactly one solution curve, defined for

all t. In this example, we have more than one solution curve passing through each point of the form

(t, 1). We can describe this situation as “branching”: when the solution reaches x = 1, there are two

branches it may follow, and as long as it stays at x = 1, there is always the option of continuing to

rest, or “branching away” upwards on the alternate solution curve.

As we have proved in the previous chapter, this never happens when v(x) = px+ q. (In fact, we

showed that it never happens even when p and q depend continuously on t.) For linear equations,

there is no branching.

There is one more thing that might go wrong when we only assume that v(x) is continuous, but

which never happens in the linear case: The solutions curves might not be defined for all t. This

occurs with the example v(x) = x2 that we have treated as a separable equation in the previous

chapter. In the next example we solve this equation using Barrow’s formula.

Example 15. Consider the equation

x′(t) = x2(t) , x(t0) = x0 (2.13)

where (t0, x0) is an arbitrary point in the t, x plane.
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By Barrow’s formula,

t(x) = t0 +

∫ x

x0

1

z2
dz = t0 +

1

x0
− 1

x
.

Solving for x in terms of t, we find

1

x
=

(x0)(t0 − t) + 1

x0
,

so that

x(t) =
x0

(x0)(t0 − t) + 1
. (2.14)

By Theorem 2, this is the unique solution passing through (t0, x0) for all times t until this solution

leaves the maximal interval containing x0.

Since v(x) = 0 only for x = 0, there are two maximal intervals for v, namely ( − ∞, 0) and

(0,∞).

Let us consider first x0 > 0 so that our solution starts in the maximal interval (0,∞). It turns

out that the solution will exit this maximal interval in a finite time – but not by reaching zero for any

t < t0. Instead, the solution “blows up” to infinity for a finite time t > t0.

First, we compute the time at which the solution first reaches x = ε where 0 < ε < x0. Barrow’s

formula says that

t(ε) = t0 +

∫ ε

x0

1

z2
dz =

(
t0 +

1

x0

)
− 1

ε
.

Evidently,

lim
ε→0

t(ε) = −∞ ;

it takes all (past) eternity for the solution to reach x = 0.

On the other hand, at t = t0 + 1/x0, the formula (2.14) for x(t) breaks down due to division by

zero, and indeed,

lim
t→t0+1/x0

x(t) =∞ .

Therefore, the solution is only defined for t in(−∞, t0 + 1/x0), and at t = t0 + 1/x0 it “blows up”,

exiting exiting the maximal interval in which it started. A similar analysis of the case x0 < 0 leads

to similar conclusions.

Thus, we have seen examples in which solutions of x′(t) = v(x(t)), with v(x) continuous on the

whole real line, were non-unique due to “branching” or failed to be defined for all times t due to

“blow-up”. The branching and blow-up occurred when a solution reached the boundary of a maximal

interval in finite time. As long as this dies not happen, Theorem 2 tells us that the solutions are

well-behaved.

2.2 Global existence and uniqueness for Lipschitz vector fields

2.2.1 Lipschitz continuity

There is a simple condition on v that guarantees solutions of x′ = v(x) do not reach the boundaries

of maximal intervals in a finite time, and are therefore unique for all times.
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Definition 7 (Lipschitz function). A function v(x) is Lifshitz on the interval (a, b) in case there is

a constant L <∞ such that

|v(y)− v(x)| ≤ L|y − x| (2.15)

for all x, y ∈ (a, b). Then L is a Lipschitz constant for v on (a, b), The cases a =∞ and b =∞ are

allowed. If v is Lipschitz on (−∞,∞), then we say v is globally Lipschitz.

If v is continuously differentiable, the Fundamental Theorem of Calculus says that

v(y)− v(x) =

∫ y

x

v′(z)dz .

Therefore, if |v′(z)| ≤ L for all z in(a, b), then for all x ≤ y ∈ (a, b),

|v(y)− v(x)| ≤
∫ y

x

|v′(z)|dz ≤
∫ y

x

Ldz = L|y − x| .

This shows that v is Lipschitz on (a, b) with Lipschitz constant L.

On the other hand, suppose that x0 is a boundary point of (a, b), so x0 = a or x0 = b, and that

lim
x→x0

|v′(x)| =∞ (2.16)

For example, consider v(x) = x1/3. Then v is continuously differentiable except at x = 0, with

v′(x) = 1
3x
−2/3. Then with x0 = 0, which is a boundary point of both maximal intervals ( −∞, 0)

and (0,∞), (2.16) is satisfied.

In this case, v is not Lipschitz on (a, b). Indeed, whenever (2.16) is satisfied, for any positive

integer N , there will be an interval (x, y) inside (a, b) but close to x0 such that |v′(z)| > N for all

z ∈ (x, y). Then, since v′ does not change sign on (a, b),

|v(y)− v(x)| =
∣∣∣∣∫ y

x

v′(z)dz

∣∣∣∣ =

∫ y

x

|v′(z)|dz ≥ N |y − x| .

Therefore,

|v(y)− v(x)| ≥ N |y − x| ,

and since N can be arbitrarily large, v cannot be Lipschitz.

We summarize these useful observations in a Lemma.

Lemma 1 (Bounded derivatives and the Lipschitz property). Let v be continuously differentiable on

an open interval (a, b), and continuous on its closure in case either a or b are finite. Then if

|v′(z)| ≤ L <∞ for all z ∈ (a, b) ,

v is Lipschitz on (a, b) with Lipschitz constant L.

On the other hand, (2.16) is satisfied for either x0 = a or x0 = b, then v is not Lipschitz on

(a, b).

Usually when we prove that a function is Lipschitz, or is not, we will do so using Lemma 1.

Lipschitz functions need not be differentiable everywhere. For example, v(x) = |x| is globally Lip-

schitz with Lipschitz constant 1, but it is not differentiable at x = 0. It may be shown, however,

that Lipschitz functions are differentiable “almost everywhere”. We shall not need this more refined

result here.

In the next subsection we give an important application of Lipschitz continuity.
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2.2.2 Existence and uniqueness within maximal intervals

Theorem 3 (Lipschitz continuity implies existence and uniqueness within maximal intervals). Let

(a, b) be a maximal interval for a continuous vector field v on the real line. Suppose that v is Lipschitz

continuous on (a, b). Then for all x0 ∈ (a, b), the solution of

x′(t) = v(x(t)) , x(t0) = x0 (2.17)

exists and is well defined for all t ∈ R, and stays inside (a, b) for all t ∈ R. In particular, for each

(t0, x0) with t0 ∈ R and x0 ∈ (a, b), there is a unique solution curve of (2.17) passing through (t0, x0).

Proof. For the sake of being concrete, let us suppose that v(x) > 0 on (a, b), so that the solution of

(2.17) is monotone increasing. We will now show that x(t) < b for all t ∈ R. Since x(t) is monotone

increasing, we need only consider t > t0, since otherwise x(t) ≤ x0 < b.

Therefore are two cases: b =∞ and b <∞. Suppose that b =∞. Then since v is Lipschitz with

Lipschitz constant L, for all z > x0,

v(z)− v(x0) ≤ |v(z)− v(x0)| ≤ L|z − x0| = L(z − x0) .

Therefore

v(z) ≤ v(x0) + L(z − x0) ,

and hence, by Barrow’s formula, for any x > x0,

t(x) = t0 +

∫ x

x0

1

v(z)
dz

≥ t0 +

∫ x

x0

1

v(x0) + L(z − x0)
dz

= t0 +
1

L
ln

(
1 +

L(x− x0)

v(x0)

)
.

Since

lim
x→∞

1

L
ln

(
1 +

L(x− x0)

v(x0)

)
=∞ ,

it follows that

lim
x→∞

t(x) =∞ .

Therefore, x(t) < b =∞ for all t.

Next, we consider the case in which b <∞. We know that v(b) = 0. Also, since v is continuous,

limx→b v(x) = 0. That is, as x(t) approaches b, the velocity approaches zero. We want to show that

this “slowing down” is strong enough that the solution never reaches b.

To do this, we need an upper bound on the velocity v(z) for z near b. The Lipschitz condition

provides this:

v(z) = v(z)− v(b) = |v(z)− v(b)| ≤ L|z − b| = L(b− z) .

Therefore

v(z) ≤ L(b− z) ,
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and hence, by Barrow’s formula, for any x0 < x < b,

t(x) = t0 +

∫ x

x0

1

v(z)
dz

≥ t0 +

∫ x

x0

1

L(b− z)
dz

= t0 +
1

L
ln

(
b− x0

b− x

)
.

Since

lim
x→b

1

L
ln

(
b− x0

b− x

)
=∞ ,

it follows that

lim
x→b

t(x) =∞ .

Therefore, x(t) < b for all t.

Exactly the same sort of reasoning shows that x(t) > a for all t, regardless of whether a = −∞
or a > −∞.

Example 16. Consider the vector field v(x) defined by

v(x) = x1/3

for all x. The maximal intervals for this vector field are (0,∞) and ( −∞, 0). By Lemma 1, this

vector field is not Lipschitz.

Let us use Barrow’s formula to compute the solution of x′(t) = v(x(t)) with x(0) = 1:

t(x) =

∫ x

1

1

z1/3
dz =

3

2
(x2/3 − 1) .

The solutions is

x(t) =

(
1 +

2

3
t

)3/2

for t ≥ −3

2
.

Now let us “shift the starting time” of the solution, by introducing y(s) through

y(s) = x(−3/2 + s) .

That is, y(s) is simply a repparameterized version of the function x(t), where s = 0 corresponds to

t = −3/2. Thus y(0) = x(−3/2) = 0.

Now we readily compute that

y′(s) = x′(−3/2 + s) = v(x(−3/2 + s) = v(y(s))

and so the function y(s) is a solution of

y′(s) = v(y(s)) , y(0) = 0 .

But we have a second solution to this equation, namely y2(s) = 0 for all s: It is clear that

y′2(s) = v(y2(s)) , y2(0) = 0 .

Hence, for this non-Lipschitz vector field, we have at least two solution curves passing through (0, 0),

and we see that this arrises because solution starting inside (0,∞) reach the origin in a finite time.
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2.2.3 Uniqueness of steady-state solutions

We have seen in the previous example, that if the initial point is an equilibrium point x0, the constant

solution x(t) = x0 for all t may not be the only solution; there may also be non-constant solutions.

But the example in which this occurred, the vector field was not Lipschitz on any open interval about

the equilibrium point. Our next theorem says that this non-uniqueness cannot occur is the vector

field is Lipschitz on an open interval about the equilibrium point.

Theorem 4 (Uniqueness of steady state solutions). Let v be a continuous vector field on the line

and suppose that v(x0) = 0. Suppose that v is Lipschitz on every bounded open interval containing

x0. Then the only solution to

x′(t) = v(x(t)) , x(t0) = x0

defined on any open interval about t0 is the constant solution x(t) = x0 for all t.

Proof. Suppose that there exists a non-constant solution x(t). Then v(x(t)) is also non-constant since

otherwise v(x(t)) = v(x(t0)) = 0 for all t, and then x′(t) = v(x(t)) implies that x(t) is constant.

Hence there exists t1 such that and v(x(t1)) 6= 0, and then necessarily x(t1) 6= x(t0). Let us

suppose that t1 > t0; the other case may be treated in the same way.

Let t2 be the largest value of t < t1 such that v(x(t)) = 0. It might be that t2 = t0, but it might

also be that t0 < t2 < t1. In any case, for all z in between x(t2) and x(t1), v(z) 6= 0, and we can

apply Barrow’s Formula. We have

t(x(t2))− t(x(t1)) =

∫ x(t2)

x(t1)

1

v(z)
dz . (2.18)

Let a = min{x(t1), x(t2)} and let b = max{x(t1), x(t2)}. Let L be the Lipschitz constant of v on

any bounded open interval containing [a, b]. Then since v(x(t2)) = 0, for any z ∈ [a, b],

|v(z)| = |v(z)− v(x(t2))| ≤ L|z − x(t2)|

and therefore,
1

|v(z)|
≥ 1

L

1

|z − x(t2)|
.

Then since t(x(t1)) = t1 and t(x(t2)) = t2,

|t1 − t2| =
∫ b

a

1

|v(z)|
dz ≥ 1

L

∫
1

|z − x(t2)|
dz =∞

since either x(t2) = a or x(t2) = b and neither |z−a|−1 nor |z− b|−1 are integrable on [a, b]: In either

case, there is a logarithmic divergence in the improper integral as the singular limit is approached.

However, since by hypothesis t1 is finite and t0 is finite, and since t2 lies between t0 and t1, it is

impossible to have |t1 − t2| =∞. Hence, no non-constant solution exists.

Example 17. Consider the vector field

v(x) = x3 .

Are there any solutions to

x′(t) = v(x(t)) , x(0) = 0
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other than the obvious solutions x(t) = 0 for all t?

According to Theorem 4, the answer will be “No” in case v is Lipschitz on any bounded interval

containing the origin. But v′(x) = x2 is continuous. By what we have noted above, continuously

differentiable functions are Lipschitz on every bounded open interval. Hence, v is Lipschitz on any

bounded open interval containing 0.

2.3 The flow transformation of a Lipschitz vector field on R

2.3.1 Time-shift invariance for time independent vector fields

Let v be a continuous vector field on R. Let (a, b) be a maximal interval for v, and suppose that

v is Lipschitz on (a, b) with Lipschitz constant L. Then by Theorem 2, for each r ∈ R, and each

x ∈ (a, b), there exists a unique solution of x′(t) = v(x(t)) with x(r) = x, and this solution is defined

for all t ∈ R, and this is the only solution passing through x at time t = r.

Therefore, for any r, s ∈ R, we may define a function Φs,r from (a, b) to (a, b) by

Φs,r(x) = x(s) (2.19)

where x(t) is the unique solution to x′(t) = v(x(t)) with x(r) = x.

The function Φs,r tells us what the value of x(s) is when x(t) is the solution to x′(t) = v(x(t))

with x(r) = x. It allows us to study how x(s) depends on this initial data, or “starting point” x.

There is a significant simplification that arises in the flow transformation for an autonomous

equation such as x′ = v(x) in which the vector field depends only on x and not on t. In this case,

Φs,r(x) depends only on r − s. That is, for all x ∈ (a, b) and all r, s ∈ R,

Φs+h,r+h(x) = Φs,r(x) (2.20)

for all h ∈ R.

To see this, let x(t) be the solution of x′(t) = v(x(t)) with x(r) = x0. Now define fix any h ∈ R
and define y(t) = x(t− h), Then

y′(t) = x′(t− h) = v(x(t− h)) = v(y(t))

so that y(t) is a solution of our equation. Next, note that y(r + h) = x(r + h− h) = x(r) = x0, and

so y(t) is the solution that passes through x0 at time t = r + h.

That is, if you have found the solution of

x′(t) = v(x(t)) , x(r) = x0 , (2.21)

you also know the solution of

x′(t) = v(x(t)) , x(r + h) = x0 . (2.22)

By what we have computed above, if x(t) is a solution of (2.21), then x(t− h) is a solution of (2.22).
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Example 18 (Time shifts). Consider the very simple equation x′ = v(x) with v(x) = x. The general

solution of this equation is x(t) = Cet and so the solution with x(r) = x0 has x0 = Cer so that

C = x0e
−r, and hence

x(t) = x0e
t−r .

Then for all h, x(t − h) = x0e
t−(r+h) and it is easy to check that this solves x′ = v(x) with

x(r + h) = x0.

By definition, Φs,r(x) = x(s) where x(t) solves x′ = v(x) with x(r) = x. But then x(t−h) solves

x′ = v(x) with x(r + h) = x. Therefore

Φs+h,r+h(x) = x((s+ h)− h) = x(s) = Φs,r(x) .

This proves (2.20).

Thus, in the autonomous case, it suffices to study the simpler function

Ψs(x) = Φs,0(x)

since then we have for any r, s ∈ R,

Φs,r(x) = Φs−r,0(x) = Ψs−r(x) .

Definition 8 (Flow transformation for an time-independent Lipschitz vector field). Let v be a Lips-

chitz vector field on the maximal interval (a, b). The function Ψs(x) defined for s inR and x ∈ (a, b)

with values in (a, b) is defined by

Ψs(x) = x(s)

where x(t) is the solution of x′ = v(x) with x(0) = x.

The flow function allows us to study how the solution of x′ = v(x) with x(0) = x depends on

s and on the initial data, or “starting point” x. Though the notation is a bit asymmetric, we may

think of it as a functions of the two variables s and x.

Example 19 (Flow transformation for a vector field on R). Consider the once more the logistic

equation x′ = v(x) with v(x) = x(1 − x). In Example 13 (see (2.4)) we have computed that the

solution of this equation with x(0) = x in(0, 1) is given by

x(t) =
xet

(1− x) + xet
. (2.23)

Therefore, the flow transform for this equation on the maximal interval (0, 1) is given by

Ψs(x) = x(s) =
xes

(1− x) + xes
.

Notice that Ψ0(x) = x, and lims→∞Ψs(x) = 1 and lims→−∞Ψs(x) = 0.

A simple computation shows that

∂

∂x
Ψs(x) =

es

(1− x+ xes)2
. (2.24)

The fact that this tends to zero as s→ ±∞ is consistent with our computation that lims→∞Ψs(x) = 1

and lims→−∞Ψs(x) = 0: No mater where you start, for large enough t, x(t) will be close to 1, and

for t negative enough, x(t) will be close to 0 In this sense the long-time behavior is very insensitive

to the starting point.
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2.3.2 Properties of the flow transformation

One question of interest to us is “how sensitive” this dependence on the initial data is. For this

reason it is of interest to compute the derivative

∂

∂x
Ψs(x) .

In the previous example, we did this by direct computation for a particular vector field. It turns

out there is a simple general formula for this derivative, and Barrow’s Formula provides the means

to determine it. For any x, y ∈ (a, b), define the function

G(x, y) =

∫ y

x

1

v(z)
dz . (2.25)

Then by Barrow’s Formula, y = Ψs(x) if and only if

G(x, y) = s. (2.26)

Thus, if we define a curve y(x) in the x, y plane by

y(x) = Ψs(x) , (2.27)

then the graph of y = y(x) is the solution set of the equation (2.26).

The gradient of G is well defined and continuous on (a, b)× (a, b) since v is never zero on (a, b).

Indeed,

∇G(x, y) =

(
− 1

v(x)
,

1

v(y)

)
,

which is clearly continuous on (a, b)× (a, b), and never equal to (0, 0).

Now, the Implicit Function Theorem implies that y(x) is continuously differentiable. By (2.26),

G(x, y(x)) = s, which is independent of x. Hence

d

dx
G(x, y(x)) = 0 . (2.28)

On the other hand, by the Chain Rule and the computations above,

d

dx
G(x, y(x)) = ∇G(x, y(x)) · (1, y′(x))

=

(
− 1

v(x)
,

1

v(y)

)
· (1, y′(x))

= − 1

v(x)
+
y′(x)

v(y)
.

Comparing the last two equations, we see that

y′(x) =
v(y)

v(x)
.

Going back to (2.27), we see that this proves

d

dx
Ψs(x) =

v(Ψs(x))

v(x)
. (2.29)
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In particular, whenever v is merely Lipschitz on (a, b), Ψs is differentiable and hence continuous.

Therefore, the right hand side of (2.32) is the composition of two continuous functions, and it therefore

continuous. It follows that whenever v is merely Lipschitz on (a, b), Ψs is continuously differentiable

on (a, b).

But then if v itself is continuously differentiable on (a, b), the right hand side of (2.32) is contin-

uously differentiable, and so Ψs(x) is twice continuously differentiable in x, and

d2

dx2
Ψs(x) =

v′(Ψs(x))

v(x)

v(Ψs(x))

v(x)
− v(Ψs(x))v′(x)

v2(x)
. (2.30)

The formula for the second derivative is not very enlightening, but the point to notice is that the

flow transformation Ψs(x) has whatever “smoothness” the vector field v has, and a bit more: The

flow transformation is a very nice function. The formula for the first derivative is quite simple and

useful.

The flow function has a number of useful properties that are summarized in the following theorem.

Theorem 5 (Flow transformations for Lipschitz vector fields on R). Let v be a continuous vector

field on R. Let (a, b) be a maximal interval for v, and suppose that v is Lipschitz on (a, b). Let Ψs(x)

be the corresponding flow transformation considered as a function of (s, x) ∈ R × (a, b) with values

in (a, b). Then:

(1) For all r, s ∈ R,

Ψs ◦Ψr = Ψs+r . (2.31)

(2) For all s ∈ R, Ψr is an invertible transformation from (a, b) onto (a, b), and the inverse is Φ−s

(3) The function (s, x) 7→ Ψs(x) defined on R×(a, b) with values in (a, b) is continuously differentiable

with:
∂

∂x
Ψs(x) =

v(Ψs(x))

v(x)
. (2.32)

and
∂

∂s
Ψs(x) = v(Ψs(x)) . (2.33)

The equation (2.33) says that for fixed x and r, s 7→ Φs,r(x) is the solution of

x′(s) = v(x(s)) , x(r) = x .

The fact that for fixed s and r, x 7→ Φs,r(x) is continuously differentiable in x means that the

solutions changes smoothly when the initial data is changed.

Proof of Theorem 5. Let x(t) be the solution of x′(t) = v(x(t)) with x(0) = x. Then by definition,

Ψr(x) = x(r), and therefore, y(t) := x(t + r) solves. y′(t) = v(y(t)) with y(0) = Ψr(x). Then by

definition,

Ψs(Ψr(x)) = y(s) = x(s+ r) = Ψs+r(x) .

This proves (2.31).

Also, by definition, for any r, and any x ∈ (a, b),

Ψ0(x) = x(r) = x
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so that Ψ0 is the identity transformation Id defined by Id(x) = x. In particular,

Ψs ◦Ψ−s = Id and Ψ−s ◦Ψs = Id ,

so that each Ψs is invertible, and its inverse is Ψ−s.

In the computations leading to (2.29), we have already found

∂

∂x
Ψs(x) =

v(Ψs(x))

v(x)
. (2.34)

Finally it is very easy to compute
∂

∂s
Ψs(x). By definition, Φs(x), regarded as a function of s

with x held fixed, is the solution of x′ = v(x) with x(r) = x. Hence the s partial derivative is simply

x′(s) = v(x(s)). That is,
∂

∂s
Ψs(x) = v(Ψs(x)) . (2.35)

Example 20. In Example 19 we have computed that for v(x) = x(1 − x), the flow transformation

on (0, 1) is given by

Ψs(x) =
xes

(1− x) + xes
.

By direct computation, we found in (2.24) that

∂

∂x
Ψs(x) =

es

(1− x+ xes)2
. (2.36)

On the other hand we have the general formula (2.32):

∂

∂x
Ψs(x) =

v(Ψs(x))

v(x)
.

In this case, the right hans side is
Ψs(x)(1−Ψs(x))

x(1− x)
.

Since (1−Ψs(x))Ψs(x) =
(1− x)

(1− x) + xes
xes

(1− x) + xes
, we have

Ψs(x)(1−Ψs(x))

x(1− x)
=

es

(1− x+ xes)2
,

and thus the general formula yields the same result as the direct computation.

2.4 Uniqueness for time dependent vector fields on the line

2.4.1 A second approach to uniqueness

In this section we study the non-autonomous equation x′(t) = v(t, x(t)) for a time dependent vector

field v(t, x). Suppose that v(t, x) is a continuous function of (t, x) ∈ R2.

For example we might have v(t, x) = tx − t2 in which case x′ = v(t, x) is the first order linear

equation x′ = tx− t2. Or we might have v(t, x) = t2x+ tx2 in which case x′ = v(t, x) is the Bernoulli

equation x′ = t2x+ tx2.
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In both of these cases, we know how to solve the equations, and find the general solution.

However, when v depends on t as well as x, there is nothing like Barrow’s formula that reduces

solution of the differential equation to an integral.

Apart from the questions of whether solutions to x′(t) = v(t, x(t)) exist, and how to compute

them, there is the question of uniqueness: Can there ever be more than one solution to

x′(t) = v(t, x(t)) , x(t0) = x0 , (2.37)

or are solutions unique whenever the exist?

We have already seen that even when v does not depend on t, solutions may not be unique if v

is not Lipschitz, but that when v is Lipschitz we have uniqueness. The next Theorem gives a version

of this result that covers the time-dependent vector field case.

Theorem 6 (Uniqueness for Lipschitz vector fields). Let v(t, x) be a continuous on (c, d) × (a, b)

with values in R. Suppose that for some L <∞,

|v(t, y) = v(t, x)| ≤ L|y − x| for all t ∈ (c, d) and x, y ∈ (a, b) . (2.38)

Let t0 ∈ (c, d). Suppose that x(t) solves x′(t) = v(t, x(t)) with x(t0) = x for all t ∈ (c, d) and

that y(t) solves y′(t) = v(t, y(t)) with y(t0) = y for all t ∈ (c, d). Then for all t ∈ (c, d),

e−L|t−t0||y − x| ≤ |y(t)− x(t)| ≤ eL|t−t0||y − x| . (2.39)

Proof. Define z(t) = [y(t)− x(t)]2. Then

z′(t) = 2[y(t)− x(t)][y′(t)− x′(t)] = 2[y(t)− x(t)][v(t, y(t))− v(t, x(t))| .

Therefore

|z′(t)| ≤ 2|y(t)− x(t)||v(t, y(t))− v(t, x(t))| ≤ 2L|y(t)− x(t)|2 = 2Lz(t) .

That is,

−2Lz(t) ≤ z′(t) ≤ 2Lz(t) . (2.40)

The second inequality in (2.40) can be written as z′(t)− 2Lz(t) ≤ 0. Multiplying both sides by

e−t2L, we have (
z(t)e−t2L

)′ ≤ 0 .

Hence z(t)e−t2L is a non-increasing function of t. It follows that:

z(t)e−t2L ≤ z(t0)e−t02L for t > t0 and z(t)e−t2L ≥ z(t0)e−t02L for t < t0 .

Since z(t0) = |y − x|2, this is the same as

|y(t)− x(t)| ≤ |y − x|e(t−t0)L for t > t0 and |y(t)− x(t)| ≥ |y − x|e(t−t0)L for t < t0 .

The first inequality in (2.40) can be written as z′(t) + 2Lz(t) ≥ 0. Multiplying both sides by

et2L, we have (
z(t)et2L

)′ ≥ 0 .
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Hence z(t)et2L is a non-decreasing function of t. It follows that:

z(t)et2L ≥ z(t0)et02L for t > t0 and z(t)et2L ≤ z(t0)et02L for t < t0 .

Since z(t0) = |y − x|2, this is the same as

|y(t)− x(t)| ≥ |y − x|e−(t−t0)L for t > t0 and |y(t)− x(t)| ≤ |y − x|e−(t−t0)L for t < t0 .

The two lower bounds on |y(t)− x(t)| can be summarized as |y(t)− x(t)| ≥ |y − x|e−|t−t0|L for

all t and the two upper bounds on |y(t) − x(t)| can be summarized as |y(t) − x(t)| ≤ |y − x|e|t−t0|L

for all t.

This theorem proves uniqueness, and more. First, suppose y = x. Then y(t) and x(t) are any

two solution passing through x0 at t = t0. Then since |y−x| = 0, the right hand inequality says that

|y(t)− x(t)| = 0 for all t > t0, so the solutions must be equal for all t > t0.

Now note that the theorem says that if x 6= y, the curves x(t) and y(t) never meet; for all t

x(t) 6= y(t). Indeed, for all t, |x(t)− y(y)| ≥ e−tL|x− y| > 0.

This theorem also applies in the case in which v is independent of t but Lipschitz. It is con-

ceptually quite different from the earlier proofs we gave for this case that were based on Barrow’s

formula.

2.4.2 Existence for time dependent vector fields on the line

We have proved that when a vector field v(t, x) is continuous on (c, d) × (a, b), and the Lipschitz

condition (2.38) is satisfied, then for each t∈(c, d) and each x0 ∈ (a, b) there is at most one solution

to the equation

x′(t) = v(t, x(t)) , x(t0) = x0 .

Later we shall prove the there always is a solution under the same conditions, and is is defined

for all t ∈ (c, )d, where c = −∞ and d =∞ are allowed. However, the proof will take some time, and

the same proof works for the multidimensional case x′(t) = v(t,x(t)), and therefore we postpone the

proof of existence until we come to it in the multidimensional case. The proof we have given in this

subsection for uniqueness extends in a simple way to the multidimensional case, as we shall see, but

it is short and the idea on which it rests is useful enough that it is worth repeating.

2.5 Exercises

1. Let v(x) = sin(x). For all 0 ≤ x ≤ π, Find all solutions of

x′(t) = v(x(t)) , x(0) = x0 .

For which values of t is each solution defined?

Hint: It will probably help to recall the identity

1− cosx

sinx
= tan(x/2) .
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2. Let v(x) = tan(x), which is continuous on −π/2 < x < π/2. For all x0 in this interval, find all

solutions of

x′(t) = v(x(t)) , x(0) = x0 .

For which values of t is each solution defined?

3. (a) Let v(x) = (1 − x4)1/2 Consider the solution of x′(t) = v(x(t)) with x(0) = 0. Does this

solution exist for all t and remain within the interval (−1, 1) for all t? Justify your answer.

(b) Let v(x) = (1 − x4)2 Consider the solution of x′(t) = v(x(t)) with x(0) = 0, Does this solution

exist for all t and remain within the interval (−1, 1) for all t? Justify your answer.

4. Consider the two equation

(1) (x′)2 + x2 = 1 and (2) (x′)2 − x2 = 1 .

Let −1 < x0 < 1.

(a) One of these two equations has a unique solution with x(0) = x0, and the other has infinitely

many such solutions. Which is which? Justify your answer.

(b) For each −1 < x0 < 1, find infinitely many solutions of the equation for which there is no

uniqueness.

5. Let v(x) be Lipschitz and positive on the maximal interval (a, b). Let a < x1 < x2 < b. For

j = 1, 2, let xj(t) be the solution to x′j(t) = v(xj(t)) with xj(0) = xj . Let T > 0 be the time at

which x1(t) ‘catches up’ to where x2(t) started. That is

x1(T ) = x2 = x2(0) .

Show that for all positive integers k,

x1((k + 1)T ) = x2(kT ) .

6. (a) Let v(x) = tanh(x). Show that v(x) is Lipschitz on the whole real line. Then find the flow

transformation Ψt(x). Finally, by direct computation, verify the formulae

d

dx
Ψt(x) =

v(Ψt(x))

v(x)
and

d

dt
Ψt(x) = v(Ψt(x))

on each of the maximal intervals (−∞, 0) and (0,∞).

(b) Let 0 < x1 < x2. For j = 1, 2, let xj(t) be the solution to x′j(t) = v(xj(t)) with xj(0) = xj .

Show that

lim
t→∞

(x2(t)− x1(t)) =

∫ x2

x1

1

v(x)
dx ,

which is the time it takes x1(t) to reach the starting point of the second solution, x2(0) = x2.

(c) If we changed v(x) to 2 tanh(x), and for j = 1, 2, let xj(t) be the solution to x′j(t) = v(xj(t))

with xj(0) = xj for this new v(x), what would

lim
t→∞

(x2(t)− x1(t))
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be now?

7. (a) Let v(x) = x3/(1 + x2). Show that v(x) is Lipschitz on the whole real line so that the

corresponding flow transformation Ψt(x) is defined for all t on each of the maximal intervals (−∞, 0)

and (0,∞). Show that for all x 6= 0,

lim
t→∞

∣∣∣∣ d

dx
Ψt(x)

∣∣∣∣ =∞ ,

meaning that the the effect of a small change in the initial data becomes arbitrarily large at t becomes

large.

(b) Let 0 < x1 < x2. For j = 1, 2, let xj(t) be the solution to x′j(t) = v(xj(t)) with xj(0) = xj .

Using the fact that

|x2(t)− x1(t)| = |Ψt(x2)−Ψt(x2)| =
∫ x2

x1

d

dx
Ψt(x)dx , (2.41)

show that ‘second solution runs away from the first’. That is show that

lim
t→∞

|x2(t)− x1(t)| =∞ .

8. (a) Let v(x) = x3/(1 + x4). Show that v(x) is Lipschitz on the whole real line so that the

corresponding flow transformation Ψt(x) is defined for all t on each of the maximal intervals (−∞, 0)

and (0,∞). Show that for all x 6= 0,

lim
t→∞

∣∣∣∣ d

dx
Ψt(x)

∣∣∣∣ = 0 .

(b) Let 0 < x1 < x2. For j = 1, 2, let xj(t) be the solution to x′j(t) = v(xj(t)) with xj(0) = xj .

Using (2.41), show that asymptotically, the ‘second solution catches up with the first’. That is show

that

lim
t→∞

|x2(t)− x1(t)| = 0 .

9. For α > 0, let

v(x) = x| ln |x||α

for x 6= 0, and v(0) = 0, so that v is continuous on R. The interval (0, 1) is a maximal interval for v

since v(0) = v(1) = 0 and v(x) > 0 on (0, 1).

(a) For all α > 0, and all x0 ∈ (0, 1), and t0 ∈ R, find the solution of x′(t) = v(t) for x(t0) = x0 for

all t for which the solution stays in the interval (0, 1). For which values of α does the solution remain

in (0, 1) for all t > t0? For which values of α does the solution remain in (0, 1) for all t < t0?

(b) Note that x = 0 and x = 1 are both equilibrium points for v (as is x = −1). For which values

of α is the steady state solution x(t) = 0 for all t the only solution of x′(t) = v(x(t)) with x(0) = 0?

For which values of α is the steady state solution x(t) = 1 for all t the only solution of x′(t) = v(x(t))

with x(0) = 1?

(c) For which values of α is v Lipschitz on (0, 1)?
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10. Consider the equation

x′′(t) = F (x(t)) where F (x) = − d

dx
V (x) (2.42)

for some continuously differentiable function V .

(a) Define the function H(x, y) by

H(x, y) =
1

2
y2 + V (x) . (2.43)

Show that if x(t) is any solution of (2.42) defined on some open interval containing t0, then

H(x′(t), x(t)) = H(x′(t0), x(t0))

for all t in the interval. Therefore, to solve (2.42) with x(t0) = x0 and x′(t0) = v0, we need only solve

x′ = ±
√
H(v0, x0))− V (x) . (2.44)

(b) Let V (x) = 1
2x

2, and take x0 = 1 and v0 = 0. There will be infinitely many solutions of (2.44.

Describe all of them (The description will involve arbitrary “rest periods” at equilibrium points.).

Of these solutions, how many are twice continuously differentiable?

(c) How many solutions of

(x′(t))2 + (x(t))4 = 1

are there with x(0) = 1? How many of these are twice continuously differentiable?

11. (a) Let V (x) be a continuously differentiable function on R. Fix some number E, and suppose

there is no x such that V (x) = E and v′(x) = 0. Let x0 be such that V (x0) < E. Let x(t) be any

solution of

(x′(t))2 + V (x) = E with x(0) = x0 .

Show that there is a 0 < T < ∞ such that x′(T ) = 0. That is, the solution ‘cones to rest’, at least

instantaneously in a finite time.

(b) Show that the conclusion of f(a) may be false if there is a point x with V (x) = E and V ′(x) = 0.



Chapter 3

INTRODUCTION TO FIRST

ORDER SYSTEMS

3.1 Flows on Rn

3.1.1 Vector Fields on Rn and their associated flows

Let U be an open subset of Rn, and let v be a continuous function defined on U with values in Rn.

We shall call such a function a vector field on U . Given any t0 ∈ R and any x0 ∈ U , we seek to find

all solutions, if any, of the first order differential equation

x′(t) = v(x(t)) , x(t0) = x0 (3.1)

and the maximal interval of times t on which such a solution is defined.

Exactly as in the one dimensional case, we have the notion of equilibrium points and and steady

state solutions.

Definition 9 (Equilibrium points and steady state solutions). Let v be a continuous vector field

defined on U , an open subset of Rn. Any x0 ∈ U for which v(x0) = 0 is an equilibrium point of

v. In this case, the function x(t) = x0 for all t is a solution of (3.1). Such a solution is called a

steady-state solution.

As we have already seen, even when n = 1, when x0 is a an equilibrium point, the steady state

solution of (3.1) may not be the only solution of (3.1). However, also as in the one dimensional case,

there is a simple condition – Lipschitz continuity – that guarantees this uniqueness. It turns out that

this same condition will also guarantee existence as well as uniqueness of solutions.

However, before we turn to general theorems, it is instructive to study some examples in which

we can compute all of the solutions. This will be our focus in the next subsection, in which introduce

a class of vector fields that can be treated using one-dimensional methods.

c© 2014 by the author.
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3.1.2 Uncoupled Systems

Let us begin with n = 2. We may write, using Cartesian coordinates,

x(t) = (x(t), y(t)) and v(x, y) = (f(x, y), g(x, y)) .

Then (3.1) is equivalent to

x′(t) = f(x(t), y(t)) , x(t0) = x0

y′(t) = g(x(t), y(t)) , y(t0) = y0

This is an examples of a system of first order equations. The generalization to higher dimensions is

clear.

The simplest case is that in which f depends only on x and g depends only on y. In this case,

(3.2) reduces to

x′(t) = f(x(t)) , x(t0) = x0

y′(t) = g(y(t)) , y(t0) = y0

There is no “coupling” between the two equations; the equation for the evolution of x does not

involve y and vice-versa. Hence, to solve such a system, we need only solve the equations separately,

and for this we can use our one dimensional methods.

Example 21 (An uncoupled system). Fix some number α ∈ R. Let

v(x, y) = (x, αy) .

That is, with v(x, y) = (f(x, y), g(x, y)), f(x, y) = x and g(x, y) = αy. Then (3.2) becomes

x′(t) = x(t) , x(t0) = x0

y′(t) = αy(t) , y(t0) = y0

Solving these equations separately, we find

x(t) = x0e
t−t0 and y(t) = y0e

α(t−t0) .

In particular, if x0 6= 0,

et−t0 =
1

x0
x(t) .

Therefore,

y(t) =
y0

|x0|α
|x(t)|α .

In particular, for α = 2, each (x(t), y(t)) lies on the curve

y =
y0

x2
0

x2 , (3.2)

which is a parabola. The equation (3.2) describes the family of all parabolas that pass through (0, 0)

tangent to the x-axis. Here is a plot of some of these:
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However, the solutions of (3.2) do not trace out any entire parabolas: All of the parabolas pass

through (0, 0), which is an equilibrium point, and we see from the explicit form of the solutions that

x(t) and y(t) never change sign. If the solution is not the steady-state solution, then x(t) traces out

one side or the other of one of these parabolas.

This plot should not be confused with our earlier plots in the t, x plane. This plot, unlike those,

does not involve time, and does not give any information about the speed of the motion.

Sometimes a system of equations can be decoupled by a judicious change of variables. For

example, consider v(x, y) = (y,−x). The corresponding system of first order equations is

x′(t) = y(t) , x(t0) = x0

y′(t) = −x(t) , y(t0) = y0 .

Here is a plot of the vector field, with the arrows shortened for better visibility of the pattern:
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Looking at the “sweep” of the arrows, one can anticipate the circular nature of the flow, and this

suggests that it may have a simpler description in polar coordinates. Introducing polar coordinates

as usual, we have x = r cos θ and y − r sin θ. That is,

x(t) = r(t) cos θ(t) and y(t) = r(t) sin θ(t) , (3.3)

and

r(t) =
(
x2(t) + y2(y)

)1/2
.

Therefore,

r′(t) =
1

r(t)
(x(t)x′(t) + y(t)y′(y)) =

1

r(t)
(x(t)y(t)− y(t)x(t) = 0 ,

which shows that r is constant. To obtain an equation for θ, it is simplest to differentiate x(t) =

r cos θ(t), using the fact that r is constant, to obtain

x′(t) = −θ′(t)r sin θ(t) = −θ′(t)y(t) .

From the equation x′ = y we deduce that θ′(t) = −1 for all t.

Therefore, in the new variables, (3.3) becomes

r′(t) = 0 , r(0) =
√
x2

0 + y2
0

θ′(t) = −1 , θ(t0) = θ0

where θ0 is the unique angle in [0, 2π) such that r cos θ0 = x0 and r sin θ0 = y0. (There is a formula

for this; θ0 = π/2 if x0 = 0 and y0 > 0, θ0 = −π/2 if x0 = 0 and y0 < 0, θ0 = arctan(y0/x0) if

x0 > 0, and θ0 = arctan(y0/x0) + π/2 if x0 < 0. But we shall not use this formula below.)

The new system is decoupled in the obvious sense, and we have the unique solution r(t) = r0

and θ(t) = θ0 − t for all t. Therefore

x(t) = r cos(θ0 − t) = r[cos θ0 cos t+ sin θ0 sin t] = x0 cos t+ y0 sin t

and

y(t) = r sin(θ0 − t) = r[− cos(θ0) sin(θ) + sin θ0 cos t] = −x0 sin t+ y0 cos t .

We can write this in a very simple form by introducing the matrix[
cos t sin t

− sin t cos t

]
.

We then have

x(t) =

[
cos t sin t

− sin t cos t

]
x0 . (3.4)

Since for each x ∈ R2, there is a unique solution curve passing through x at time t = 0, we may

define the flow transformation for this vector field Ψt(x) by Ψt(x) = x(t) where x(t) is this solution

evaluated at time t. Our computation of the general solution gives us a formula for Ψt, namely

Ψt(x) =

[
cos t sin t

− sin t cos t

]
x0 .
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Since the solutions curves are unique, Ψt+s(x) is what you get be starting at x and then following

the solution curve through x to x(t), and from there along the same curve – by the uniqueness – on

to x(t + s). Or you could follow this curve to x(s), and from there on to x(s + t). Either way, you

see that

Ψt+s = Ψt ◦Ψs = Ψs ◦Ψt , (3.5)

and it is clear the Ψ0 is the identity transformation, since by definition, in this case one does not

move along the curve at all.

In this case, our flow transformation is a linear transformation represented by a matrix. The

composition of the linear transformations represented by two matrices is the linear transformation of

their matrix product. Thus, (3.5) is equivalent to[
cos(t+ s) sin(t+ s)

− sin(t+ s) cos(t+ s)

]
=

[
cos t sin t

− sin t cos t

][
cos s sin s

− sin s cos s

]

=

[
cos s sin s

− sin s cos s

][
cos t sin t

− sin t cos t

]
, (3.6)

which can be verified by multiplying out the matrices and using the angle addition formulas.

The formulas (3.5) and (3.6) are reminiscent of the addition formula for products of exponentials

etaesa = e(t+s)a for all a, t, s ∈ R. In fact, if we introduce the matrix A =

[
0 1

−1 0

]
, we can write

(3.3) in the form

x′(t) = Ax(t) , x(0) = x0 ,

which suggests that in some sense

etA =

[
cos t sin t

− sin t cos t

]
,

and that then (3.6) simply says e(t+s)A = etAesA = esAetA. We shall see that there is indeed a very

useful extension of the exponential function to matrices for which this formula is indeed true. This

is a very useful train of thought to which we shall return, but first, let us further develop the idea of

decoupling equations by a change of variables.

Our next example illustrates the decoupling of a more interesting system using polar coordinates.

Example 22 (Decoupling by a change of variables). Consider the system

x′(t) = y(t) + x(t)[1− x2(t)− y2(t)] , x(0) = x0

y′(t) = −x(t) + y(t)[1− x2(t)− y2(t)] , y(0) = y0 . (3.7)

The linear part of the vector field v associated to this system is the same as the one that we

simplified by changing to polar coordinates. The nonlinear part involves x2 + y2 which simplifies in

polar coordinates. Thus, it is natural to once again try polar coordinates.



50 CHAPTER 3. INTRODUCTION TO FIRST ORDER SYSTEMS

Since r =
√
x2 + y2, the chain rule yields

r′(t) =
1

r(t)
(x(t)x′(t) + y(t)y′(t))

=
1

r(t)
(x2(t) + y2(t))[1− x2(t) + y2(t)]

= r(t)[1− r2(t)] .

This is part of what we sought; the equation expressing r′(t) does not involve θ(t).

Next, to get an equation for θ(t), we proceed as before, and differentiate both sides of x(t) =

r(t)θ(t). We obtain

x′(t) = r′(t) cos θ(t)− θ′(t)r(t) sin θ(t)

= [1− r2(t)]r(t) cos(t)− θ′(t)r(t) sin θ(t)

= [1− r2(t)]x(t)− θ′(t)y(t)

Comparing with the first equation in (3.7) we see that θ′(t) = −1. Therefore, in the new variables,

our system becomes

r′(t) = r(t)[1− r2(t)] , r(0) =
√
x2

0 + y2
0

θ′(t) = −1 , θ(t0) = θ0

This system is decoupled; the rate of change of r does not depend on θ, and the rate of change of θ

does not depend on r. We may solve the two equations separately using our single variable methods.

The equation for θ is trivial; it yields θ = θ0 − (t − t0). To solve the equation for r(t) we use

Barrow’s formula

t(r)− t0 =

∫ r

r0

1

z(1− z2)
dz .

The vector field v(r) = r[1 − r2] has equilibrium points at r = −1, r = 0 and r = 1. Since r is

non-negative by definition, we are only concerned with the maximal intervals (0, 1) and (1,∞).

Consider r0 ∈ (0, 1). We have the partial fractions expansion

1

z(1− z2)
=

1

z
+

1

2

1

1− z
− 1

2

1

1 + z
, (3.8)

Since z, 1− z and 1 + z are all positive for z ∈ (0, 1), we have for r ∈ (0, 1),

t(r)− t0 =

[
ln(z)− 1

2
ln(1− z)− 1

2
ln(1 + z)

] ∣∣∣∣z=r
z=r0

= ln

(
r√

1− r2

)
− ln

(
r0√

1− r2
0

)

Thus, with a = et−t0r0/
√

(1− r2
0), we have

r√
1− r2

= a. Squaring and solving, we find r =
a√

1 + a2
,

and so

r(t) =
r0e

t−t0√
(1− r2

0) + r2
0e

2(t−t0)
. (3.9)

Notice that r(t0) = r0, as it must, and limt→−∞ r(t) = 0 and limt→∞ = 1. Thus the solutions stay

for all time in the maximal interval (0, 1), as it must since r(1− r2) is Lipschitz on this interval.
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Since r(1− r2) is Lipschitz on any bounded open interval about r = 1, the steady state solution

is the unique solution of r′ = r(1 − r2) with r(t0) = 1. (The same applies to the other equilibrium

point r = 0.)

Next, we consider r0 > 1. Since 1 − z is negative for z > 1, and since we shall be taking

logarithms, we rewrite our partial fractions expansion as

1

z(1− z2)
=

1

z
− 1

2

1

z − 1
− 1

2

1

1 + z
,

Then with r0, r ∈ (1,∞), Barrow’s formula yields

t(r)− t0 = ln

(
r√

r2 − 1

)
− ln

(
r0√
r2
0 − 1

)
,

and solving as before we find

r(t) =
r0e

t−t0√
r2
0e

2(t−t0) − (r2
0 − 1)

. (3.10)

This is the same formula (written slightly differently) as (3.9), which also gives the steady state

solutions for r0 = 0 and r0 = 1. Therefore, (3.9) gives the unique solution for all r0 ≥ 0. However,

the form (3.10) is convenient for studying the solution when r0 > 1. Notice that in this case, r(t) is

well-defined for all t > t0, and limt→∞ r(t) = 1, as we might expect since r(1− r2) < 0 for r > 1, so

r(t) is always decreasing when r0 > 1. However, when

r2
0e

2(t−t0) = (r2
0 − 1) ,

there is division by zero in (3.10), and the solution “blows up”. Solving for t, this happens when

t = t0 −
1

2
ln

(
r2
0

r2
0 − 1

)

which is, of course, less than t0.

To plot the curves traced out in the r, θ plane by the solutions, we note that

θ − θ0 = t− t0 =
1

2
ln

(
r2

|1− r2|

)
− 1

2
ln

(
r2
0

|1− r2
0|

)
.

Therefore, the solution curves in the r, θ plane are given by

θ +
1

2
ln

(
r2

|1− r2|

)
= c

where c is a constant. The next figure shows a contour plot of the function on the left:
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Finally, let us return to Cartesian coordinates in the x, y plane. Since x = r cos θ and y = r sin θ,

we obtain

(x(t), y(t)) =

√
x2

0 + y2
0e
t−t0√

(1− (x2
0 + y2

0)) + (x2
0 + y2

0)e2(t−t0)
( cos(θ0 − (t− t0)), sin(θ0 − (t− t0)))

=
et−t0√

1− ‖x0‖2 + ‖x0‖2e2(t−t0)

[
cos t sin t

− sin t cos t

]
x0 , (3.11)

where we have used the angle addition formulas and matrix notation to arrive at the final form as in

(3.4).

The solution simplifies for large t: Since

lim
t→∞

r(t) = 1

for all r0 > 0, we have for any starting point except the equilibrium point (0, 0) that the solutions

has

(x(t), y(t)) ≈ ( cos(θ0 − (t− t0)), sin(θ0 − (t− t0))) ,

or equivalently

x(t) ≈

[
cos t sin t

− sin t cos t

]
x0

‖x0‖
,

for all largetimes t. The solution os periodic if and only if r0 =
√
x2

0 + y2
0 = 1, and in this case the

period is 2π. For all other solutions, except the steady-state solution at (0, 0), the radius ‖x(t)‖ is

either strictly increasing or decreasing, and so we cannot have x(t + T ) = x(t) for any T > 0 for

any t, let alone for all t. However, because every solution except the steady-state solution at (0, 0)

“spirals in” to the unit circle exponentially fast, the motion described by this equation is approximately

periodic for large t. We shall encounter this phenomenon of “limit cycles” again in other examples.

While we have found this limit cycle by explicit computation, we shall develop method for determining

when such solutions exist without relying on an explicit calculation of all solutions.
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The following plot shows some solution curves in the x, y plane, spiraling in to the unit circle

from outside, and spiraling out to the unit circle from inside.

Another phenomenon of interest that shows up clearly in this plot is that while (0, 0) is an

equilibrium point, and the steady state solution is the only curve that ever passes through this point,

it is an unstable equilibrium in that no matter how close (x0, y0) is to (0, 0), if it is not exactly equal

to it, the solution will move away, and in fact will satisfy

lim
t→∞

‖x(t)− (0, 0)‖ = 1 .

That is, solutions that start nearby this equilibrium point do not stay nearby this equilibrium point.

The question of whether equilibrium points have this sort of instability, or not, is of considerable

interest in applications, as we shall see.

Many systems can be decoupled by an appropriate change of variables, and we shall develop

methods for finding such changes of variables when they exist. While there is no universal method

for explicitly computing such a change of variables there is a powerful method for exploiting symmetry

to find them that is applicable in many interesting situations.

Example 23. We saw in the previous example that if ‖x0‖ ≤ 1, the the solution of x′(t) = v(x(t))

with x(t0) = x0 for

v(x, y) = (y,−x) + [1− x2 − y2](x, y)

is unique and is defined for all t ∈ R, while for ‖x0‖ > 1, the solution is defined for all t > t0, but

not for all t < t0.

Let us consider x in the unit disk; i.e., ‖x‖ ≤ 1. We have found in (3.11) that the solution

starting from x at t = 0 is given by

x(t) =
et√

1− ‖x‖2 + ‖x‖2e2t

[
cos t sin t

− sin t cos t

]
x .
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If we define the flow transformation Ψt(x) associated to the vector field on the unit disk to be

position x(t) reached at time t by the unique solution passing through x at time t = 0, we have, by

the above calculations, that

Ψt(x) =
et√

1− ‖x‖2 + ‖x‖2e2t

[
cos t sin t

− sin t cos t

]
x .

You can verify directly from the formula that for all s, t ∈ R and all x in the unit disk, Ψt ◦Ψs(x) =

Ψt+s(x). However, the easy way to see this is true is to realize that it is a direct consequence of the

uniqueness and global existence that we have proved.

3.1.3 Recursively coupled systems

It is not necessary to decouple a system to solve it completely using one dimensional methods. This

can also be done for recursively coupled systems, of which we now give an example: Consider

x′(t) = 2x(t)− 3y(t)

y′(t) = 2y(t) .

The rate of change of x depends on both x and y, but the rate of change of y depends on y alone.

Thus, for any t0 and y0 we can solve y′(t) = 2y(t) with y(t0) = y0 by our one dimensional methods:

It is a linear first order equation for the single variable y. The unique solution is

y(t) = y0e
2(t−t0) .

If we now insert this into the first equation in (3.12), we obtain

x′(t) = 2x(t)− 3y0e
2(t−t0) .

This too is a linear first order equation n the single variable x, except now with a time-dependent

coefficient. Rearranging terms and multiplying through by e−2t we find(
e−2tx(t)

)′
= −3y0e

2t0 .

Integrating from t0 to t, and taking x(t0) = x0, we find

e−2tx(t)− e−2t0x0 = −3y0e
2t0(t− t0) .

Therefore,

x(t) = e−2(t−t0)x0 − 3y0e
−2(t−t0)(t− t0) .

Definition 10 (Recursively coupled and uncoupled first order systems). The vector field

v(x) = (f1(x), . . . , fn(x))

on Rn is recursively coupled in case for each i = 1, . . . , n, fi depends only on xj for j ≥ n. That is,

if
∂fi
∂xj

(x) = 0 for all j < i .

It is uncoupled in case for each i = 1, . . . , n, fi depends only on xi.
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Note that every decoupled vector field is recursively coupled (a more accurate terminology would

be at most recursively coupled). Thus, the notion of a recursively coupled vector field is a general-

ization of the notion of a an uncoupled vector field. However, we can always apply one dimensional

methods to solve any first order system associated to a recursively coupled vector field.

This is because the system can be written as

x′1(t) = f1(x1, . . . , xn)

x′2(t) = f2(x2, . . . , xn)

...
...

...

x′n−1 = fn−1(xn−1, xn)

x′n = fn(xn)

The last equation is a single variable first order equation. If it can be solved to find an explicit

function xn(t), then this can be substituted into the penultimate equation to obtain

x′n−1 = fn−1(xn−1, xn(t))

which is now a non-autonomous first order equation in the single variable xn−1. If this can be solved

explicitly, one can substitute both xn−1(t) and xn(t) into the next equation up the list, to obtain

another first order non-autonomous equation in a single variable, and so one, working through all of

the variables one by one.

Example 24. Let v(x, y) = (−y, y). This is recursively coupled since writing v(x, y) = (f1(x, y), f2(x, y)),

f2 only depends on y.

Thus, we may solve y′ = y with y(t0) = y0 to find y(t) = y0e
t−t0 . Substituting this into x′ = −y

we find x′′ = y0e
t−t0 , and so

x(t) =

∫ t

t0

y0e
s−t0ds = y0(et−t0 − 1) + x0 .

Finally, we have

x(t) = (y0(et−t0 − 1) + x0, y0e
t−t0) .

In other words, the flow transformation Ψt(x) associated to this vector field is

Ψt(x, y) = (y(et − 1) + x, yet) .

So far in this chapter, we have introduced two “nice” types of vector fields – uncoupled and

recursively coupled – for which we can use one dimensional methods to solve the corresponding

system. We have also seen that systems that are not given in these nice forms may be put into such

a form by a judicious change of variables. But where do these changes of variables come from?

3.1.4 Flows of time independent vector fields

In the examples of this section we have computed the flow transformations of several time independent

vector fields on R2. The next theorem gives the composition property of the flow transformation

whenever the solutions of the corresponding first order equation are unique and defined for all t.
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Theorem 7. Let v be a vector field defined on an open set U ⊂ Rn, Suppose that for each x ∈ U
there is a unique solution x(t) to

x′(t) = v(x(t)) ,x(0) = x

which is defined for all t ∈ R and such that x(t) ∈ U for all t. Then the flow transformation generated

by v, which is defined to be the function

Ψt(x) = x(t) ,

satisfies the composition law

Ψt1+t2(x) = Ψt1 ◦Ψt2(x)

for all x ∈ U and all s, t ∈ R.

Proof. Let x(t) be the solution curve passing through x for t = 0. For Define y(u) by

y(t) = x(t+ t1) .

Then

y′(t) = x′(t+ t1) = v(x(t+ t1)) = v(y(t)) ,

and clearly y(0) = x(t1) = Ψt1(x).

By definition, since y(t) is the unique solution of our equation passing through x(t1) = Ψt1(x)

at t = 0,

Ψt1+t2(Ψt1(x)) = y(t2) = x(t2 + t1) = Ψt2+t1(x) .

To apply Theorem 7, we need to know when the solutions of x′(t) = v(x(t)) with x(0) = x are

unique. A useful answer, as in the one dimensional case, is given in terms of Lipschitz continuity.

Definition 11 (Lipschitz vector field). A vector field v defined on an open set U ⊂ Rn is Lipschitz

with Lipshictz constant L in case L <∞ and for all x,y ∈ U ,

‖v(y)− v(x)‖ ≤ L‖y − x‖ .

Our next theorem is a multidimensional generalization of Theorem 6. It includes the case of time

dependent vector fields, and thus goes beyond our multidimensional examples so far. However, the

proof is essentially the same for time dependent and time independent vector fields, so we may as well

cover the general case now. In fact, the proof is very similar to the proof of Theorem 6 concerning

the one-dimensional case.

Theorem 8 (Uniqueness for Lipschitz vector fields on Rn). Let U be an open set in Rn, and let

(c, d) be an open interval in R. Let v(t, x) be a continuous time dependent vector field defined on

(c, d) × U . Suppose that for some L < ∞, v is Lipschitz with Lipschitz constant L uniformly in

t ∈ (c, d). That is,

‖v(t,y)− v(t,x)‖ ≤ L‖y − x‖
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for all t ∈ (c, d)and all x,y ∈ U .

Let t0 ∈ (c, d). Suppose that x(t) solves x′(t) = v(t,x(t)) with x(t0) = x for all t ∈ (c, d) and

that y(t) solves y′(t) = v(t,y(t)) with y(t0) = y for all t ∈ (c, d), and that x(t),y(t) ∈ U for all

t ∈ (c, d). Then for all t ∈ (c, d),

e−L|t−t0|‖y − x‖ ≤ ‖y(t)− x(t)‖ ≤ eL|t−t0|‖y − x‖ . (3.12)

In particular, there is at most one solution passing through x at t = t0.

Proof. Define z(t) = ‖y(t)− x(t)‖2. Then

z′(t) = 2(y(t)− x(t)) · (y′(t)− x′(t)) = 2(y(t)− x(t)) · (v(t,y(t))− v(t,x(t)) .

Therefore, by the Cauchy-Schwarz inequality,

|z′(t)| ≤ 2‖y(t)− x(t)‖‖v(t,y(t))− v(t,x(t))‖ ≤ 2L‖y(t)− x(t)‖2 = 2Lz(t) .

That is,

−2Lz(t) ≤ z′(t) ≤ 2Lz(t) . (3.13)

The second inequality in (3.13) can be written as z′(t)− 2Lz(t) ≤ 0. Multiplying both sides by

e−t2L, we have (
z(t)e−t2L

)′ ≤ 0 .

Hence z(t)e−t2L is a non-increasing function of t. It follows that:

z(t)e−t2L ≤ z(t0)e−t02L for t > t0 and z(t)e−t2L ≥ z(t0)e−t02L for t < t0 .

Since z(t0) = ‖y − x‖2, this is the same as

‖y(t)− x(t)‖ ≤ ‖y − x‖e(t−t0)L for t > t0 and ‖y(t)− x(t)‖ ≥ ‖y − x‖e(t−t0)L for t < t0 .

The first inequality in (3.13) can be written as z′(t) + 2Lz(t) ≥ 0. Multiplying both sides by

et2L, we have (
z(t)et2L

)′ ≥ 0 .

Hence z(t)et2L is a non-decreasing function of t. It follows that:

z(t)et2L ≥ z(t0)et02L for t > t0 and z(t)et2L ≤ z(t0)et02L for t < t0 .

Since z(t0) = ‖y − x‖2, this is the same as

‖y(t)− x(t)‖ ≥ ‖y − x‖e−(t−t0)L for t > t0 and ‖y(t)− x(t)‖ ≤ ‖y − x‖e−(t−t0)L for t < t0 .

The two lower bounds on ‖y(t)−x(t)‖ can be summarized as ‖y(t)−x(t)‖ ≥ ‖y−x‖e−|t−t0|L for

all t and the two upper bounds on ‖y(t)−x(t)‖ can be summarized as ‖y(t)−x(t)‖ ≤ ‖y−x‖e|t−t0|L

for all t. In particular y(0) = x(0) implies y(t) = x(t) for all t.

In the next section we discus an important class of vector fields to which this theorem applies.
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3.2 Linear Vector Fields

3.2.1 Linear transformations and linear vector fields

There are a number of cases in which there is a strategy for finding such a change of variables. But

there is only one case in which there is (essentially) an algorithm for this purpose: The case of linear

vector fields.

Definition 12 (Linear Vector Field). A function v from Rn to Rn is a (time independent) linear

vector field in case v(x) is a linear function of x. Since every linear function from Rn to Rn has a

matrix representation, this means that v is linear if and only if there is an n× n matrix A such that

v(x) = Ax

for all x.

Thus, there is a one-to-one correspondence between linear vector fields on Rn and n×n matrices.

In case v is a linear vector field, we may write the first order system x′(t) = v(x(t)) as

x′(t) = Ax(t) . (3.14)

While this may look like a special case, and it is, it is also enormously important to the general

theory.

Our next theorem says that every linear vector field on Rn is Lipschitz on all of Rn. A valid

Lipschitz constant, not necessarily the smallest, is given by a measure of the “size” of an n×n matrix

A that we define next.

Definition 13 (Frobenius norm). Let A be an n×n matrix whose i, jth entry is Ai,j. The Frobenius

norm of A is the quantity ‖A‖F defined by

‖A‖F =

√√√√ n∑
i,j=1

|Ai,j |2 . (3.15)

Lemma 2. Let A be an n× n matrix. Ley x,y ∈ Rn. Then

‖Ay −Ax‖ ≤ ‖A‖F‖y − x‖ . (3.16)

Proof. By the linearity of matrix multiplication, Ay − Ax = A(y − x). Let z = y − x. Then (3.16)

is the same as ‖Az‖ ≤ ‖A‖F‖z‖. Let ri be the ith row of A. Then (Az)i = ri · z, and so by the

Cauchy-Schwarz inequality,

|(Az)i| ≤ ‖ri‖‖z‖ .

Therefore,

‖Az‖ =

√√√√ n∑
i=1

|(Az)i|2 ≤

√√√√ n∑
i=1

‖ri‖2

 ‖z‖ = ‖A‖F‖z‖ .
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Therefore, every linear vector field v(x) is Lipschitz on all of Rn with Lipschitz constant at most

‖A‖F, and we have the following Corollary of Theorem 8 and Lemma 3.16:

Corollary 1. Let A be an n× n matrix. for any x0 ∈ Rn, there is at most one solution to

x′(t) = Ax(t) , x(0) = x0 .

Later in the chapter, we shall show that the solution always exists, and moreover, exists for all

times t ∈ R.

3.2.2 The role of eigenvalues and eigenvectors

The key to solving x′(t) = Ax(t) is to find all of the eigenvalues of A. Once this is done, the system

can be solved explicitly, following an algorithm, as we now explain.

Recall that a complex number µ is an eigenvalue of A in case there is a non-zero vector v ∈ Cn

such that

Av = µv . (3.17)

In this case, v is called an eigenvector of A.

The matrices A that we consider here will always have real entries, but still it is necessary to

consider complex eigenvalues and complex eigenvectors. In any case, here is the significance of (3.17)

to the problem of solving x′(t) = Ax(t). If Av = µv, and we define

x(t) = etµv , (3.18)

we have
d

dt
x(t) =

(
d

dt
etµ
)

v = µetµv = µx(t) (3.19)

and

Ax(t) = etµAv = µetµv = µx(t) (3.20)

Combining (3.19) and (3.20), we see that whenever v is an eigenvector of A with eigenvalue µ, the

formula (3.18) defines a solution x(t) of the x′(t) = Ax(t).

Example 25. Consider the vector field

v(x, y) = (− x+ 2y, 3x− 2y) =

[
−1 2

3 −2

]
(x, y) .

Let us write

A =

[
−1 2

3 −2

]
,

and compute the eigenvectors and eigenvalues of A. The characteristic polynomial is det(A − tI) =

t2 + 3t+−4 = (t+ 4)(t− 1). Hence the eigenvalues are µ1 = −4 and µ2 = 1.

Now let us find the eigenvectors. We compute

A− µ1I =

[
3 2

3 2

]
.
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and so (A − µ1I)v = 0 for v1 = ( − 2, 3), and the eigenvectors of A with eigenvalue µ1 = −4 are

exactly the non-zero multiples of v1. In the same way, we find

A− µ2I =

[
−2 2

3 −3

]
,

and so (A− µ2I)v = 0 for v2 = (1, 1), and the eigenvectors of A with eigenvalue µ2 = 4 are exactly

the non-zero multiples of v2.

We now obtain two solutions of the equation x′(t) = Ax(t), namely

x1(t) = e−4tv1 = e−4t(− 2, 3) and x2(t) = etv2 = et(1, 1) .

That is x1(t) = −2e−4t and y1(t) = 2e−4t is one set of solutions of our system, and x2(t) = et,

y2(t) = et is another.

We have seen in the previous example that whenever we can find eigenvectors of A, we can

find solutions of x′(t) = Ax(t). These, however, are rather special solutions that trace our straight

half-lines emanating from the origin (when eigenvectors and eigenvalues are real). But can these

special solutions provide us with the general solutions, i.e., the solution to x′(t) = Ax(t), x(0) = x0

for arbitrary x0?

Roughly speaking, the answer is yes. A bit more precisely, in some cases, we may need to

bring in a simple generalization of the eigenvector concept and consider solutions corresponding to

generalized eigenvectors, as we shall explain shortly. However, whenever we can find a set of n linearly

independent eigevectors of an n × n matrix A, we can find an explicit formula for the solution of

x′(t) = Ax(t), x(0) = x0 for arbitrary x0. There are two ways of doing this, and both are useful. We

introduce them in the next two subsections.

3.2.3 The superposition principle

The main theorem of this subsection says that any linear combination (superposition) of solutions of

x′ = Ax is again a solution of the same equation.

Theorem 9 (Superposition principle). Let A be an n× n matrix, and suppose that x1(t) and x2(t)

are two continuously differentiable curves in Rn such that

x′1(t) = Ax1(t) and x′2(t) = Ax2(t)

for all t. For any a1, a2 ∈ R, define z(t) to be the linear combination

z(t) = a1x1(t) + a2x2(t) .

Then

z, (t) = Az(t) .

Proof. We compute

z′(t) = a1x
′
1(t) + a2x

′
2(t) = a1Ax1(t) + a2Ax2(t) = A(a1x1(t) + a2x2(t)) = Az′(t)

since matrix multiplication is linear.
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To explain the main consequence of this theorem in the simplest possible terms, suppose that

n = 2, and that the 2 × 2 matrix A has 2 distinct real eigenvalues µ1 and µ2. Let v1 and v2 be

corresponding eigenvectors. Let x0 be any vector in Rn. Suppose that we can find numbers a1 and

a2 so that

x0 = a1v1 + a2v2 .

That is, suppose that we can express any x0 as a linear combination of v1 and v2.

Now define

x(t) = a1e
µ1tv1 + a2e

µ2tv2 . (3.21)

We claim that x(t) solves

x′(t) = Ax(t) ,x(0) = x0 . (3.22)

To verify the claim, we first compute

x′(t) = (a1e
µ1tv1 + a2e

µ2tv2)′

= a1e
µ1tµ1v1 + a2e

µ2tµ2v2

= a1e
µ1tAv1 + a2e

µ2tAv2

= A(a1e
µ1tv1 + a2e

µ2tv2)

= Ax(t) . (3.23)

Next we compute

x(0) = a1v1 + a2v2 = x0 .

This verifies that (3.21) defines a solution to (3.22), valid for all t ∈ R, and then by Theorem 8,

it is the unique such solution.

Example 26. Consider the equation x′(t) = Ax(t) in R2 where A is the 2× 2 matrix

A =

[
−1 2

3 −2

]
,

that we considered in Example 25. There we found that with

v1 = (− 2, 3) and v2 = (1, 1) ,

Av1 = −4v1 and Av2 = v2.

To solve the initial value problem x(t) = Ax(t) with x(0) = x0, it suffices to find a1 and a2 such

that

x0 = a1v1 + a2v2 . (3.24)

If we introduce the vector a = (a1, a2) and the 2 × 2 matrix V = [v1,v2] whose first column is v1

and whose second column is v2, (3.24) is the same as, by the rules of matrix multiplication,

x0 = V a .
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In this example, the matrix V is

V =

[
−2 1

3 1

]
.

This is invertible, with

V −1 =
1

5

[
−1 1

3 2

]
.

Therefore, with x0 = (x0, y0), we have

(a1, a2) =
1

5

[
−1 1

3 2

]
(x0, y0) =

1

5
(− x0 + y0, 3x0 + 2y0) .

Therefore, the solution to x′(t) = Ax(t) with x(0) = x0 is

x(t) = a1e
tµ1v1 + a2e

tµ2v2

=
1

5
(−x0 + y0)e−4t(− 2, 3) +

1

5
(3x0 + 2y0)et(1, 1)

=
1

5
(− 2(−x0 + y0)e−4t + (3x0 + 2y0)et, 3(−x0 + y0)e−4t + (3x0 + 2y0)et)

=
1

5
((2e−4t + 3et)x0 + (2et − 2e−4t)y0 , (3et − 3e−4t)x0 + (3e−4t + 2et)y0) . (3.25)

This can be expressed in a clear form using matrix notation as

x(t) =
1

5

[
2e−4t + 3et 2et − 2e−4t

3et − 3e−4t 3e−4t + 2et

]
x0 .

Therefore, the flow transformation associated to this vector if;ed is

Ψt(x) =
1

5

[
2e−4t + 3et 2et − 2e−4t

3et − 3e−4t 3e−4t + 2et

]
x .

Form this, we can easily read off the solution to any specific initial value problem, say x′(t) = Ax(t)

and x(0) = (2.− 1). The solution is

x(t) = Ψt(2,−1) =
1

5
(4et + 6e−4t,−9e−4t + 4et) .

In the previous example we were able to completely solve a 2×2 linear system x′ = Ax by finding

eigenvectors of the matrix A. The method we illustrated in this example is broadly applicable, as we

now explain.

Let A be an n × n matrix, and suppose that {v1, . . . ,vn} is a set of n linearly independent

eigenvectors of A. Let V = [v1, . . . ,vn] be the n× n matrix whose jth column is vj . By the rules of

matrix multiplication, for a = (a1, . . . , an),

V a =

n∑
j=1

ajvj .

By the definition of linear independence, V a = 0 if and only if a = 0. Since this is true for any

a ∈ Rn, if Ay = Ay, A(y − x) = 0 and so y − x = 0. That is, since the columns of V are linearly

independent,

V x = V y ⇒ x = y
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and hence the transformation a 7→ V a is one to one.

The Fundamental Theorem of Linear Algebra, which says that whenever a linear transformation

from Rn to Rn is either one to one or onto, it is both, and hence invertible. Therefore, since V is one

to one, V is invertible. It follows that for each x0 ∈ Rn, there is a unique a ∈ Rn such that V a = x0,

and hence

x0 =

n∑
j=1

ajvj .

Therefore, if we define

x(t) =

n∑
j=1

aje
tµjvj , (3.26)

then x(0) = x0 and

x′(t) =

n∑
j=1

aje
tµjµjvj =

n∑
j=1

aje
tµjAvj = A

 n∑
j=1

aje
tµjvj

 = Ax(t) .

Therefore, x(t) satisfies x′(t) = Ax(t) and x(0) = x0, and by Theorem 8, it is the unique solution of

these equations.

Here is a useful way to express this: Define the time-dependent n× n matrix M(t) by

M(t) = [etµ1v1, . . . , e
tµnvn] . (3.27)

Then by the rules of matrix multiplication. (3.26) is equivalent to

x(t) = M(t)a where a = V −1x0 ,

and hence

x(t) = M(t)V −1x0. (3.28)

We summarize our conclusion in the following theorem:

Theorem 10. Let A be an n × n matrix, and suppose that there exists a linearly independent set

{v1, . . . ,vn} of n eigenvectors of A. Let µj be the eigenvalue corresponding to vj. Define the matrix

M(t) by (3.27). Then the unique solution of x′(t) = Ax(t) with x(0) = x0 is

x(t) = M(t)V −1x0 .

In particular, the flow transformation associated to the equation x′(t) = Ax(t) is

Ψt(x) = M(t)V −1x . (3.29)

3.2.4 Decoupling linear systems by a linear change of variables

There is another way to look at the result we have obtained in Theorem 10. Let A be an n × n
matrix, and suppose that there exists a linearly independent set {v1, . . . ,vn} of n eigenvectors of A.

Then we may decouple the system x′(t) = Ax(t) with a linear change of variables, as we now explain.
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Theorem 11 (Linear changes of variables for linear vector fields). Let V be any invertible n × n
matrix. Let A be any n× n matrix. Let x(t) be a continuously differentiable curve in Rn, and define

y(t) = V −1x(t) . (3.30)

Then x(t) satisfies

x′(t) = Ax(t) (3.31)

for all t if and only if

y′(t) = (V −1AV )y(t) (3.32)

for all t.

Proof. Suppose that x′(t) = Ax(t). Then we compute

y′(t) = V−1x′(t) = V−1Ax(t) = (V −1AV )V x(t) = (V −1AV )y(y) . (3.33)

Conversely, suppose that y′(t) = (V −1AV )y(t). Then

x′(y) = V y′(t) = AV y(t) = Ax(t) .

The point of this theorem is that V −1AV may be a much simpler matrix than A, at least if we

make a judicious choice of V . For instance, suppose we can find an invertible n × n matrix V such

that (V −1AV ) is a diagonal matrix; i.e.,

(V −1AV ) =



µ1 0 0 . . . 0

0 µ2 0 . . . 0
...

...
. . . 0

...

0 0 . . . µn−1 0

0 0 0 . . . µn


. (3.34)

Then (3.33) is equivalent the decoupled system

y′j(t) = µjyj(t)

for j = 1, . . . n. For each j, this has the unique solution

yj(t) = etµjyj(0) .

Then we have that the unique solution of y′(t) = (V −1AV )y(t), y(0) = y0 is

y(t) = (etµ1(y0)1, . . . , e
tµn(y0)n) =



etµ1 0 0 . . . 0

0 etµ2 0 . . . 0
...

...
. . . 0

...

0 0 . . . etµn−1 0

0 0 0 . . . etµn


y0 . (3.35)
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By Theorem 11, it follows that

x(t) = V y(t)

is the unique solution to x′(t) = Ax(t) with x(0) = V y0. By Choosing y0 = V x0, this gives us the

solution with x(0) = x0.

That is, whenever we can find an invertible matrix V that “diagonalizes” A, meaning that (3.34)

is satisfied, we see that the the unique solution to x′(t) = Ax(t) with x(0) = x0 is given by

x(t) = V



etµ1 0 0 . . . 0

0 etµ2 0 . . . 0
...

...
. . . 0

...

0 0 . . . etµn−1 0

0 0 0 . . . etµn


V −1x0 . (3.36)

In other words, the flow transformation associated to the linear vector field Ax is

Ψt = V



etµ1 0 0 . . . 0

0 etµ2 0 . . . 0
...

...
. . . 0

...

0 0 . . . etµn−1 0

0 0 0 . . . etµn


V −1 . (3.37)

This is a nice formula, but its utility depends on being able to find a matrix V satisfying (3.34).

The next theorem tells us when and how we can do this:

Theorem 12 (Diagonalizability). Let A and V be n× n matrices. Let vj denote the jth column of

V so that V = [v1, . . .vn]. Then (3.34) is satisfied if and only if for each j,

Avj = µjvj

and the set {v1, . . . ,vn} is linearly independent.

Proof. Let D denote the diagonal matrix on the right side of (3.34). Suppose that for each j,

Avj = µjvj . Then by the rules of matrix multiplication

AV = A[v1, . . .vn] = [Av1, . . . Avn] = [µ1v1, . . . µnvn] = [v1, . . .vn]D = V D .

Suppose further that the columns of V are linearly independent, Then V is invertible, and multiplying

AV = V D on the right by V −1, we obtain A = V DV −1.

On the other hand, suppose that A = V DV −1. Since V is invertible, its columns are linearly

independent, and then it remains to show that they are also eigenvectors of A. Multiplying on the

right by V , we obtain AV = V D. As we have shown above, this means that

[Av1, . . . Avn] = [µ1v1, . . . µnvn] ,

and so Avj = µjvj for each j.



66 CHAPTER 3. INTRODUCTION TO FIRST ORDER SYSTEMS

Therefore, we can diagonalize an n × n matrix A by a linear change of variables if and only if

we can find a set {v1, . . . ,vn} of n linearly independent eigenvectors of A. This change of variables

decouples the system x(t) = Ax(t), and we then have the explicit formula (3.36) for the general

solution.

Example 27. As in Example 26, consider the equation x′(t) = Ax(t) in R2 where A is the 2 × 2

matrix

A =

[
−1 2

3 −2

]
.

We have seen that that with

v1 = (− 2, 3) and v2 = (1, 1) ,

Av1 = −4v1 and Av2 = v2. Clearly {v1,v2} is linearly independent, so we can diagonalize A. Let

V =

[
−2 1

3 1

]
.

This is invertible, with

V −1 =
1

5

[
−1 1

3 2

]
.

Finally, let

D =

[
−4 0

0 1

]
.

Then by Theorem 12,

A = V DV −1

which can be checked by direct matrix multiplication.

The flow transformation is

Ψt = V

[
e−4t 0

0 et

]
V −1 .

Multiplying this out, we find

Ψt(x) =
1

5

[
2e−4t + 3et 2et − 2e−4t

3et − 3e−4t 3e−4t + 2et

]
x ,

as we found before.

Many linear systems can be solved in this way. However, not every such system can. There are

n× n matrices for which there does not exist any set of n linearly independent eigenvectors in Rn.

Example 28. Let A be the 2× 2 matrix

A =

[
0 1

−1 0

]
.

Then

det(A− tI) = t2 + 1 .
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The roots of the characteristic polynomial are i and −i.
Clearly, no vector v in R2 can satisfy Av = iv since the left hand side is real, and the right hand

side is imaginary. But we can find a complex vector z = (z1, z2) such that Az = iz, which is the

same as [
−i 1

−1 −i

]
(z1, z2) = (0, 0) .

Making the same computations we would with real numbers, we see that

z = (1, i)

is an eigenvector of A with eigenvalue i. Similarly, we find A(1,−i) = −i(1,−i).

It may seem that complex eigenvectors are useless when we seek real solutions, but this is not

the case: From every complex eigenvector we will get two real solutions as we shall explain below.

First, let us present another example of how things might get more complicated even if the

eigenvalues are real.

Example 29. Let A be the 2× 2 matrix

A =

[
7 9

−1 1

]
.

Then

det(A− tI) = t2 − 8t+ 16 = (t− 4)2 .

The only eigenvalue is µ = 4, which is a double root of the characteristic polynomial.

A− 4I =

[
3 9

−1 −3

]
,

and so the only eigenvectors are the non-zero multiples of v = (− 3, 1). In particular, these does not

exist a set of two linearly independent eigenvectors. This matrix cannot be diagaonlized. In other

words, the system x′(t) = Ax(t) cannot be decoupled by a linear change of variables.

However, we can do something almost as good. Let V = [v,v⊥] so that

V =

[
−3 −1

1 −3

]
.

Since, by construction V e1 − v, V −1v = e1. Then since

AV = A[v,v⊥] = [Av, Av⊥] = [4v, Av⊥] ,

V −1AV = [4V −1v, V −1Av⊥] = [4e1, V
−1Av⊥] .

Since the first column of V −1AV is a multiple of e1, this matrix is upper triangular. That is, it has

the from.

V −1AV =

[
a b

0 c

]
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for some numbers a, b and c, and note that we arrived at this conclusion using only the information

that the first column of V was an eigenvector of A and that V was invertible, which is guaranteed by

taking the second column to be c⊥, because {v,v⊥} is linearly independent for any non-zero v.

Now carrying out the actual computations we find

V −1AV =

[
4 10

0 4

]

The system

y′(t) = (V −1AV )y(t)

is recursively coupled, and so it may be solver recursively. Writing y(t) = (u(t), v(t)), we have

v′(t) = 4v(t), so that v(t) = e4tv0. Then we have

u′(t) = 4u(t) + 10v(t) = 4u(t) + e4t10v0 .

This is the same as

(u(t)e−4t)′ = 10v0 ,

and so u(t) = e4t(10v0t+ u0). Altogether, we have

y(y) = e4t(10v0t+ u0, v0) = e4t

[
1 10t

0 1

]
y0 .

Finally, putting y0 = x0 and and x(t) = V −1y(t), we have that the solution to x′(t) = Ax(t) with

x(0) = x0 is

x(t) = V −1e4t

[
1 10t

0 1

]
V x0 .

Do the matrix multiplications explicitly, we find

x(t) = e4t

[
(1 + 3t) 9t

−t (1− 3t)

]
x0 .

The corresponding flow transformation is

Ψt(x) = e4t

[
(1 + 3t) 9t

−t (1− 3t)

]
x .

What we have seen in the last example turns out to a particular case of a general fact: For

any n × n matrix A, there is always a linear change of variables matrix V such that V −1AV is

diagonal. However, in general, the matrix will be complex. As we shall see, this provides a way to

solve any linear first order system – provided one can compute all of the eigenvalues of A. One can

give an existence theorem for the the solutions of x′(t) = Ax(t) by developing these ideas, but there

is another approach that has a number of advantages, as we explain next.
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3.3 Matrix exponentials and global existence

3.3.1 The definition of the matrix exponential

Let A be an n×n matrix. In this section we define and study the matrix exponential function. Recall

that for complex variables w, the exponential function ew is defined by its power series

ew =

∞∑
k=1

1

k!
wk ,

or equivalently, by the limit

ew = lim
n→∞

(
1 +

1

n
w

)n
.

Both formulas can be applied if we replace w by an n× n matrix, and the constant 1 (which is

the first term in the power series) by the n× n identity matrix. To see that the series converges, we

need some simple facts about the Forbenius norm that we have introduced above.

Lemma 3. Let A and B be any n× n matrices. Then

‖A+B‖F ≤ ‖A‖F + ‖B‖F (3.38)

and

‖AB‖F ≤ ‖A‖F‖B‖F . (3.39)

Proof. Associate to and n× n matrix A the vector vA in Rn2

obtained by writing out the rows of A

one after the other, as a vector with n2 entries. That is, if A has the rows r1, . . . , rn,

vA = (r1, . . . , rn) .

It is easy to check that ‖A‖F = ‖vA‖ where the quantity on the right is the length of vA in Rn2

. It

is also easy to check that vA+B = vA + vB . Therefore,

‖A+B‖F = ‖vA + vB‖ ≤ ‖vA‖+ ‖vB‖ = ‖A‖F + ‖B‖F

where the inequality in the middle is the triangle inequality.

Next, for any i, j, by the Cauchy-Scwarz inequality,

|ABi,j | =

∣∣∣∣∣
n∑
k=1

Ai,kBk,j

∣∣∣∣∣ ≤
(

n∑
k=1

(Ai,k)2

)1/2( n∑
k=1

(Bk,j)
2

)1/2

.

Squaring both sides and summing over i and j we get

‖AB‖2F ≤
∑
i,j

(
n∑
k=1

(Ai,k)2

)(
n∑
k=1

(Bk,j)
2

)
=

 n∑
i,k=1

(Ai,k)2

 n∑
j,k=1

(Bk,j)
2

 = ‖A‖2F‖B‖2F .
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A simple induction starting from (3.39) shows that for all integers k ≥ 1,

‖Ak‖F ≤ ‖A‖kF .

This is obviously true for k = 0 since we define A0 = I.

Then since for any i, j, |Ai,j | ≤ ‖A‖F, we have that for any t ∈ R,∣∣∣∣ tkk!
Aki,j

∣∣∣∣ ≤ |t|kk!
‖Ak‖F ≤

|t|k

k!
‖A‖kF (3.40)

Since
∞∑
k=0

|t|k

k!
‖A‖kF <∞

for all t ∈ R, for each i, j, the numerical power series

∞∑
k=1

tk

k!
Aki,j ,

is absolutely convergent. It then follows that this power series has an infinite radius of convergence,

and thus it defines a function of t that is continuously differentiable, and the derivative may be

computed by differentiating term by term, obtaining a new power series that also has an infinite

radius of convergence.

Note that we are using the theory of numerical power series here. For each fixed i and j, the

coefficients in our power series are generated by matrix multiplication. But all we need to know at

this point is that we have the upper bound (3.40) that guarantees convergence.

Therefore the power series
∑∞
k=1

tk

k!A
k converges absolutely, entry by entry.

Definition 14 (Matrix exponential). Let A be an n× n matrix. The matrix exponential of A is the

matrix

eA =

∞∑
k=1

1

k!
Ak ,

where A0 = I, by definition.

By what we have explained above, this series converges absolutely entry by entry. Moreover,

replacing A by tA, the entries of etA are all given by power series with infinite radius of convergence.

Hence each entry may be differentiated, term by term in the power series. Since we differentiate

t-dependent matrices term by term anyhow, this gives us

d

dt
etA =

∞∑
k=1

d

dt

tk

k!
Ak =

∞∑
k=1

tk−1

(k − 1)!
Ak = A

( ∞∑
k=1

tk−1

(k − 1)!
Ak−1

)
= AetA = etAA .

Therefore, for any x0 ∈ Rn, if we define x(t) = etAx0, we have

x′(t) =
d

dt

(
etAx0

)
=

(
d

dt
etA
)

x0 = AetAx0 = Ax(t) .

Moreover, it is clear that e0A = I, and so x(t0) = x0.

This proves that x(t) = etAx0 is a solution of the equation x′(t) = Ax(t) with x(0) = c0, and

it is well-defined for all t. This proves that a global solution of this equation exists for every A and
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every x0. Moreover, since for any A, Ax is a Lipschitz vector field on all of Rn, we know that the

solutions are unique. Thus, x(t) = etAx0 is the unique solution to x′(t) = Ax(t) with x(0) = c0, and

so the flow transformation Ψt of the vector field Ax is given by Ψt(x) = etAx.

We summarize our conclusions in a theorem:

Theorem 13. For every n × n vector matrix A, and every x0 ∈ Rn, there is a unique solution of

x′(t) = Ax(t) with x(0) = c0. This solutions is defined for all t ∈ R, and is given by

x(t) = etAx0 .

It follows that the flow transformation Ψt associated to the linear vector field Ax is Ψt(x) = etAx,

and is therefore the linear transformation given by the matrix etA.

From the composition property of flow transformations, Ψt+s = Ψt ◦ Ψs, proved in Theorem 7,

it follows that

e(t+s)A = etAesA .

In particular, for all t, etA is invertible and (etA)−1 = e−tA.

Example 30. In some cases, one can easily work out a closed from expression for Ak for all k, and

use this to explicitly compute etA directly from the definition. Here is one such case: Let

A =

[
0 1

−1 0

]
.

Then one easily computes

A2 = −I , A3 = −A and A4 = I .

The A5 = A, and the cycle starts again. Therefore, we have for all non-negative integers j,

A2j =

 I j is even

−I j is odd

and

A2j+1 =

 A j is even

−A j is odd

Therefore, splitting the sum over k into the even and odd contributions,

etA =

 ∞∑
j=0

t2j

(2j)!
(−1)j

 I +

 ∞∑
j=0

t2j+1

(2j + 1)!
(−1)

A

= cos tI + sin tA

=

[
cos t sin t

− sin t cos t

]
.

(3.41)
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In Example 30 we were able to compute etA explicitly in closed from because we were able to

compute a simple expression for all of the powers of A. As we now explain, we can do this whenever

we can find all of the eigenvalues of A. Once we know these, the power series for etA can be computed

exactly, in closed form.

The simplest case is that in which A can be diagonalized. That is, suppose that there is an

invertible matrix V so that V −1AV = D, or, what is the same, A = V DV −1. Then as in Example 30,

we can find a simple closed form expression for all of the powers of A.

It is easy to see by induction that if D is the diagonal matrix with µj being its jth diagonal

entry, then for every positive integer k, Dk the the diagonal matrix whose jth diagonal entry is µjk.

That is, 

µ1 0 0 . . . 0

0 µ2 0 . . . 0
...

...
. . . 0

...

0 0 . . . µn−1 0

0 0 0 . . . µn



k

=



µk1 0 0 . . . 0

0 µk2 0 . . . 0
...

...
. . . 0

...

0 0 . . . µkn−1 0

0 0 0 . . . µkn


.

The fact the we can compute arbitrary powers of D directly means we can do the same for A.

Note that since A = V DV −1,

A2 = V AV −1V DV −1 = V D2V −1 .

Then

A3 = V AV −1V D2V −1 = V D3V −1 .

A simple induction shows that for all positive integers k,

Ak = V DkV −1 . (3.42)

Therefore, for any positive integer n,

n∑
k=0

tk

k!
Ak = V

(
n∑
k=0

tk

k!
Dk

)
V −1 .

However, by what we have noted above,

n∑
k=0

tk

k!
Dk =



∑n
k=0

tk

k!µ
k
1 0 0 . . . 0

0
∑n
k=0

tk

k!µ
k
2 0 . . . 0

...
...

. . . 0
...

0 0 . . .
∑n
k=0

tk

k!µ
k
n−1 0

0 0 0 . . .
∑n
k=0

tk

k!µ
k
n


,

Since for each j, limn→∞
∑n
k=0

tk

k!µ
k
j = etµj , it follows that

etA = lim
n→∞

n∑
k=0

tk

k!
Ak = V



etµ1 0 0 . . . 0

0 etµ2 0 . . . 0
...

...
. . . 0

...

0 0 . . . etµn−1 0

0 0 0 . . . etµn


V −1 .
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3.3.2 Properties of the matrix exponential

To compute matrix exponentials in closed form for matrices that cannot be diagonalized, we need

some other properties of the matrix exponential.

Theorem 14. Let A and B be n× n matrices, and suppose that

AB = BA .

Then

AeB = eBA (3.43)

and

eA+B = eAeB . (3.44)

Proof. Since AB = BA, AB2 = BAB = B2A, and so AB2 = B2A. Next, AB3 = BAB2 = B3A,

and se have AB3 = B3A. A simple induction shows that ABk = BkA for all positive integers k. But

then for all positive integers n,

A

(
n∑
k=1

tk

k!
Bk

)
=

n∑
k=1

tk

k!
ABk =

n∑
k=1

tk

k!
BkA =

(
n∑
k=1

tk

k!
Bk

)
A .

Taking the limit n→∞ gives us (3.43).

To prove (3.44) we use the uniqueness theorem for linear equations as follows: Define

x(t) = e−tAet(A+B)x0 .

Then

x′(t) = e−tA(−A)et(A+Bx0 + e−tA(A+B)et(A+Bx0 = e−tABet(A+Bx0 .

Then by the fact that AB = BA and (3.43),

e−tABet(A+Bx0 = Be−tAet(A+Bx0 = Bx0 .

Combining results, we see that

x′(t) = Bx(t) and x(0) = x0 .

But we know the unique solution of this equation is etBx0. Therefore

e−tAet(A+Bx0 = etBx0

for all t and all x0. Taking t = 1, and multiplying on the left by eA, we obtain (3.44).

Applying the theorem to tA and tB, we see that whenever AB = BA, we have et(A+B) = etAetB ,

and this is what we actually proved. An important case is that in which B is a multiple of the identity;

i.e., B = µI for some

mu. For any µ, and any n× n matrix A we can write

A = (A− µI) + µI .
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Since (A− µI)(µI) = (µI)(A− µI), we have

etA = et(A−µI)+tµI = et(A−µI)etµI .

Since for any vector v, etµIv = etµv, this is the same as

etA = etµet(A−µI) . (3.45)

3.3.3 Generalized eigenvectors

Recall that a non-zero vector v is an eigenvector of A with eigenvalue µ if and only if (A−µI)v = 0,

In this case, we have that

etAv = etµet(A−µI)v = etµ
∞∑
k=0

(A− µI)kv = etµv

since (A− µI)kv = 0 for all k ≥ 1. While we already knew this, the computation we have just made

leads to the following important definition.

Definition 15 (Generalized eigenvalues). A non-zero vector v is a generalized eigenvector of A with

eigenvalue µ in case for some positive integer k,

(A− µI)kv = 0 .

Notice that when (A − µI)kv = 0 for some positive integer k, there is a least such integer.

Let j be the least such integer. Then w = (A − µI)j−1 6= 0, but (A − µI)w = 0. Therefore, w

is an eigenvector of A with eigenvalue µ. In particular, µ is an ordinary eigenvalue. There are no

“generalized eigenvalues”, only generalized eigenvectors.

The point of the definition is that we get an explicit closed form solution of the equation x′(t) =

Ax(t) for every generalized eigenvector. To see this suppose that

(A− µI)nv = 0 but (A− µI)n−1v = 0 .

Clearly for all ` > 0,

(A− µI)n+`v = (A− µI)`(A− µI)nv = 0 ,

so

etAv = etµet(A−µI)v = etµ

(
n−1∑
k=0

tk

k!
(A− µI)kv

)
. (3.46)

The sum on the right is now a finite sun, and so it can be computed in closed form.

In some cases in which there is only one eigenvalue µ, it even turns out that every vector v is

a generalized eigenvector with (A − µI)nv = 0 for some n. In this case (3.46) is true for every v,

which means that

etA = etµ

(
n−1∑
k=0

tk

k!
(A− µI)k

)
.
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Example 31. Consider again the matrix A =

[
7 9

−1 1

]
that we introduced in Example 29. This

has only one eigenvalue, µ = 4, and the only eigenvectors are non-zero multiples of (− 3, 1). Hence

this matrix cannot be diagonalized; we have a shortage of eigenvectors. But we have no shortage of

generalized eigenvectors. In fact,

A− 4I =

[
3 9

−1 −3

]
,

and so

(A− 4I)2 =

[
0 0

0 0

]
.

Thus every non-zero vector in R2 is a generalized eigenvector with eigenvalue 4. Moreover,

etA = e4t

(
1∑
k=0

tk

k!
(A− µI)k

)
= e4t

(
I + t

[
3 9

−1 −3

])
= e4t

[
(1 + 3t) 9t

−t (1− 3t)

]
,

which agree with what we found in Example 29.

The following theorem is an important result of linear algebra. Using it, we shall show that one

can always explicitly compute etA once one knows all of the eigenvalues of A.

Theorem 15 (Generalized eigenvector basis). Let A be an n × n matrix. Suppose that A has m

distinct eigenvalues µ1, . . . , µm and that the characteristic polynomial of A factors as

m∏
j=1

(µj − t)dj .

so that necessarily
∑m
j=1 dj = n.

Then for each j, whenever v is a generalized eigenvector of A with eigenvalue µj, (A−µj)djv = 0,

and there exist a set of dj solutions of this equation that is linearly independent. Taking the union

of any m such sets, one for each µj, gives us a set of n linearly independent vectors, each of which

is a generalized eigenvector.

Here is how we may apply this. Let A be any n × n matrix, and let V = [v1, . . . ,vn] be an

invertible matrix each of whose columns is a generalized eigenvector of A. For each j = 1, . . . , n, we

know how to find a solution xj(t) to x′(t) = Ax(t) with x(0) = vj :

xj(t) = etµj
dj−1∑
k=0

tk

k!
(A− µjI)kvj .

Then for any a = (a1, . . . , an),

x(t) =

n∑
j=1

ajxj(t)

is a solution of x′(t) = Ax(t) with x(0) =
∑n
j=1 ajvj = V a. Therefore, if we choose a = V −1x0, x(t)

solves x′(t) = Ax(t) with x(0) = x0. But this means that x(t) = etAx0. Therefore, for all x0,

etAx0 =

n∑
j=1

ajxj(t) = [x1(t), . . . ,xn(t)]V −1x0 .



76 CHAPTER 3. INTRODUCTION TO FIRST ORDER SYSTEMS

It follows that

etA = [x1(t), . . . ,xn(t)]V −1 .

Of course, to carry this out, one has to factor the characteristic polynomial of A. The Funda-

mental Theorem of Algebra says that this can always be done, except that even if the coefficients of

the polynomial are real, as they will be when A is a real n× n matrix, the roots may be complex.

However, since the identity et(A+G) = etAetB is an identity between power series with an infinite

radius of convergence, it holds also in the complex case. Hence the identity etA = et(A−µI)etµI is

valid even when µ is complex. In the next section we investgate the complex case.

3.4 Complex solutions of linear first order systems

3.4.1 Complex vectors and complex matrices

Let Cn denote the set of all n dimensional vectors with complex entries. That is, z ∈ Cn is an ordered

n-tuple (z1, . . . , zn) of complex numbers. For all w ∈ C and all z = (z1, . . . , zn) ∈ Cn, we define

wz = (wz1, . . . , wzn) ,

which is exactly like scalar multiplication in the real case, except now the numbers are complex.

Likewise, for z = (z1, . . . , zn) and w = (w1, . . . , wn) we define the vector sum z + w by

z + w = (z1 + w1, . . . , zn + wn) .

This is exactly as in the real case, except now the numbers are complex. For any complex number

z = x + iy with x and y real, we call x the real part of z, and denote it by <(z). We call y the

imaginary part of z, and denote it by =(z). The complex conjugate of z = x + iy is the complex

number z given by z = x− iy. Notice that

<(z) =
1

2
(z + z) and =(z) =

1

2i
(z − z) .

Consider any z = (z1, . . . , zn) ∈ Cn. For each j = 1, . . . , n, let xj = <(zj) and let yj = =(zj).

Then if we define x and y in Rn by x = (x1, . . . , xn) and y = (y1, . . . , yn), we have that

z = x + iy .

We refer to x as the real part of z and to y as the imaginary part of z, and we write x = <(z) and

y = =(z).

Given a vector z = (z1, . . . , zn) ∈ Cn, we define its complex conjugate to be the vector z given

by

z = (z1, . . . , zn) .

It is easy to see that if x = <(z) and y = =(z), then

z = x− iy .
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In particular,

<(z) =
1

2
(z + z) and =(z) =

1

2i
(z− z) .

Let Z be a complex n×n matrix; i.e., an n×n matrix with complex entries. Then each column

of Z is a vector cj in Cn, and we denote this by writing Z = [c1, . . . , cn] exactly as in the real case.

We define the matrix-vector product of Z with z ∈ Cn by

Zz =

n∑
j=1

zjcj

where cj is the jth column of z and where zj is the jth entry of z. Notice that when all of the vectors

happen to be real, i.e., their imaginary parts are zero, this reduces to the definition for real matrices

and vectors.

Likewise, if Z and W are two n × n complex matrices with W = [w1, . . . ,wn], we define their

matrix product ZW by

ZW = [Zw1, . . . , Zwn] .

Notice that if all of the entries of the n × n matrix of A are real, so that A = [v1, . . . ,vn] with

v1, . . . , bvn ∈ Rn ⊂ Cn, and z = x + y with x, by ∈ Rn,

Az =

n∑
j=1

(x+ iy)vj =

n∑
j=1

xjvj + i

n∑
j=1

yjvj = Ax + iy .

3.4.2 Geometry in Cn

We may identify each complex number z = x + iy, x, y ∈ R, with the vector (x, y) ∈ R2. Un-

der this identification, addition of complex number corresponds to addition of vectors in R2. This

identification is the origin of the term “complex plane” that is often used to refer to C.

We define the magnitude of the complex number z = xiy to be the length of the corresponding

vector (x, y) in R2. We denote the magnitude of z by |z|. Then, with z = x+ iy,

|z| =
√
x2 + y2 =

√
zz .

In the same way, let z = (z1, . . . , zn) ∈ Cn, and let z = x + iy be the decomposition of z into

its real and imaginary parts. We may identify z with the vector (x,y) ∈ R2n, whose first n entries

are from x, and whose second n entries are from y. Let w = u + iv be another vector in Cn given

together with it decomposition into its real and imaginary parts. We then define the inner product

of w and z, 〈w, z〉 by

〈w, z〉 = w · z ,

where the dot product of two vectors w, bz in Cn is given by

w · z =

n∑
j=1

wjzj .

The difference between the dot product and the inner product is the complex conjugate applied to

the vector on the left in the inner product. Notice that for any complex number c,

〈w, cz〉 = c〈w, z〉 and 〈cw, z〉 = c〈w, z〉 . (3.47)
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Since with zz = |z|2, we have that

〈z, z〉 =

n∑
j=1

|zj |2 =

n∑
j=1

(x2
j + y2

j ) = ‖x‖2 + ‖y‖2.

Notice that this is the same as the length of the vector (x,y) ∈ R2n.

Therefore, we define the magnitude ‖z‖ of a vector z ∈ Cn by

‖z‖ =
√
〈z, z〉 .

Notice that for all complex c,

‖cz‖ = |c|‖z‖ .

Then, as a direct consequence of the identity ‖z‖ = ‖(x,y)‖ and the Minkowski inequality in

R2n, we deduce the Minkowski inequality in Cn:

‖z + w‖ ≤ ‖z‖+ ‖w‖ .

Furthermore, one easily checks from the definition that if u = <(w), v = =(w), x = <(z) and

y = =(y),

< (〈w, z〉) = u · x + v · y = (u,v) · (x,y) .

Then by the Cauchy-Schwarz inequality in R2n,

|< (〈w, z〉) | ≤ ‖(u,v)‖‖(x,y)‖ = ‖w‖‖z‖ . (3.48)

Next, notice that there is some θ ∈ [0, 2π) such that

|〈w, z〉| = eiθ〈w, z〉 .

Then by (3.47), eiθ〈w, z〉 = 〈w, eiθz〉, and altogether,

|〈w, z〉| = 〈w, eiθz〉 = |<(〈w, eiθz〉)| .

Combining this with (3.48) we have

|〈w, z〉| ≤ ‖w‖‖eiθz‖ = |eiθ|‖w‖‖z‖ = ‖w‖‖z‖ .

The treatment of angles in Cn takes a little care. Recall that for two non-zero vectors x,y ∈ Rn,

the angle between them is

θ(x,y) = arccos

(
x · y
‖x‖‖y‖

)
,

and this has the property that for all a > 0, the angle between ax and y is the same as the angle

between x and y. That is, angles depend only on direction, and not length. On the other hand, for

all a < 0, the angle between ax and y is the same as the angle between −x and y.

The angle between two complex vectors w and z will be defined so that for any two non-zero

vectors w and z, the angle between w and cz is the same as the angle between w and z for all

complex c 6= 0. The difference between the real case and the complex case is that the complex plane
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is not ordered, so it makes no sense to attempt to distinguish between positive an negative multiples.

Therefore, in the complex case, we define the angle between w and z in Cn to be

θ(w, z) = arccos

(
|〈w, z〉|
‖w‖‖z‖

)
.

Notice that by the Cauchy-Scwarz inequality in Cn, 0 ≤ |〈w, z〉| ≤ ‖w‖‖z‖ so that the argument of

the arccos function is within its domain of definition, so that the angle is well-defined.

Since |〈w, cz〉| = |〈cw, z〉| = |c||〈w, z〉| and ‖cw‖ = c‖w‖ and likewise ‖cz‖ = |c|‖z‖ for all

complex c, it follows that for all complex c 6= 0,

θ(cw, z) = θ(w, z) = θ(w, z) ,

and

0 ≤ θ(w, z) ≤ 2π .

That is, in the complex case, angles are always acute since the angle between w and z is the same as

the angle between w and −z. We are in a sense measuring the angle between the lines through these

vectors, which is what we would have gotten has we taken the absolute value of the dot product in

the real case.

3.4.3 Continuously differentiable curves in Cn

Let z(t) be a function from the open interval (a, b) ⊂ R to Cn. We say that z(t) is continuous at

t = t0 ∈ (a, b) in case

lim
t→t0
‖z(t)− z(t0)‖ = 0 .

We say that z(t) is continous in case it is continuous at each t0 ∈ (a, b), its domeain of definition.

We say that z(t) is differentiable at t0 with derivative w in case

lim
t→t0

‖z(t)− [z(t0) + (t− t0)w]‖
|t− t0|

= 0 . (3.49)

Let x(t) = <(z(t) and let y(t) = =(z(t). Let u = <(w) and let v = =(w). Then

‖z(t)− [z(t0) + (t− t0)w]‖ = ‖(x(t)− [x(t0) + (t− t0)u]) + i(y(t)− [v(t0) + (t− t0)v])‖ ,

and so

‖z(t)− [z(t0) + (t− t0)w]‖2 = ‖x(t)− [x(t0) + (t− t0)u]‖2 + ‖y(t)− [v(t0) + (t− t0)v])‖2 . (3.50)

It follows that whenver (3.49) is satisfied, then

lim
t→t0

‖x(t)− [x(t0) + (t− t0)u]‖
|t− t0|

= 0 ,

and so x(t) is differentiable at t0 with derivative x′(t0) = u. By the same reasoning, y(t) is differen-

tiable at t = t0 with y′(t) = v. Conversely, suppose that x(t) is differentiable at t0 with derivative

x′(t0) = u, and that y(t) is differentiable at t = t0 with y′(t) = v. Then

lim
t→t0

1

|t− t0|
(
‖x(t)− [x(t0) + (t− t0)u]‖2 + ‖y(t)− [v(t0) + (t− t0)v])‖2

)1/2
= 0 ,
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and then by (3.50), z(t) is differentiable at t = t0 with derivative z′(t) = w.

In summary, z(t) is differentiable at t = t0 if and only if x(t) = <(z(t)) and y(t) = =(z(t) are

both differentiable at t = t0, and in this case

z′(t0) = x′(t0) + iy′(t0) .

We say that a curve z(t) defined on (a, b) ⊂ R is continuously differentiable on (a, b) in case z(t)

is differentiable at each t ∈ (a, b) an z′(t) is a continuous function of t in (a, b).

3.4.4 Complex solutions and real solutions

We now know what it means for a curve z(t) in Cn to be continuously differentiable, and we know

how to define the matrix vector product Az(t) where A is any n × n matrix. Hence we know what

it means for z(t) to sole the forst order linear system

z′(t) = Az(t) .

Let x(t) = <(z(t) and let y(t) = =(z(t)). Then we have seen that z′(t) = x′(t) + iy(t).

Now suppose that A is real; i.e., each entry of A is real. Then we have seen that

Az(t) = Ax(t) + iAy(y) .

Therefore, when A is real, z′(t) = Az(t) if and only if

x′(t) + iy′(t) = Ax(t) + iAy(t) .

But since two vectors in Cn are equal if and only if their real and imaginary parts are both equal,

z′(t) = Az(t) if and only if

x′(t) = Ax(t) and y′(t) = Ay(t) .

Thus when A is real, every single complex solution of z′(t) = Az(t), provides two real solutions

of x′(t) = Ax(t), namely x(t) = <(z(t)) and y(t) = =(z(t)).

Example 32. Let A be the 2× 2 matrix

A =

[
0 1

−1 0

]
.

Then, as we saw in Example 28, the eigenvalues of A are i and −i, and the corresponding eigenvactors

are

z1 = (1, i) and z2 = (1,−i) .

Let us define

z(t) = eitz1 .

Then

z′(t) = eitiz1 = eitAz1 = A(eitz1) = Az(t) .
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Thus, z(t) is a complex solution. To find its real and imaginary parts, we use Euler’s formula

eit = cos t+ i sin t to write

z(t) = (cos t+ i sin t)(1, i) = ( cos t+ i sin t, i cos t− sin t) = ( cos t,− sin t) + i( sin t, cost) .

That is,

x(t) = <(z(t)) = ( cos t,− sin t) and y(t) = =(z(t)) = ( sin t, cost)

are two real solutions of the equation. In other words, x′(t) = Ax(t) and y′(t) = Ay(t) as you can

easily check.

Whenever A is an n × n real matrix, the complex eigenvalues and eigenvectors, if any, come in

pairs. Suppose that =(µ) 6= 0, and z ∈ Cn is not the zero vector. Suppose that Az = µz. Then since

all of the entries of A are real, it follows that

Az = Az .

Also, since for any two complex number w, z, (wz) = (w)(z), it follows that

(µz) = µ(z) .

Therefore,

Az = µz ⇒ Az = µ z .

In other words, z is an eigenvector with eigenvalue µ.

The real and imaginary parts of z(t) and z(t) are the same up to a sign, and so while each

provides us with two real solutions when A is real, up to a sign they provide us with the same two

solutions.

3.4.5 The general structure of the matrix exponential

Let A be an n × n matrix. Let µ1, . . . , µn be the roots of the characteristic polynomial, repeated

according to the number of times they show up in the factorization of the characteristic polynomial

of A. That is,

det(A− tI) =

n∏
j=1

(µj − t) .

Let dj be the number of time the number µj is repeated as a root, so that dj = 1 for all j if and only

if A has n distinct eigenvlaues.

These may be complex, so we write λj = <(µj) and κj = =(µj), so that

µj = λj + iκj .

We know that there exists a linearly independent set {v1, . . . ,vn} os generalized eigenvectors of

A so that for each j,

(A− µj)djvj = 0 ,

although this might also be true for some lower power of the matrix (A−µj). In any case, no higher

power is needed.
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Then if we define

zj(t) = etµj

 dj∑
k=0

(A− µjI)vj

vj , (3.51)

we have that for each j.

z′j(t) = Azj(t) , zj(0) = vj .

Finally, define an n× n matrix M(t) by

M(t) = [z1(t), . . . , zn(t)] .

That is, the jth column of M(t) is the solution zj(t). Differentiating entry by enry, or, what is the

same, column by column,

M ′(t) = [z′1(t), . . . , z]n(t)] = [Az1(t), . . . , Azn(t)] = A[z1(t), . . . , zn(t)] = AM(t) .

Also,

M(0) = [z1(0), . . . , zn(0)] = [v1, . . . ,vn] = V .

Therefore,multiplying on the right be the constant matrix V −1 we obtain the time dependent

matrix M(t)V −1 which satisfies

d

dt
(M(t)V −1) = A(M(t)V −1) and (M(0)V −1) = I .

But the unique matrix with these properties is etA. Therefore,

etA = M(t)V −1 = [z1(t), . . . , zn(t)][v1, . . . ,vn]−1 . (3.52)

If the matrix A is real, etA will be real, as is obvious from its power series definition. It is nor

obvious from the formulas that the right hand side will be real, but we have just shown that it must

be.

Example 33. Once more, let A be the 2× 2 matrix

A =

[
0 1

−1 0

]
.

Then, as we saw in Example 28, the eigenvalues of A are i and −i, and the corresponding eigenvactors

are

v1 = (1, i) and v2 = (1,−i) .

The two complex solutions corresponding to these eigenvecotrs are

z1(t) = eit(1, i) and z2(t) = e−it(1,−i) .

The matrix M(t) is then

M(t) =

[
eit e−it

ieit −ie−it

]
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and

V =

[
1 1

i −i

]
so that V −1 =

1

2i

[
i 1

i −1

]
.

We now compute that

etA = M(t)V −1 =
1

2i

[
eit e−it

ieit −ie−it

][
i 1

i −1

]
=

[
cos t sin t

− sin t cos t

]
,

as we found before. Notice that we obtain the real matrix etA as the product of two complex matrices.

Now we come to an important theorem that follows easily from what we know about the general

structure of the matrix exponential.

Theorem 16 (Stability Theorem). Let A be an n × n matrix. Let {µ1, . . . , µn} be its eigenvalues.

Suppose that each of these has a strictly negative real part, and define

λ = max{<(µ1), . . . ,<(µn)} < 0 .

Then for any κ with

0 < κ < −λ ,

there is a constant Cκ such that

‖etA‖F ≤ Cκe−tκ

for all t > 0. In particular, for all x0 ∈ Rn, the solution of x′(t) with x(0) = x0 satisfies

limt→0 e
tk‖x(t)‖ = 0 for all 0 < κ < −λ.

However, if even on eigenvalue has a strictly positive real part, then there is an x0 ∈ Rn so that

he solution of x′(t) with x(0) = x0 satisfies limt→∞ e−ta‖x(t)‖ = ∞ for some a > 0, meaning that

the solution “blows up” exponentially fast.

Proof. We have seen that there is a set {v1, . . . ,vn} of n linearly independent generalized eigenvectors

of A. Let zj(t) be the solution of z′(t) = Az(t) with zj(0) = vj . This solution is given by (3.51), and

we see from tis that each zj(t) has the form

zj(t) = etµjpj(t)

where each entry of pj(t) is a polynomial in t of degree at most dj . Then since

|etµj | = |etλjeitκj | = etλj |eitκj | = etλj ,

‖zj(t)‖ ≤ etλj‖pj(t)‖ .

Since the exponential function grows faster than any power, we see that if λj < 0, then

lim
t→∞

‖zj(t)‖ = 0 .

In fact, we can say more: Since for any ε > 0,

lim
t→∞

e−εt‖pj(t)‖ = 0 ,
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There is a Cj,ε so that

e−εt‖pj(t)‖ ≤ Cj,ε for all t ≥ 0 .

We then have

‖zj(t)‖ ≤ Cj,εet(λj+ε) . (3.53)

Thus we see that if λj < 0, then ‖zj(t)‖ converges to zero exponentially fast, almost at rate etλ.

Now suppose that all of the eigenvalues of A have a strictly negative real part. That is for some

λ,

λj ≤ λ < 0 .

Then for any 0 < κ < −λ, there is a constant C so that

‖zj(t)‖ ≤ Ce−tb .

From this it follows that the Frobenius norm of the matrix M(t) satisfies

‖M(t)‖F ≤
√
nCe−tb .

Finally, from this we learn that

‖etA‖F ≤ (‖V −1‖F
√
nC)e−bt .

On the other hand, A has any eigenvalue µ with λ = <(µ) > 0, then there is an eigenvector v

with this eigenvalue and z(t) = etµv = etAv. Calculating as above,

‖etµv‖ = etλ‖v‖ ≤ ‖etA‖F‖v‖ .

In this case there are solutions of x′(t) = Ax(t) with ‖x(t)‖ gowing exponenitally fast, and also

‖etA‖F ≥ etλ, so that ‖etA‖F exponentially fast.

Except in case all of the eigenvalues of A are purely imaginary, we have either limt→∞ ‖etA‖F = 0

or else limt→∞ ‖etA‖F = ∞. We shall study the important case in whihc all eigenvalues are purely

imaginary in the next chapter.

3.5 Exercises

1. Let v(x, y) be the vector field defined on the right half-plane U = {(x, y) : x > 0} by

v(x, y) =

(
x , − 1

x2
− 2y + x2y2

)
.

The system corresponding to this vector field is recursively coupled since the rate of change of

x depends on x alone. This can be used to solve the system, but the system can also be completely

decoupled by change of variables. There is a method for finding such a change of variables, but at

this point in the course our goal is only to become familiar with how systems of differential equations

transform under changes of variables. So we will start with the change of variables as a given.
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(a) Define

u(x, y) = − lnx and v(x, y) = x2y .

The transformation (x, y)→ (u, v) invertible transforms the right half-plane onto all of R2. Compute

the inverse transformation.

(b) Suppose that x(t) solves x′(t) = v(x(t). Define u(t) = (u(x(t)), v(x(t)). Using the chain rule,

d

dt
u(x(t)) =

∂

∂x
u(x(t))x′(t) +

∂

∂y
u(x(t))y′(t)

and
d

dt
v(x(t)) =

∂

∂x
v(x(t))x′(t) +

∂

∂y
v(x(t))y′(t) ,

find the vector field w(u, v) on the u, v plane such that

u′(t) = w(u(t)) .

You should find that this vector field describes a completely decoupled system.

(c) Solve the system u′(t) = w(u(t)) by separately solving the decoupled one dimensional equations.

Show that the solution of this equation with u(0) = (uo, v0) exists for all t and is unique if and only

if |v0| ≤ 1.

(d) Use the inverse transformation you found in part (a) to express the solution of u′(t) = w(u(t))

with u(0) = u0 = (u(x0, y0), v(x0, y0)) in terms of x and y. Show that the resulting curve x(t)

satisfies x′(t) = v(x(t)) with x(0) = x0.

(e) Show that the solution of x′(t) = v(x(t)) with x(0) = x0 exists for all time and is unique if and

only if |x2
0y0| ≤ 1, and give the solution for all such (x0, y0).

(f) Now go back to the original equation and use the fact that x′ = x is solved by x(t) = x0e
t to

convert the equation for y into a Ricatti equation, and solve this. Compare your two solutions.

2. Consider the vector field v(x) defined on U = {(x, y) : x > |y|} defined by

v(x, y) = (x− y
√
x2 − y2 , y − x

√
x2 − y2) .

Notice that on the boundary of U , the vecotr field is tangent to the boundary, so that the vector field

does not ever carry the solution out of U .

Define the change of variables

u(x, y) =
1

2

(
x+ y

x− y

)
and v(x, y) =

√
x2 − y2 .

(a) Let x(t) be any continuously differentiable curve in R2 with values in U . Define a curve

u(t) = (u(x(t)), v(x(t))) .

Find a vector field w defined on an open set V ⊂ R2 so that

x′(t) = v(x(t)) if and only if u′(t) = w(u(t)) .
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(b) Find the general solution of u′(t) = w(u(t)) with u(0) ∈ V .

(c) Find the general solution of x′(t) = w(u(t)) with x(0) ∈ U , and find the corresponding flow

transformation.

3. Consider the differential equation x′ = Ax where

A =


−1 0 1

0 −2 4

0 0 −2

 .

Find the general solution x(t) = etAx0 in closed form. That is, compute etA. (Note that this system

is recursively coupled.)

4. Consider the differential equation x′ = Ax where

A =

[
−4 2

5 −1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.

5. Consider the differential equation x′ = Ax where

A =

[
5 −1

4 1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.

6. Consider the differential equation x′ = Ax where

A =

[
−4 2

9 −1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.

7. Consider the differential equation x′ = Ax where

A =

[
5 −1

8 1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.

8. Compute etA for

A =


−1 2 2

−2 −1 1

−2 −1 −1

 .



3.5. EXERCISES 87

9 Compute etA for

A =


5 −3 −2

8 −5 −4

−4 3 3

 .

10. Compute etA for

A =


3 2 2

2 3 2

2 2 3

 .

11. Compute etA for

A =


4 −1 2

1 2 2

−2 2 1

 .
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Chapter 4

NON-LINEAR AND

NON-AUTONOMOUS SYSTEMS

4.1 Time-dependent vector fields

4.1.1 Driven linear systems and Duhamel’s formula

Let A be an n× n matrix, and let g(t) a continuous curve in Rn. The equation

x′(t) = Ax(t) + g(t) (4.1)

describes a driven linear system. We can think of g(t) a representing the effects of a “driving forces”

and we shall soon see examples in which this interpretation is natural.

If we define the vector field v(t,x) by

v(t,x) = Ax + g(t) ,

we see that our equation has the form x′(t) = v(t,x(t)). Notice that

‖v(t,y)‖ − v(t,x) = ‖A(y − x)‖ ≤ ‖A‖F‖y − x‖ ,

and so regardless of how g(t) is defined, this vector field satisfies the Lipschitz condition that we

have shown implies uniqueness. Hence, whenever solutions of (4.1) exist, there will be exactly one

solution passing through x0 at t = t0, no matter how x0 and t0 are chosen.

Now let us turn to solving the equation. The one dimensional version of (4.1) is

x′(t) = ax(t) + g(t) .

To solve this, we would bring all of the terms involving x(t) to the left, and multiply through by

e−at. to obtain
d

dt
[e−atx(t)] = e−atg(t) .

c© 2014 by the author.
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Supposing the x(t0) = x0, and integrating both sides from t0 to t, we find

e−tax(t) = e−t0x) =

∫ t

t0

e−asg(s)ds ,

and finally we obtain

x(t) = e(t−t0)ax) +

∫ t

t0

e(t−s)ag(s)ds .

Using what we have learned about the matrix exponential functions, we can solve (4.1) in essen-

tially the same way. Let us seek the solution of (4.1) that satisfies x(t0) = x0. We may re-write (4.1)

as

x′(t)−Ax(t) = g(t) .

Multiplying both sides by e−tA we obtain

e−tA(x′(t)−Ax(t)) = e−tAg(t) .

But the left hand side is the t derivative of e−tAx(t), so we have

d

dt
[e−tAx(t)] = e−tAg(t) .

Integrating from t0 to t, we obtain

e−tAx(t)− e−t0Ax0 =

∫ t

t0

e−sAg(s)ds .

Multiplying through by etA and regrouping terms we find, using properties of the matrix exponential

such as etAe−sA = e(t−s)A,

x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−s)Ag(s)ds . (4.2)

Since we have assumes g(t) to be continuous, the integral on the right exists. Moreover, by the

Fundamental Theorem of Calculus,

d

dt

∫ t

t0

e(t−s)Ag(s)ds = e(t−s)Ag(s)

∣∣∣∣
s=t

+

∫ t

t0

Ae(t−s)Ag(s)ds

= g(t) +A

(∫ t

t0

e(t−s)Ag(s)ds

)
.

Combining this with (e(t−t0)Ax0)′ = Ae(t−t0)Ax0, we see that if we define x(t) by (4.2), then x(t)

satisfies (4.1). Moreover, it is clear that x(t0) = bx0. Finally, be what we have noted above concerning

uniqueness, (4.2) is the only solution of (4.1) that passes through x0 at t = t0. The formula (4.2) for

this solution is known as Duhamel’s formula.

Theorem 17. Let A be an n×n matrix and g(t) a continuous curve in Rn. Let t0 ∈ R and x0 ∈ Rn.

Then there is a unique solution of (4.1) such that x(t0) = x0, and this solution exists for all t ∈ R
and is given by Duhamel’s formula (4.2).
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Example 34. As in Example 26, consider the equation x′(t) = Ax(t) in R2 where A is the 2 × 2

matrix

A =

[
−1 2

3 −2

]
.

Let

g(t) = (1, t) .

We shall now use Duhamel’s formula to produce the general solution of

x′(t) = Ax(t) = g(t) with x(0) = x0 .

We have seen in Example 26 that

etA =
1

5

[
2e−4t + 3et 2et − 2e−4t

3et − 3e−4t 3e−4t + 2et

]
x .

It often helps to make a change of variable in computing the integral

∫ t

0

e(t−s)Ag(s)ds. Let u = t− s
so that du = −ds, and so u = t when s = 0 and u = 0 when s = t. Therefore∫ t

0

e(t−s)Ag(s)ds =

∫ t

0

euAg(t− u)du .

We now compute compute∫ t

0

euAg(t− u)du =
1

5

∫ t

0

(2e−4u + 3eu , 3eu − 3e−4u)du

+
1

5

∫ t

0

( 2eu − 2e−4u , 3e−4u + 2eu)(t− u)du

=
1

20
(12et − 2e−4t − 10 , 12et + 3e−4t − 15)

+
1

80
(32et − 2e−4t − 40t− 30 , 32et + 3e−4t − 20t− 35)

=
1

16
(16et − 2e−4t − 8t− 14 , 16et + 3e−4t − 4t− 19) .

Then, with x0 = (x0, y0),

etAx0 =
1

5
([3et + 2e−4t]x0 + [2et − 2e−4t]y0 , [3et − 3e−4t]x0 + [2et + 3e−4t]y0) .

Putting it all together, the solution is

x(t) =
1

5
([3et + 2e−4t]x0 + [2et − 2e−4t]y0 , [3et − 3e−4t]x0 + [2et + 3e−4t]y0)

=
1

16
(16et − 2e−4t − 8t− 14 , 16et + 3e−4t − 4t− 19) .

Our next example is extremely important. It concerns a second order equation, since it comes

from an important case of Newton’s equation. However, our usual reduction of order method brings

this equation we consider into a form to which Duhamel’s formula may be applied.
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Example 35. Consider the equation

mx′′(t) = −kx(t) + f(t) (4.3)

which describes the motion of an object of mass m at the end of a spring subject to Hooke’s law with

a spring constant k, and also an externally applied force f(t) Since k/m > 0 we may define κ > 0

by κ = k/m. The quantity
√
κ is the natural frequency of the spring. The period of oscillation is

T = 2π/ω.

If we define y(t) = x′(t), and x(t) = (x(t), y(t)) and g(t) = (0,m−1f(t)), our second order

equations is equivalent to the first order driven system

x′(t) = Ax(t) + g(t)

where

A =

[
0 1

−κ 0

]
.

Computing det(A− tI), we find t2 + κ, so the eigenvalues of A are ±i
√
κ.

A− i
√
κI =

[
−i
√
κ 1

−κ −i
√
κ

]
.

Hence (1, i
√
κ) is an eigenvector of A with eigenvalue i

√
κ. The corresponding complex solution of

z′(t) = Az(t) is

z(t) = ei
√
κt(1, i

√
κ)

= (cos(
√
κt) + i sin(

√
κt))(1, i

√
κ)

= ( cos(
√
κt)−

√
κ sin(

√
κt)) + i( sin(

√
κt),
√
κ cos(

√
κt)) . (4.4)

Using these two real solutions, we build the matrix exponential:

etA =

[
cos(
√
κt) sin(

√
κt)

−
√
κ sin(

√
κt)

√
κ cos(

√
κt)

][
1 0

0
√
κ

]−1

=

[
cos(
√
κt)

√
κ
−1

sin(
√
κt)

−
√
κ sin(

√
κt) cos(

√
κt)

]
.

Now Duhamel’s formula gives us that

x(t) =

[
cos(
√
κ(t− t0))

√
κ
−1

sin(
√
κ(t− t0))

−
√
κ sin(

√
κ(t− t0)) cos(

√
κ(t− t0))

]
x0

+

∫ t

t0

[
cos(
√
κ(t− s))

√
κ
−1

sin(
√
κ(t− s))

−
√
κ sin(

√
κ(t− s)) cos(

√
κ(t− s))

]
(0,m−1f(t))ds .

In particular,

x(t) = x0 cos(
√
κ(t− t0)) +

y0√
κ

sin(
√
κ(t− t0)) +

1

m
√
κ

∫ t

t0

sin(
√
κ(t− s))f(s)ds (4.5)

is the unique solution of (4.3) with x(t0) = x0 and x′(t0) = y0.
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To go further, we need an explicit formula for the driving force f . An interesting case arises

when this too is periodic with some frequency η. (Thus, the period is 2π/η.) Now suppose that

f(t) = α cos(ωt+ φ0) (4.6)

where α is the amplitude, ω is the frequency and φ0 is the phase shift. We may assume without loos

of generality that α > 0 and ω > 0.

Recall that sin(A+B) = sin(A) cos(B) + sin(B) cos(A). From this we obtain

sin(A) cos(B) =
1

2
[sin(A+B) + sin(A−B)] .

Thus,

sin(
√
κ(t− s)) cos(ωs+ φ0) =

1

2
[sin(
√
κt+ φ0 − (

√
κ− ω)s) + sin(

√
κt− φ0 − (

√
κ+ ω)s]

We can now easily do the integration from t = 0 to t. (Taking t0 = 0 simplifies the following

calculations, and we can change the time later once we have these computations are done.)∫ t

0

sin(
√
κ(t− s)) cos(ωs+ φ0)ds =

1

2

1√
κ− ω

[cos(ωt+ φ0)− cos(
√
κt+ φ0)]

+
1

2

1√
κ+ ω

[cos(ωt+ φ0)− cos(−
√
κt+ φ0)] ,

where we assume for the time being that ω 6= ±
√
κ. (We shall remove this condition below.) To

simplify the result, define

η :=

√
κ+ ω

2
and ξ :=

√
κ− ω

2
.

Then

cos(ωt+ φ0)− cos(
√
κt+ φ0) = cos([ηt+ φ0]− ξt)− cos([ηt+ φ0] + ξt)

= 2 sin(ηt+ φ0) sin(ξt)

where we have used

cos(A−B)− cos(A+B) = 2 sin(A) sin(B) .

Therefore,
1

2

1√
κ− ω

[cos(ωt+ φ0)− cos(
√
κt+ φ0)] = 2 sin(ηt+ φ0)

sin(ξt)

ξ
.

Likewise,

cos(ωt+ φ0)− cos(−
√
κt+ φ0) = cos([ξt+ φ0]− ηt)− cos([ξt+ φ0] + ηt)

= 2 sin(φ0 − ξt) sin(ηt)

Therefore,
1

2

1√
κ+ ω

[cos(ωt+ φ0)− cos(−
√
κt+ φ0)] = 2 sin(φ0 − ξt)

sin(ηt)

η
.
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Altogether, (4.5) in the case t) = 0, becomes

x(t) = x0 cos(
√
κt) +

y0√
κ

sin(
√
κt)

+
2α

m
√
κ

[
sin(φ0 − ξt)

sin(ηt)

η
+ sin(ηt+ φ0)

sin(ξt)

ξ

]
. (4.7)

If we define t̃ = t− t0, so that t = t0 corresponds to t̃ = 0, the driving force becomes

f(t) = α cos(ω(t̃+ t0) + φ0) = α cos(ωt̃+ (ωt0 + φ0)) = α cos(ωt̃+ φ̃0) ,

where φ̃0 = ωt0+φ0. Thus, (4.7) is valid with t replaced by t̃ = t−t0 and φ0 replaced by φ̃0 = ωt0+φ0.

Making these substitutions, we obtain the formula for a general starting time.

The previous example solves a very important equation. We shall soon learn how to decouple

a general class of linear systems into parts that obey the equation we have just solved. This will

provide much useful information on the behavior of vibrating mechanical systems.

As long as ω 6=
√
κ, so that η 6= 0, the function in (4.7) is bounded. Consider the case in which

ω is very close to
√
κ, but not equal to it. Then η is closes to zero, and the dominant term in the

formula for x(t) is the one with η in the denominator. We have

x(t) ≈ 2α

m
√
κ

sin(φ0 − ξt)
sin(ηt)

η
(4.8)

If we plot this we see a high-frequency – ξ – sinusoidal oscillation with large amplitude (since η

is in the denominator) that is modulated by a low frequency oscillation sin(ηt). This produces the

phenomenon of beats. If you strike two tuning forks with close frequencies, you will hear a very low

frequency modulation of the ringing.

To get a visual understanding of this, let us look at some plots of x(t) where we take x0 = y0 = 0,

φ0 = π/2m, and α =
√
κ/2 in (4.7) so that

x(t) = cos(ξt)
sin(ηt)

η
+ cos(ηt)

sin(ξt)

ξ
.

The next plot shows w(t) for ξ = 1/20 and η = 1, for 0 ≤ t ≤ 200:
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Also shown in the plot is the ”envelope curve”
1

20
sin

(
1

20
t

)
. The second term in w(t) dominates

the first one, and if we leave the latter out, the plot is essentially unchanged:

This is an illustrates the phenomenon of beats described above: You see here high-frequency

(rapid) oscillation, modulated by a low frequency amplitude oscillation. If you listened to this pattern

of vibrations played with the fast oscillations played in the audible range, you would hear this recency

at a sinusoidally varying volume, with the volume modulations at the longer period. The volume

modulations are called beats.

If we lower ξ further, both the amplitude and period of the beats increases. Here is the plot for

η = 1 and ξ = 1/50:

Here is the plot for η = 1 and ξ = 1/300:
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What we see in the last plot is very close to resonance. Resonance occurs when the driving

frequency ω (or −ω) is exactly equal to
√
κ. As ω approaches

√
κ, ξ approaches zero and η approaches

√
κ. Thus, by l’Hospital’s rule,

lim
ω→
√
κ
[cos(ξt)

sin(ηt)

η
+ cos(ηt)

sin(ξt)

ξ
] =

sin(
√
κt)√
κ

+ t cos(
√
κt) .

The amplitude of the oscillations now grows linearly, without bound.

In an actual mechanical system, once the oscillation become large enough, some sot of breakdown

will occur. For example, if you take a wine glass, and tap it with a fork, say, you will hear a “ping”.

The frequency of this ping is the natural frequency
√
κ of the wine glass.

If you now turned on an oscillator producing sound at exactly (or nearly exactly) this frequency,

the glass would begin to vibrate with larger and larger oscillations, and eventually shatter.

Suspension bridge failures have been caused by resonance. The first example on record occurred

with the Broughton Suspension Bridge that was built in 1826 across the River Irwell near Manchester,

England. This was among the first suspension bridges built anywhere in Europe. On April 12, 1831,

troops of the 60th rifle Corps were marching across the bridge four abreast and marching in step

– and unfortunately, the frequency of their march was one of the natural frequencies of the bridge.

Resonance occurred, the oscillations built up – which the soldiers found amusing – and then, spoiling

the amusement, the bridge collapsed, dumping 40 men into the river. Since this event, soldiers

everywhere break cadence when crossing bridges.

A similar collapse occurred with the Tacoma Narrows Bridge November 7, 1940. In this case,

wind caused some of the cables to vibrate at a natural frequency of certain twisting motions of the

bridge. The resonance produced larger and larger twists, eventually destroying the bridge.

Of course to understand bridge collapse, we must look at systems of coupled oscillators, which

we shall do later. The key method for analyzing these is to make a change of variables, which always

exists, that decouples the system. Each decoupled component my be solved by the formula (4.7) we

have derived here. Thus, we have already accomplished a significant part of building a methodology

for analyzing vibrating mechanical systems.
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4.1.2 Stability of equilibrium points

Let v be a time independent vector field defined on some open subset U of Rn. In this subsection,

we shall suppose that v is continuously differentiable. Suppose that x? is an equilibrium point of v.

That is, v(x?) = 0. Associated to this equilibrium point is the steady state solution of x′(t) = v(x(t))

with x(t) = x? for all t. Since v(x) is Lipschitz on an open set around x? (since v is continuously

differentiable), it follows that for any t0, the equilibrium solution is the only solution to x′(t) = v(x(t))

with x(t0) = x?.

We shall now analyze the stability of this equilibrium point. Roughly speaking, the equilibrium

point x? is stable in case for all x0 sufficiently close to x?, the solution of x′(t) = v(x(t)) with

x(t0) = x0 is such that x(t) remains close to x? for all t > t0, or, better yet, not only stays close, but

satisfies limt→∞ x(t) = x?. We now make this precise.

Definition 16 (Stability). An equilibrium point x? of a vector field v is Lyapunov stable in case for

every ε > 0, there is δ > 0 so that whenever x(t) solves x′(t) = v(x(t)) with ‖x(t0)− x?‖ < δ, then

the solution exists for all t > t0 and

‖x(t)− x?‖ < ε

for all t > t0.

The equilibrium point x? is asymptotically stable if it is Lyapunov stable and moreover if there

is a δ > 0 such that whenever x(t) solves x′(t) = v(x(t)) with ‖x(t0)− x?‖ < δ,

lim
t→∞

x(t) = x? .

Our first examples concern the case in which v(x) is linear, so that for some n × n matrix A,

v(x) = Ax. For any n × n matrix, A0 = 0, so that x? = 0 is always an equilibrium point for any

linear vector field. Whenever A is invertible, the only solution of Ax = 0 is x = 0 so that in this

case 0 is the only equilibrium point. Let us now analyze the stability of x? = 0 for a linear vector

field Ax.

Example 36. Once more, consider A =

[
0 1

−1 0

]
. As we have seen, in this case

etA =

[
cos t sin t

− sin t cos t

]
.

Therefore, the solution of x′(t) = Ax(t) with x(0) = x0 is

x(t) =

[
cos t sin t

− sin t cos t

]
x0 .

Since the transformation generated by etA is a rotation, ‖etAx0‖ = ‖x0‖ for all t, and hence for all

solutions, ‖x(t)‖ = ‖x0‖. That is,

‖x(t)− 0‖ = ‖x0 − 0‖ . (4.9)

Now choose any ε > 0, and take δ = ε. Then we see that whenever ‖x0 − 0‖ < δ, ‖x(t)− 0‖ < ε

for all t > 0 (and in this case, for all t). Therefore, the equilibrium point 0 is Lyapunov stable in
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this case. However, it is not asymptotically stable: We see from (4.9) that the only case in which

limt→∞ ‖x(t)− 0‖ = 0 is that in which x0 = 0.

Example 37. Consider A =

[
−1 0

0 −1

]
. In this case

etA =

[
e−t 0

0 e−t

]
.

Therefore, the solution of x′(t) = Ax(t) with x(0) = x0 is x(t) = e−tx0. It follows that

‖x(t)− 0‖ = e−t‖x0 − 0‖ . (4.10)

In particular, ‖x(t) − 0‖ is monotone decreasing so that the equilibrium point 0 is Lyapunov

stable. Moreover, limt→∞ ‖x(t)− 0‖ = 0, so that it is also asymptotically stable.

There is a much more general version of this. We have seen that if A is any n× n matrix all of

whose eigenvalues have strictly negative real parts that for some a > 0, and C <∞,

‖etA‖F ≤ C−ta .

It follows that in this case, for all x0 ∈ Rn, the solution of x′(t) = Ax(t) with x(0) = x0 satisfies

‖x(t)‖ ≤ Ce−ta‖x0‖ .

Let ε > 0, and take δ = ε/C. Then if ‖x0‖ < δ,

‖x(t)− 0‖ ≤ Ce−ta ε
C
≤ ε

for all t > 0. Thus, 0 is Lyapunov stable. Moreover,

lim
t→∞

‖x(t)− 0‖ = 0 ,

and so 0 is also asymptotically stable. On the other hand, if there is any eigenvalue that does not

have a strictly negative real part, there is a solution that does not tend to zero as t tends to infinity.

Thus, for linear systems, 0 is asymptotically stable if and only if all of the eigenvalues of A have a

strictly negative real part.

Example 38. Consider A =

[
−1 0

0 1

]
. In this case

etA =

[
e−t 0

0 et

]
.

Therefore, the solution of x′(t) = Ax(t) with x(0) = x0 is x(t) = (e−tx0, e
ty0). It follows that of

y0 6= 0,

lim
t→∞

‖x(t)− 0‖ =∞ , (4.11)

so that the equilibrium point 0 is not even Lyapunov stable, let alone asymptotically stable.
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We now turn to the analysis of non-linear systems. Our main goal is to give conditions for

asymptotic stability by relating solutions of non-linear systems in the vicinity of an equilibrium point

to driven linear systems. To do this we linearize.

For x close to x?, we have

v(x) ≈ v(v0) + [Dv(x?)](x− x?) = [Dv(x?)](x− x?)

since v(x?) = 0.

The Jacobian matrix [Dv(x?)] plays the key role in the analysis of the stability of the equilibrium

point x?, as we now explain. To simplify our notation, let us define

A = [Dv(x?)] .

Then for all x close to x?, v(x) ≈ A(x− x?).

Let us suppose that x(t) is any solution of x′(t) = v(x(t)). We introduce y(t) = x(t)−x?. Since

x? is constant,

y′(t) = x′(t) = v(x) ≈ A(x− x?) = Ay(t) .

That is, for x(t) close to the equilibrium point x?, the relative position y(t) = x(t) − x? is an

approximate solution of the differential equation

z′(t) = Az(t) . (4.12)

This linear system is the linearization of the non-linear system x′(t) = x(x(t)) around the equilibrium

point x = x?. We have seen in Example 37 that 0 is asymptotically stable for (4.12) if and only if

all of the eigenvalues of A have a strictly negative real part.

One might hope that the non-linear system would be asymptotically stable if and only if its

linearization is asymptotically stable. This turns out to be the case.

Theorem 18. Let v be a continuously differentiable vector field defined on an open set U in Rn.

Suppose that x? ∈ U is an equilibrium point for v. Let A = [Dv(x?)]. Then x? is asymptotically

stable if and only if all of the eigenvalues of A have strictly negative real parts.

Proof. Suppose that all of the eigenvalues of A have strictly negative real parts. Let x(t) solve

x′(t) = v(x(t)) with x(0) = x0. Let y(t) = x(t)− x?. Then

y′(t) = x′(t) = v(x? + y(t)) with y(0) = x0 − x? . (4.13)

Define r(t) by

v(x? + y(t)) = Ay(t) + r(t) . (4.14)

Altogether, y(t) satisfies the driven linear system

y′(t) = Ay(t)) + r(t) with y(0) = y0 = x0 − x? , (4.15)

and therefore by Duhamel’s Formula,

y(t) = etAy0 +

∫ t

0

e(t−s)Ar(s)ds . (4.16)



100 CHAPTER 4. NON-LINEAR AND NON-AUTONOMOUS SYSTEMS

We now show that as long as y(t) stays small, the driving term r(t) stays really small. By the

definition of differentiability of vector valued functions, for all ε > 0, there is a δ > 0 so that

‖x− x?‖ ≤ δ ⇒ ‖v(x)−A(x− x?)‖ ≤ ε‖x− x?‖ . (4.17)

Since (4.17) can be written as

‖y‖ ≤ δ ⇒ ‖v(x? + y)−Ay‖ ≤ ε‖y‖ . (4.18)

we have that

‖r(t)‖ ≤ ε‖y(t)‖ (4.19)

as long as ‖y(t)‖ ≤ δ.
Since all of the eigenvalues of A have strictly negative real parts, there is an a > 0 and a C <∞

so that ‖etA‖F ≤ Ce−ta. We will apply the bounds we have derived with the choice

ε =
a

3C
. (4.20)

Let 1 ≥ δ > 0 be chosen so that (4.17) is valid for this choice of ε.

Consider initial data with

‖y0‖ ≤
δ

4
. (4.21)

We claim that the solution satisfies ‖y(t)‖ < 3δ/4 for all t > 0. If this is not the case, there is

some time t > 0 for which y(t) = 3δ/4. Then, by continuity, there is a first such time. Thus, under

our hypothesis, we may suppose that ‖y(t)‖ = 3δ/4, but ‖y(s)‖ ≤ 3δ/4 for all 0 ≤ s ≤ t. We shall

show this leads to contradiction.

Applying our bounds to (4.16) we obtain, using Minkowski’s inequality in the first line,

‖y(t)‖ ≤ Ce−ta‖y0‖+ C

∫ t

0

e−(t−s)a‖r(s)‖ds

≤ Ce−ta‖y0‖+ εCe−ta
∫ t

0

e−(t−s)a‖y(s)‖ds (4.22)

where we have used (4.19) in the last line.

Since by the choice of t, ‖y(s)‖ ≤ 3δ/4 for all 0 ≤ s ≤ t,∫ t

0

e−(t−s)a‖y(s)‖ds ≤ 3δ

4

∫ t

0

e−a(t−s)ds ≤ 3δ

4

∫ ∞
0

e−asds =
3δ

4a
.

Altogether,

‖y(t)‖ ≤ C‖y0‖+ εC
3δ

4a
.

Combining with (4.20) and (4.21), we obtain

‖y(t)‖ ≤ δ

2
.

This contradicts ‖y(t)‖ = 3δ/4. Hence ‖y(t)‖ < 3δ/4 for all t > 0. In particular, (4.19) and (4.22)

are valid for all t > 0, so that

‖y(t)‖ ≤ Ce−ta‖y0‖+
a

3

∫ t

0

e−(t−s)a‖y(s)‖ds . (4.23)
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Now define

y(t) = eta/2‖y(t)‖

so that ‖y(t)‖ = e−ta/2y(t). Inserting this in (4.23) we obtain

y(t) ≤ Ce−ta/2‖y0‖+
a

3

∫ t

0

e−(t−s)a/2y(s)ds . (4.24)

Now fix any T > 0, and suppose that the maximum of y(t) on [0, T ] occurs at t = t1. Then

max
0≤t≤T

y(t) = y(t1) ≤ Ce−t1a/2‖y0‖+
a

3

∫ t1

0

e−(t1−s)a/2y(s)ds

≤ C‖y0‖+

(
max

0≤t≤T
y(t)

)
a

3

∫ t1

0

e−(t1−s)a/2ds

≤ C‖y0‖+
2

3

(
max

0≤t≤T
‖y(t)‖

)
We conclude that for all T > 0,

max
0≤t≤T

y(t) ≤ 3C‖y0‖ ,

provided (4.21) is satisfied, and recalling the definition of y(t), we see that when (4.21) is satisfied,

‖y(t)‖ ≤ e−ta/23C‖y0‖ .

That is, whenever ‖x0 − x?‖ ≤ δ/4, then ‖x(t)− x?‖ ≤ e−ta/23C‖x0 − x?‖ for all t > 0. This proves

that x? is asymptotic stability: Any solution that starts near x? stays near x?, and converges to x?.

In fact, we have shown that the convergence is exponentially fast.

Example 39. Consider the vector field

v(x, y) = ((y − x)(1− x− y) , x(1/2 + y)) .

The first component equals zero along the linear y = x and x + y = 1. The second component

equals zero along the lines x = 0 and y = −1/2. We have an equilibrium point exactly where either

of the first two lines intersects either of the second two, since then both components will be zero.

Hence, there are four equilibrium points:

(0, 0) , (0, 1) , (− 1/2,−1/2) , (3/2,−1/2) .

The Jacobian matrix of v at x is

[Dv(x)] =

[
2x− 1 1− 2y
1
2 + y x

]
.

Evaluating [Dv(x)] at x = (0, 0), we find

[Dv(0, 0)] =

[
−1 1

1
2 0

]
.
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The characteristic polynomial is

t2 + t− 1
2 .

Therefore, the eigenvalues are

µ1 =

√
3− 1

2
and µ2 = −

√
3 + 1

2
.

Both are real, and µ1 > 0, so this equilibrium point is unstable.

Evaluating [Dv(x)] at x = (0, 1), we find

[Dv(0, 1)] =

[
−1 1

1
2 0

]
.

The characteristic polynomial is

t2 + t+ 3
2 .

Therefore, the eigenvalues are

µ1 = −1 + i
√

5

2
and µ2 = −1− i

√
5

2
.

Both are complex with imaginary part − 1
2 , so this equilibrium point is asymptotically unstable.

Evaluating [Dv(x)] at x = (− 1/2,−1/2), we find

[Dv(0, 0)] =

[
−2 2

0 − 1
2

]
.

The characteristic polynomial is

t2 +
5

2
t+ 1 .

Therefore, the eigenvalues are

µ1 = −2 and µ2 = − 1
2 .

Both are real and negative, so this equilibrium point is asymptotically unstable.

Evaluating [Dv(x)] at x = (3/2,−1/2), we find

[Dv(0, 0)] =

[
2 2

0 3
2

]
.

The characteristic polynomial is

t2 − 7

2
t+ 3 .

Therefore, the eigenvalues are

µ1 = 2 and µ2 = 3
2 .

Both are real and positive, so this equilibrium point is unstable.
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4.2 Oscilations of mechanical systems

The methods we have been studying provide an effective means for analyzing mechanical systems

near equilibrium, either freely oscilating, or being driven by periodic driving forces.

The systems we shall study typically require a large number of coordinates for their description.

For instance, we might be considering a suspension bridge, and then we would like to keep track of

the position in R3 of each of the points at both ends of each cable.

As you see, this will require a large number of coordinates. We can combine them all into one

vector x ∈ Rn, for large n. The vector x describes the configuration of the system.

In this subsection we shall consider conservative mechanical systems. There are mecahanical

systems in which the force F(x) is minus the gradient of a potential energy function V (x), so that

F(x) = −∇V (x) . (4.25)

The reason for the name is that for such systems, the total energy is conserved, as we explain

below.

Let M be a “mass matrix”, which you can think of as being a diagonal n × n matrix whose

diagonal entries are the masses associated to the various coordinate pointsl. More generally, for

systems described by Lagrangian dynamics, M is a symmetric n× n matrix all of whose eigenvalues

are strictly positive. We shall not go into Lagrangian dynamics now, but shall introduce it when

we come to the Calculus of Variations later in the course. In the meantime, we shall take the

applicability of the equation (4.26) for granted, and shall study its solutions, together with those of

a related equation that includes the effects of periodic external driving forces.

Newton’s Second Law, mass times accelleration equals force, together with the force specified in

(4.25) give us

Mx′′(t) = −∇V (x(t) . (4.26)

Define the Hamiltonian function, or energy function, H(x,y) on Rn × Rn by

H(x,y) =
1

2
y ·My + V (x) , (4.27)

Then for any solution x(t) of (4.26), using the symmetry of M , the chain rule,

d

dt
H(x(t),x′(t)) =

1

2
x′′(t() ·Mx′(t)

1

2
x′(t() ·Mx′′(t) +∇V (x(t)) · x′(t)

= [Mx′′(t) +∇V (x(t))] · x′(t) = 0 .
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Therefore, for any solution of (4.26),

H(x(t),x′(t)) = H(x(0),x′(0))

for all t. This constant of the motion is known the energy. The fact that it is ‘conserved’ is the origin

of the terminology ‘conervative system’.

Now suppose that x? is a strict local minimum of V . Then every solution of (4.26) with x(0) = x?

and x′(0) = 0 is starting at a strict local minimum of H, and therefore must remain at this strict

local minimum. That is. the equulibrium solution

x(t) = x? for all t (4.28)

is the only solution of (4.26) with x(0) = x? and x′(0) = 0

However, much more is true. Supose that

x(0) ≈ x? and x′(0) ≈ 0 .

Then

H(x(0),x′(0) ≈ H(x?,0) = V (x?) .

The conservation law then implies that

H(x(t), x′(t)) = H(x(0),x′(0) ≈ V (x?)

for all t. This in turn implies that

x(t) ≈ x? and x′(t) ≈ 0

for all t. That is, the conservation law forces any solution starting near a strict local minimum of V

with a sufficiently small initial velocity to stay near the staedy-state solution (4.28) for all time.

Example 40. Let us consider a simple one dimensional case for whihc we can graphically illustrate

the discussion just above. Let V (x) = cos(x) and consider unit mass. Then x? = π is a strict local

minimum, and

H(x, y) =
1

2
y2 + cosx .

Here is a contour plot of the Hamiltonian:
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The minimum value of H is −1 which is achieved at x? = π, and at every odd integer multiple

of π. While H itself is unbounded above, the potential energy has maxima when x is an even integer

multiple of π.

Since ∇V (x) = 0 at local maxima as well as local minima of V , for any integer k, x(t) = 2kπ

for all t is a stationary solution of

x′′ = sinx ,

which is the Newton equation for this simple system. Since x′(t) = 0 for all t for any such solution,

these stationary solutions have the energy

H(2kπ, 0) = 1 .

However, theres are not the only soltions with energy equal to 1. The contour curve given by

H(x, y) = 1 is plotted boldly in red. At each of the equauilibrium points (2kπ, 0), two of whihc are

shown, four branches of this contour curve meet. The upper branch that is fully shown here has y > 0,

and hence the motion is to the right along this branch. It runs between the equilibrium point at (0, 0)

and the equilibrium point at (2π, 0). The lower branch runs in the oppsoite direction.

For all values of E with −1 < E < 1, the connected components of the contour curves of H(x, y)

are simple closed curves. For values of E close to −1, they are nearly circles. As the value of E

appoaches +1, the become more elongated, and evetually merge with the red curves. For E > 1, the

curves are not closed: They oscilate up and down but run along above or below the whole length of

the x-axis.

The important point to notice is that if (x(0), x′(0)) is close to (π, 0), then the motion takes place

on a small closed curve about (π, 0) that is very close to circular, the more so the closer (x(0), x′(0))

is to (π, 0). Thus, (x(t), x′(t)) stays close to (π, 0) for all t.

What we have seen in the previous example is quite general: If x? is a strict local minimum of

V (x), then solutions of (4.26) with (x(0),x′(0)) in a sufficiently small neighborhood of (x?,0) will

remain in a small neighborhood of (x?,0) for all t.

Within this small nieghboorhod, we can effectively approximate (4.26) by a linear system that

an be solved explicitly. As we shall see, this yields much useful information about the exact solutions

of (4.26). The approximation process is known as linearization.

4.2.1 Linearization of Newton’s equations near a potential energy mini-

mum

Let x? be a strict local minimum of V , and suppose that V is twice continuously differentiable.

Introduce a new variable z(t) = x(t)− x?, which measures the displacement from equilibrium. Then

since x? is constant,

z′′(t) = x′′(t) = −∇V (x(t)) = −∇V (z(t) + x?) .

By the definition of the Hessian matrix, and the fact that ∇V (x?) = 0,

∇V (z + x?) = [HessV (x?)]z + o(‖z‖) .
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The approximation that consist of ignoring the o(‖z‖) remander term is known as linearization:

Linearizing about x?, we have

∇V (z(t) + x?) ≈ [HessV (x?)]z(t) ,

where [HessV (x?)] is the Hessian matrix of V at x?.

Recall that the Hessian matrix of a twice continuously differentiable function is always symmetric.

Recall that the Spectral Theorem says that for every symmetric n×n matrix, there is an orthonormal

basis {u1, . . . ,un} of Rn consisting of eigenvectors of that matrix.

We have already assumed that x? is a strict local minimum of V . This implies in particular that

all eigenvalues of [HessV (x?)] are non-negative. We shall generally require a more robust form of

stability, namely, that all of the eigenvalues of [HessV (x?)] are strictly positive. This brings us to a

basic definition:

Definition 17 (Positive definite matrix). An n×n matrix A is positive define in case it is symmetric,

and for all x 6= 0,

x ·Ax > 0 .

The next theorem provides a means to check whether a matrix is positive definite – by computing

its eigenvalues.

Theorem 19. A symmetric n× n matrix M is positive definite if an only if each of its eigenvalues

is positive.

Proof. Suppose M is positive definite. Let u be an eigenvector of M so that Mu = µu for some

µ ∈ R. We must show that µ > 0. Since M is positive definite, and since u 6= 0 by virtue of being

an eigenvector, u ·Mu > 0. But

u ·Mu = u · µu = µ‖u‖2 > 0

and so µ > 0 as was to be shown.

Next, suppose that each of the eigenvalues of M is strictly positive. Let {u1, . . . ,un} be an

orthonormal basis of Rn consisting of eigenvecotrs of M ; we shall write Auj = µjuj , j = 1, . . . , n.

Next, for any x ∈ Rn,

x =

n∑
j=1

(uj · x)uj .

Thus,

x ·Mx =

n∑
j=1

µj(uj · x)2 ≥ 0 ,

and since each µj is stricly positive, the sum is zero if and only if uj · x = 0 for each j, and this

means x = 0.

Of course, any diagonal matrix with striclty positive entries is a positive definite matrix. It turns

out that it is useful if we do not insist that the mass matrix M be diagonal, but allow it to be a

general positive definite matrix. We now come to the basic equation in the theory of machanical

vibrations:
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Definition 18 (The mechanical vibration equation). Let M and A be n×n symmetric matrices, each

with the property that all of its eigenvalues are strictly positive. The mechanical vibration equation

is the second order linear equation in Rn

Mz′′(t) = −Az(t) . (4.29)

It is in reduced form if M = In×n, the n× n identity matrix.

We have explained how such equations arise: The matrix A will be the Hessian of a potential

energy function at a local minimum x?, and z specifies the difference between the current configura-

tion, and the local minimum x?. To proceed, we need a few simple facts about symmetric matrices

with strictly positive eigenvlaues.

Lemma 4. Let A and B be positive definite n× n matrices. Then A+B is positive definite.

Proof. Since A and B are symmetric, so is A+B. Moreover, for any x 6= 0,

x · (A+B)x = x ·Ax + x ·Bx > 0 .

Lemma 5. Let A be a positive definite n × n matrix. Then A is invertible. Moreover, if C is an

other invertible n× n matrix, then CtAC is positive definite.

Proof. Suppose Ax = 0. Then x · Ax = 0, and this means that x = 0. Thus, the only solution of

Ax = 0 is x = 0, and then by the Fundamental Theorem of Linear Algebra, A is invertible.

Next, if A is positive definite and C is invertible, then for any x 6= 0,

x · (CtAC)x = (Cx) ·A(Cx) > 0

since Cx 6= 0.

The next theorem tells us that positive define matrices have a positive define square root for

matrix multiplication, and tells us how to compute this matrix square root.

Theorem 20. Let M be a positive definite n × n matrix. Then there is a unique positive definite

matrix M1/2 such that (M1/2)2 = M . Moreover, let {u1, . . . ,un} be any orthonormal basis of Rn

consisting of eigenvectors of M , let U = [u1, . . . ,un] and let D1/2 be the n×n diagonal matrix whose

jth diagonal entry is
√
mj where Muj = mjuj. Then

M1/2 = UD1/2U t . (4.30)

Proof. Since the columns of U are orthonormal, U−1 = U t. Therefore,

[UD1/2U t][UD1/2U t] = UD2U t

where the diagonal entries of D2 are the eigenvalues of M . But then M = UD2U t = UD2U−1

is equivalend to U−1MU = D2 which is true whenver the columns of U are linearly independent

eigenvectors of M , D2 is diagonal, and the diagonal entries of D2 are the corresponding eigenvlaues.

Thus we always have at least one positive definite square root which is given by (4.30). The

uniqueness is left as an exercise.
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Example 41. Let M =

[
17 8

8 17

]
. The characteristic polynomial of M is (t−25)(t−9) so that the

eigenvalues are m1 = 25 and m2 = 9, and thus, M is positive definite. The corresponding normalized

eigenvectors are

u1 =
1√
2

(1, 1) and u1 =
1√
2

(1,−1) .

Therefore

D1/2 =

[
5 0

0 3

]
and U =

1√
2

[
1 1

1 −1

]
.

Therefore,

M1/2 = UD1/2U t =

[
4 1

1 4

]
.

As you can check, [
4 1

1 4

]2

=

[
17 8

8 17

]
,

so we have indeed computed a matrix square root. Acoording to the theorem, this is the only matrix

square root that is itself positive definite.

4.2.2 Reduction to reduced form

We now explain how every equation of the form Mz′′(t) = −Az(t) with M and A positive definite

may be put in reduced form.

Multiply both sides of Mz′′(t) = −Az(t) by M−1/2 to obtain

M1/2z′′(t) = −M−1/2Az(t) . (4.31)

Next, since M−1/2M1/2 is the identity matrix, we may freely insert M−1/2M1/2 between A and

z on the right. We obtain

M1/2z′′(t) = −[M−1/2AM−1/2]M1/2z(t) . (4.32)

Now let us define

y(t) = M1/2z′′(t) and K = [M−1/2AM−1/2] . (4.33)

Then we have

y′′(t) = −Ky(t) . (4.34)

Furthermore, all of the transformations we have made are invertible, and so (4.34) is equivalent to

(4.29). Finally, by Lemma 5, K is positive definite.

We summarize:

Theorem 21. Let M and A be positive definite n × n matrices. Let x(t) be a twice continuously

differentiable curve, and define L = M−12/AM−1/2 and y(t) = M1/2x(t). Then

Mx′′(t) = −Ax(t) ⇐⇒ y′′(t) = −Ky(t) .
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Example 42. Consider the system

4x′′1(t) = −8x1(t)− 4x2(t)

x′′2(t) = −4x1(t)− 5x2(t)

with the initial conditions

x1(0) = −1 , x2(0) = 1 , x′1(0) = 1/2 and x′2(0) = 2 .

Introducing

M =

[
4 0

0 1

]
and A =

[
8 4

4 5

]
,

and x(t) = (x1(t), x2(t)), we can write this system as

Mx′′(t) = −Ax(t) .

In this case, it is easy to see that M1/2 =

[
2 0

0 1

]
, and so

K = M−1/2AM−1/2 =

[
2 2

2 5

]
.

Then with y(t) = M1/2x(t) = (2x1(t), x2(t)), we have

y′′(t) = −Ky(t) ,

and the initial conditions transform to

y(0) = (−2, 1) and y′(0) = (1, 2) .

In the next subsection, we shall see how to solve systems of this type.

4.2.3 Normal modes

We are now in a position to decouple the system y′′ = −Ky into n independent one-variable equa-

tions. To do this, let {u1, . . . ,un} be an orthonormal basis of Rn consisting of eigenvectors of K. We

denote the jth eigenvalue of K by κj ; i.e.,

Kuj = κjuj ,

for each j = 1, . . . , n, and since K is positive definite, κj > 0 for each j.

Suppose that y′′(t) = −Ky(t). Let us take the dot product of both sides with uj , On the left

we get

uj · y′′(t) = (uj · y(t))′′ .

On the right we get, using the transpose identity x ·By = Btx · y and the fact that K is symmetric,

−uj ·Ky(t) = −(Kuj) · y(t) = −κj(uj · y(t)) .
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Thus, if we define

wj(t) = uj · y(t) , (4.35)

we have shown that

w′′j (t) = −κjwj(t) , (4.36)

Conversely, suppose that {w1(t), . . . , wn(t)} are such that (4.36) is satisfied for each j = 1, . . . , n,

Then, defining

y(t) =

n∑
j=1

wj(t)uj , (4.37)

we have

y′′(t) = −Ky(t) (4.38)

and

y(0) =

n∑
j=1

wj(0)uj and y′(0) =

n∑
j=1

w′j(0)uj . (4.39)

Therefore, if we can solve the one-variable equation

w′′(t) = −κw(t) with w(0) = a and w(0) = b , (4.40)

for κ > 0 and a and b arbitrary, we can solve

y′′(t) = −Ky(t) with y(0) = a and y(0) = b , (4.41)

for K positive define and a and b arbitrary, and we obtain the solution in the form of a sum (4.37).

The special solutions that are the terms of this sum are called normal modes, and the decomposition

of the solution into a sum of these special solutions is called a normal mode decomposition. We refer

to (4.40) as the normal mode equation.

Now let us solve the normal mode equation. We reduce it to a first order system, defining

v(t) = w′(t) and w(t) = (w(t), v(t)), so that (4.40) is equivalent to

w′(t) =

[
0 1

−κ 0

]
w(t) with w(0) = w0 := (a, b) . (4.42)

The characteristic polynomial of the matrix L :=

[
0 1

−κ 0

]
is t2 + κ = 0. This has the roots

±i
√
κ. and so we find that (1, i

√
κ) is an eigenvector of L with eigenvalue i

√
κ. Thus,

ei
√
κ(1, i

√
κ)

is a complex solution of our equation, and the real and imaginary parts give us the two real solutions

we need to compute etL. Carrying out the simple computations, we find

etL =

[
cos(
√
κt) 1√

κ
sin(
√
κt)

−
√
κ sin(

√
κt) cos(

√
κt)

]
. (4.43)

Therefore, the solution of (4.40) is

w(t) = a cos(
√
κt) +

b√
κ

sin(
√
κt) . (4.44)
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Example 43. Let K =

[
2 2

2 5

]
. We shall use a normal modes decomposition to solve

y′′(t) = −Ky(t) with y(0) = (−2, 1) and y′(0) = (1, 2) .

To find the normal modes, we first compute the eigenvalues. The characteristic polynomial is t2 −
7t+ 6 = (t− 6)(t− 1) so the eigenvalues are µ1 = 1 and µ2 = 6. we compute:

K − I2×2 =

[
1 2

2 4

]
.

Any vector orthogonal orthogonal to the rows of this matrix is an eigenvector with eigenvalue 1. Let

us choose the unit vector

u1 =
1√
5

(−2, 1) .

Since K is symmetric, the orthogonal unit vector

u2 =
1√
5

(1, 2)

is an eigenvector with eigenvalue 6.

In the normal mode expansion

y(t) = w1(t)u1 + w2(t)u2 ,

w1(t) is the solution of

w′′1 (t) = −w1(t) with w1(0) = u1 · y(0) =
√

5 and u1 · y′(0) = 0 ,

and w2(t) is the solution of

w′′2 (t) = −6w2(t) with w2(0) = u2 · y(0) = 0 and u1 · y′(0) =
√

5 ,

Then from (4.44) we have

w1(t) =
√

5 cos(t) and w2(t) =

√
5

6
sin(
√

6t) .

Finally,

y(t) = w1(t)u1 + w2(t)u2

= cos(t)(−2, 1) +
√

6 sin(
√

6t)(1, 2)

= (sin(
√

6t)− 2 cos(t) , 2 sin(
√

6t) + cos(t))

Now recall that the system we have solved in this example is the reduced form of the system

introduced in Example 42. To concert back to the original variables (x1(t), x2(t)), all we need do is

use

x(t) = M−1/2y(t)

where M is the mass matrix M =

[
4 0

0 1

]
from Example 42. We find

(x1(t), x2(t)) = (sin(
√

6t)/2− cos(t) , 2 sin(
√

6t) + cos(t)) .
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4.3 Driven oscillations of Mechanical Systems

4.3.1 The normal mode decomposition for a driven system

We now suppose that there is a time-dependent external force f(t) acting our mechanical system.

The equations of motion become

Mx′′(t) = −∇V (x(t)) + f(t) .

If we linearize about a local minimum x? of V , and let A denote the Hessian of V at x?, we obtain

that z(t0 = x(t)− x? satisfies

Mz′′(t) = −Az(t) + f(t) .

Because x? is a local minimum, all of the eigenvlaues of A are non-negative, but as above, we shall

assume a little more, namely that all of the eigenvalues are strictly positive.

Multiplying through by M−1/2 as before, we obtain

M1/2z′′(t) = −[M−1/2AM−1/2]M1/2z(t) = M1/2f(t) .

Therefore, defining

y(t) := M−1/2z(t) , K := M−1/2AM−1/2 and g(t) = M1/2f(t) ,

our equation is equivalent to

y′′(t) = −Ky(t) + g(t) . (4.45)

We shall reduce to normal modes, just as in the previous section. Let {u1, . . . ,un} be an

orthonormal basis of eigenvectors of K with Kuj = κjuj for j = 1, . . . , n. Then, just as in the

previous section, we can represent the solution to (4.45) in the form

y(t) =

n∑
j=1

wj(t)uj (4.46)

where wj(t) solves

w′′j (t) = −κjwj(t) + gj(t) (4.47)

where

gj(t) = uj · g(t) .

We have already found a formula for the solution of

w′′(t) = −κw(t) + g(t) with w(0) = a and w′(0) = b , (4.48)

Indeed, this equation is, apart from a change in notation, nothing other that (4.3) and so we have

from the solution of (4.5) that

w(t) = a cos(
√
κt)− b√

κ
sin(
√
κt) +

1√
κ

∫ t

0

sin(
√
κ(t− s))g(s)ds . (4.49)

This formula is as far as we can go without specifying the forcing function g(t).
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4.3.2 Periodic forcing

Now suppose that

g(t) = α cos(ωt+ φ0) (4.50)

where α is the amplitude, ω is the frequency and φ0 is the phase shift.

We have already computed the the integrals in (4.49) for this choice of g(t) in the first section

of this chapter. Adapting the notation slightly, the result is that when the forcing is given by (4.49),

the solution becomes

w(t) = a cos(
√
κt)− b√

κ
sin(
√
κt)

+
2α√
κ

[
sin(φ0 − ξt)

sin(ηt)

η
+ sin(ηt+ φ0)

sin(ξt)

ξ

]
(4.51)

where

η :=

√
κ+ ω

2
and ξ :=

√
κ− ω

2
.

Now let us put everything together, and solve the system

Mx′′(t) = −∇V (x(t)) + f(t) ,

subject ot

x(0) = x0 and x′(0) = v0 . (4.52)

We shall suppose that for some ficed vector v,

f(t) = cos(ωt+ φ0)v . (4.53)

Then, reducing to normal form, we define y(t) = M1/2x(t), g(t) = M−1/2f(t) and K =

M−1/2LM−1/2. The equivalent normal system is

y′′(t) = −Ky(t) + g(t) ,

with

y(0) = M1/2x0 and x′(0) = M−1/2v0 .

We now make the normal mode expansion of y(t) to completely decopuple our system:

y(t) =

n∑
j=1

wj(t)uj (4.54)

where wj(t) solves

w′′j (t) = −κjwj(t) + gj(t) (4.55)

with

wj(0) = uj ·M1/2x0 and w′j(0) = uj ·M1/2v0 .

and where

gj(t) = uj · g(t) = uj ·M−1/2f(t) = (uj ·M−1/2v) cos(ωt+ φ0) . (4.56)
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Notice that the quantity corresponding to α is uj · M−1/2v. If uj happens to be orthogonal to

M−1/2v, the amplitude of forcing for the jth normal mode is zero, and there is no forcing on this

mode. This, even if ω =
√
κj , there will be no resonance for this mode if uj ·M−1/2v = 0. Once all of

the wj(t) are computed, (4.54) can be summed to produce y(t). Finally, we have x(t) = M−1/2y(t).

We have just described a method for solving, by means of a general decoupling procedure, the

system

Mx′′(t) = −Lx(t) + f(t)

in anynumber of degrees of freedom, as long as the forceing term has the form

f(t) = cos(ωt+ φ0)v .

This may seem like a severe restriction, but it is not. The reason lie in the superposition principle.

Suppose that for each j = 1, . . . , N , xj(t) solves

Mx′′j (t) = −Lxj(t) + fj(t)

where M and L do not depend on j, but the forcing term does. Now define

x(t) =

N∑
j=1

xj(t) and f(t) =

N∑
j=1

fj(t) .

Then since differentiation and matrix multiplication are linear; i.e., since N∑
j=1

xj(t)

′′ =

N∑
j=1

x′′j (t) = x′′(t) and L

 N∑
j=1

xj(t)

 =

N∑
j=1

Lxj(t) = Lx(t) ,

and likewise for multiplication by M , x(t) satisfies

Mx′′(t) = −Lx(t) + f(t) .

Therefore, we know how to solve this equation for any forcing term of the form

f(t) =

N∑
j=1

cos(ωjt+ φj)vj .

As we shall see in our investigation of the vibrating string problem, a fairly general class of driving

forces can be written in this way.

As a final remark, it reamins to take the initial data into account. The usual way to do this is

arrange that f1 = 0 and x1(0) = x(0) and x′1(0) = x′(0), and to then solve the remaining equatons,

for j ≥ 2, subject to xj(0) = 0 and x′j(0) = 0. That is, we solve the unforces equation with the

desired initial conditions, and then add on the solution for each foring term started with zero intiial

conditions.

4.4 Exercsies

1. Let A =

[
9 9

−1 1

]
. Find the solution of the ststem

x′(t) = Ax(t) + e−4t(1, t) with x(0) = (1, 1) .
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2. Let A =

[
5 3

31 5

]
. Find the solution of the ststem

x′(t) = Ax(t) + e−8t(t, t) with x(0) = (0, 1) .

3. Let A be the matrix A =

[
0 1

−κ 0

]
.

(a) Compute A2, A3 and A4 Observe the patterns, and deduce a formula for Ak for all positive

integers k. (You will probably want to consider even and odd k separately.)

(b) Use the results of part (a) to compute etA.

4. Find the solution of x′′(t) = −x(t) + f(t) with x(0) = 0 and x′(0) = 0 where

f(t) =


f0t 0 ≤ t ≤ π

f0(2π − t) π ≤ t ≤ 2π

0 t ≥ 2π

and where f0 is a constant.

5. In simplify the results obtained from applying Duhamel’s formula to the forced vibration problem,

we used the fact that once can always write an expresion of the form, say,

cos(ω1t) + cos(ω2t)

as a multiple of the product of tho trigonometric functions with the frequencies (
ω 1
± ω2). Do this

explicitly in the following cases.

(a)cos(5t)− cos(3t)

(b) cos(5t) + cos(4t)

(c) sin(5t)− sin(2t)

(d) sin(6t)− sin(3t)

6. This problem concerns oscillation that are damped by friction. We will consider a fricative force

of the form −ax′(t) where a > 0. That is the force is a negative multiple of the velocity. Combining

this with the spring force, again assumed to be given by Hooke’s Law, we have the Newton equation

mx′′(t) = −kx(t)− ax′(t) (4.57)

(a) Introduce y(t) = x′(t), and x(t) = (x(t), y(y)) and g(t) = (0, 1
mf(t)). Find a 2× 2 matrix B so

that (4.58) is equivalent to

x′(t) = Bx(t) .

(b) Compute etB . There will be three cases, according to whether (a/m)2 > 4(k/m), (a/m)2 =

4(k/m) and (a/m)2 < 4(k/m).

(b) The system is said to be critically damped in case (a/m)2 = 4(k/m), underdamped in case

(a/m)2 < 4(k/m), and overdamped in case (a/m)2 > 4(k/m) Find the general solution in the
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critically damped case. Show that no matter what thei nitial data are, x(t) crosses the origin at most

one time.

(c) Show also that in the overdamped case, no matter what thei nitial data are, x(t) crosses the

origin at most one time.

(d) Sow that in the underdamped case, as long as (x(0), x′(0)) 6= (0, 0), the solution crosses the

orign infinitely many times.

7. In this problem we consider driven oscillations with friction taken into account as in the previous

exercise, so that we have the Newton equation

mx′′(t) = −kx(t)− ax′(t) + f(t) (4.58)

where m is the mass, k is the spring constant, and f(t) is the driving force.

(a) Using Duhamel’s formula and the results of the prvious exercise, find integral formulas for the

solution of (4.58). You will need 3 formulas, depending on whether (a/m)2 > 4(k/m), (a/m)2 =

4(k/m) or (a/m)2 < 4(k/m).

(b) Solve (4.58) with x(0) = 0,x’(0) =0, f(t) = cos(t), m = 1, a = 1 and k = 5/4.

(c) Solve (4.58) with x(0) = 0,x’(0) =0, f(t) = cos(t), m = 1, a = 1 and k = 1/4.

8. Consider the vector field

v(x, y) = ((x+ y)(x− y − 1), (x+ y − 2)(x− y + 1)) .

(a) Find all equilibrium points of v, and determine which, if any, are asymptotically stable, and

which if any are unstable.

(b) Do the same for

v(x, y) = ((x+ y − 2)(x− y + 1) , (x+ y)(x− y − 1)) .

9. Consider the vector field

v(x, y) = (x− xy, y + 2xy) .

(a) Find all equilibrium points of v, and determine which, if any, are asymptotically stable, and

which if any are unstable.

(b) Do the same for

v(x, y) = (y + 2xy , x− xy, y + 2xy) .

10. Consider the vector field

v(x, y) = (− (2 + y)(x+ y) , −y(1− x)) .

(a) Find all equilibrium points of v, and determine which, if any, are asymptotically stable, and

which if any are unstable.
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(b) Do the same for

v(x, y) = ((2 + y)(x+ y) , −y(1− x) ) .

11. Consider the vector field

v(x, y) = (y(2 + x− x2) , (2 + x)(y − x)) .

(a) Find all equilibrium points of v, and determine which, if any, are asymptotically stable, and

which if any are unstable.

(b) Do the same for

v(x, y) = ((2 + x)(y − x) , y(2 + x− x2)) .
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Chapter 5

PICARD’S THEOREM AND

FLOW TRANSFORMATIONS

FOR SYSTEMS

’

5.1 Picard’s Theorem

5.1.1 The equivalent integral equation

In this chapter we prove the fundamental existence theorem for systems of first order differential

equations. Let [a, b] be a bounded closed interval in R. Throughout this chapter, we assume that

v(x, t) is a continuous function from Rn × [a, b] to Rn, and that moreover, for some L <∞,

‖v(y, t)− v(x, t)‖ ≤ L‖y − x‖ (5.1)

for all x,y ∈ Rn and all t ∈ [a, b].

Suppose that t0 ∈ (a, b) and x(t) is a continuous curve on [a, b] that is continuously differentiable

on (a, b) and satisfies

x′(t) = v(x(t), t) with x(t0) = x0 . (5.2)

Then, by the Fundamental Theorem of Calculus, for all t ∈ [a, b],

x(t) = x0 +

∫ t

t0

v(x(s), s)ds . (5.3)

Conversely, Let x(t) be any continuous curve in Rn defined on [a, b] such that (5.3) is true for all

t ∈ [a, b]. Since the indefinite integral of a continuous function is continuously differentiable, again

by the Fundamental Theorem of Calculus, the right hand side of (5.3) is continuously differentiable,

c© 2014 by the author.
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and thus x(t) is not only continuous on [a, b], it is continuously differentiable on (a, b). Moreover,

taking the derivative, we find that x(t) satisfies (5.2).

Therefore, the problem of solving the differential equation (5.2) is the same as the problem of

solving the integral equation (5.3). The latter may be viewed as a fixed-point problem, and this is the

key to constructing solutions of it.

With t0 ∈ (a, b) and x0 ∈ Rn fixed, let C denote the set of curves x(t) in Rn that are defined and

continuous on [a, b] and satisfy x(t0) = x0. It will be helpful to make sure our notation is completely

unambiguous.

As is usual, the symbol x(t) serves double duty in most of this text: It stand for the function

which sends t to the value x(t), i.e., the curve x(t), and it stands for the point x(t)inRn. In this

chapter we shall use upper case boldface letters such as X to denotes elements of C, which are

functions, or curves, defined on [a, b]. When we refer to the value of the function X at time t, we

shall writeX|t to denote the evaluation of the function X at the input value t. This notation would

quickly get cumbersome, so wherever it is unambiguous, we write

X|t = x(t) ,

using, x(t), the lower case version of the same letter. That is, in this notation X, Y, and Z are curves

in C and x(r) = X|r, y(s) = Y|s and z(t) = Z|t are points along these curves.

Define a function Ψ from C to C as follows:

Ψ(X)|t = x0 +

∫ t

t0

v(x(s), s)ds . (5.4)

The right hand side defines a new curve in C, so this formula specifies a function from C to C. We

can now write (5.3) in a vert compact form: The curve X satisfies (5.3) if and only if

X = Ψ(X) , (5.5)

in other words, if and only if X is a fixed point of the transformation Ψ.

As we shall see, this fixed point equation can be solved by iteration. Fix any X0 ∈ C, and define

a sequences of curves }Xn} ∈ C by

Xn = Ψ(Xn−1)

for all n ≥ 1. We shall show that if

b− a ≤ 1

2L
,

then for each t ∈ [a, b], limn→∞ bxn(t) will exist, and moreover, if we let x(t) denote the limit, this

defines a continuous curve in Rn with x(t0) = x0. That is, it defines an element X of C. We shall

show that, as you might expect from the construction, that X = Ψ(X). By what we have explained

above, X is the solution we seek of (5.3), and hence (5.2).

This will give us of the existence of solutions on some interval [a, b] about the starting time. But

then when we get close to the end of the interval, we can repeat the argument from where we have

gotten and extend the solution for another 1/2L units of time. Continuing in this way, we construct

a solution for all times t, and we already know that this solution is unique.

Before carrying out the proof, it is instructive to work through some simple examples, which we

do in the next subsection.
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5.1.2 Some simple examples of Picard iteration

Let us consider n = 1, and let v(x, t) = kx for some constant a. This is a very simple case, and we

know that the solutions of x′(t) = kx(t) with x(0) = x0 is x(t) = etkx0.

Fix any bounded interval [a, b] about 0. For any X ∈ C, we have

Ψ(X)|t = x0 +

∫ t

0

v(x(s))ds = x0 + k

∫ t

0

x(s)ds .

(Since n = 1, we have dropped the boldface.)

Let X0 denote the constant function x(t) = x0 for all t. This is certainly an element of C in this

case. Then,

X1|t = Ψ(X0)|t = x0 + k

∫ t

0

x0ds = x0 (1 + kt) .

Next,

X2|t = Ψ(X1)|t = x0 + k

∫ t

0

x0 (1 + ks) ds = x0

(
1 + kt+

k2t2

2

)
.

It is then easy to see that for all positive integers n,

xn(t) = x0

n∑
j=0

kjtj

j!
,

and so

lim
n→∞

xn(t) = x0e
kt .

For our next example, consider n = 1 and v(x) = x2. This vector field is not Lipschitz on all of

R, but it is Lipschitz on any bounded interval [a, b]. Fix x0 ∈ R and let [a.b] be any closed interval

about t = 0. Then for any X ∈ C, we have

Ψ(X)|t = x0 +

∫ t

0

x2(s)ds .

Let X0 denote the constant function x(t) = x0 for all t, as before. Then,

X1|t = Ψ(X0)|t = x0 +

∫ t

0

x2
0ds = x0 (1 + x0t) .

Next,

X2|t = Ψ(X1)|t = x0 +

∫ t

0

x2
0 (1 + x0s)

2
ds = x0

(
1 + x0t+ x2

0t
22 +

1

3
x3

0t
3

)
.

The exact solution is

x(t) =
x0

1− x0t
,

and for |x0t| < 1, we have the geometric series representation of the solution

x(t) = x0

∞∑
j=0

xj0t
j .

In this example, the Picard iteration does not produce this exact power series representation of the

solution, but another, closely related sequence of polynomial approximations – notice that the first

3 terms of x2(t) are the first three terms of the geometric series, and it you computed x3, you would

find that then the first 4 terms agree.
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5.1.3 The distance between two curves

To prove that our sequences of curves {Xn} in C converges to a curve X ∈ C, we need to give a

precise meaning to the notion of the distance between two curves in C. The following definition turns

out to be very useful for our purpose.

Definition 19. Let C be the set of continuous curves on [a, b] with values in Rn, For any X,Y inC,

we define

d(X,Y) = max
t∈[a,b]

{‖bx(t)− by(t)‖ } . (5.6)

Note that the function sending t to ‖bx(t)− by(t)‖ is a continuous real-valued function, and then

since [a, b] is closed and bounded, there is some tmax ∈ [ab] such that

d(X,Y) = ‖x(tmax)− y(tmax)‖ , (5.7)

so that 0 ≤ d(X,Y) <∞, and thus d is a well-defined function from C × C to [0,∞).

It is easy to see that d(X,Y) = d(Y,X) and that d(X,Y) = 0 if and only if X = Y; i.e.,

x(t) = y(t) for all t ∈ [a, b]. We next show that the distance function d satisfies the triangle

inequality, and therefore that it is a proper metric on the set C.

Lemma 6. Let X, Y and Z be curves in C. Then

d(X,Z) ≤ d(X,Y) + d(Y,Z) .

Proof. By (5.7) there is some tmax ∈ [a, b] so that d(X,Z) = ‖x(tmax) − z(tmax)‖. But then by the

triangle inequality in Rn,

‖x(tmax)− z(tmax)‖ ≤ ‖x(tmax)− y(tmax)‖+ ‖y(tmax)− z(tmax)‖ .

Therefore we have

d(X,Z) ≤ ‖x(tmax)− y(tmax)‖+ ‖y(tmax)− z(tmax)‖ .

However, by definition,

‖x(tmax)− y(tmax)‖ ≤ d(X,Y) and ‖y(tmax)− z(tmax)‖ ≤ d(Y,Z) .

The next lemma is the key to the success of the iteration.

Lemma 7. Let v satisfy (5.1), and suppose that

b− a ≤ 1

2L
. (5.8)

Then for any X,Y ∈ C
d(Ψ(X),Ψ(Y)) ≤ 1

2
d(X,Y) . (5.9)
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Proof. For each t ∈ [a, b],

Ψ(X)|t −Ψ(Y)|t =

∫ t

t0

[v(x(s), s)− v(y(s), s)]ds,

and so

‖Ψ(X)|t −Ψ(Y)|t‖ =

∥∥∥∥∫ t

t0

[v(x(s), s)− v(y(s), s)]ds

∥∥∥∥
≤

∫ t

t0

‖v(x(s), s)− v(y(s), s)‖ds

≤
∫ t

t0

L‖x(s)− y(s)‖ds

≤
∫ t

t0

L max
r∈[a,b]

{‖x(r)− y(r)‖}ds

= L|t| ≤ L(b− a)d(X,Y) .

Then

d(Ψ(X),Ψ(Y)) = max
t∈[a,b]

{‖Ψ(X)|t −Ψ(Y)|t‖} ≤ L(b− a)d(X,Y) .

Now let X0 be the constant function with value x0 for all t ∈ [a, b]. Define

X1 = Ψ(X0) = x0 +

∫ t

t0

v(x0, s)ds .

Notice that

d(X1,X0) = max
t∈[a,b]

∥∥∥∥∫ t

t0

v(x0, s)ds

∥∥∥∥ ≤ (b− a) max
t∈[a,b]

‖v(x0, t)‖ ,

which is finite since ‖v(x0, t)‖ depends continuously on t in the bounded interval [a, b].

Next, by Lemma refconlem, if we inductively define Xn = Ψ(Xn−1) for all positive integers n,

we have, when (b− 1)L ≤ 1/2,

d(X2,X1) = d(Ψ(X1,Ψ(X0)) ≤ 1

2
d(X1,X0)

and then

d(X3,X2) = d(Ψ(X2,Ψ(X1)) ≤ 1

2
d(X2,X1) ≤ 1

4
d(X1,X0) .

Continuing in this way, we deduce

d(Xn,Xn−1) ≤ 2−(n−1)d(X1,X0) . (5.10)

The next Lemma is a simple consequence of (5.10) and Lemma 6.

Lemma 8. With {Xn} defined as above, and (b− 1)L ≤ 1/2, the sequence is a Cauchy sequence for

the metric d on C, meaning that for each ε > 0, there is an Nε such for all m,n ≥ Nε,

d(Xn,Xm) ≤ ε . (5.11)

More specifically, for all n > m,

d(Xn,Xm) ≤ 2−md(X1,X0) . (5.12)
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Proof. By the telescoping sum identity, for all n > m,

Xn −Xm =

n∑
j=m+1

(Xj −Xj−1) .

Then by the triangle inequality of Lemma 6.

d(Xn −Xm) ≤
n∑

j=m+1

d(Xj ,Xj−1)

≤

 n∑
j=m+1

≤ 2−(j−1)

 d(X1,X0)

≤

 ∞∑
j=m+1

≤ 2−(j−1)

 d(X1,X0) = 2−md(X1,X0) .

Now simply choose Nε to the the least integer m such that 2−md(X1,X0) ≤ ε.

5.1.4 Convergence of the iteration

We are now ready to prove the main result:

Theorem 22 (Picard’s Theorem). Let v be a continuous vector field on Rn × [a, b] satisfying the

Lipschitz condition (5.1). Let x) ∈ Rn and let t) ∈ (a, b), and let Ψ be given by (5.4). Then whenever

(b− a)L ≤ 1/2, there is a unique X ∈ C such that

X = Ψ(X) .

In other words, on (at least) the interval (a, b), there is a unique solution to

x′(t) = v(x(t), t) with x(t0) .

Proof. Let the sequence {Xn} in C be defined above. Fix any t ∈ [a, b], and consider the sequence

{xn(t)} in Rn. By definition, for all m,n,

‖xn(t)− xm(t)‖ ≤ d(Xn,Xm) .

By Lemma 8, it follows that {xn(t)} is a Cauchy sequence in Rn.

Since Rn is complete, which means that every Cauchy sequence in Rn converges to a limit, for

each t, {xn(t)} has a limit that we shall denote by x(t). That is,

x(t) = lim
n→∞

xn(t) (5.13)

exists for each t. This defined a function X from [a, b] to Rn, Since xn(t0) = x0 for all n, it is clear

that x(t0) = x0.

It remains to show that x(t) is a continuous function of t, so that X ∈ C, and then that Ψ(X) = X.

We shall show that this follows from (5.12).



5.1. PICARD’S THEOREM 125

By the continuity of the Euclidean distance function and (5.13)

‖x(t)− xm(t)‖ = lim
n→∞

‖xn(t)− xm(t)‖ .

Combining this with (5.12), we see that

‖x(t)− xm(t)‖ ≤ 2−md(X1,X0) , (5.14)

for all t ∈ [a, b]. In other words the rate of convergence of Xm to X is uniform in t. The continuity

of X follows easily from this.

To show that X is continuous at t ∈ [a, b], we must show that for all ε > 0, there is a δ > 0 so

that ‖x(s)− x(t)‖ ≤ ε whenever |s− t| ≤ δ.
Pick t ∈ [a, b] and ε > 0. By (5.14), for all s ∈ [a, b], including t, if we pick m so that

2−md(X1,X0) ≤ ε

3
,

we have

‖xm(s)− x(s)‖ ≤ ε

3
.

Then by the triangle inequality in Rn,

‖x(s)− x(t)‖ ≤ ‖x(s)− xm(s)‖+ ‖xm(s)− xm(t)‖+ ‖xm(t)− x(t)‖

=
ε

3
+ ‖xm(s)− xm(t)‖+

ε

3

Now since xm is continuous, there is a δ > 0 so that whenever |t − s| ≤ δ, ‖xm(s) − xm(t)‖ ≤ ε/3.

Putting it all together, whenever |t− s| ≤ δ, ‖x(s)− x(t)‖ ≤ ε. This shows that X is continuous at

t, and since t ∈ [a, b] is arbitrary, X is continuous.

It is now a simple matter to prove existence for all t provided the Lipschitz condition (5.1)

is valid for all t ∈ R with the same constant L. In particular, this will be true whenever v is a

time-independent Lipschitz vector field.

Theorem 23 (Global existence). Let v(x, t) be a vector field defined on Rn × R such that

‖v(y, t)− v(x, t)‖ ≤ L‖y − x‖ (5.15)

for all x,y ∈ Rn and all t ∈ R. Then for each x0 ∈ Rn and each t0 ∈ R, there exists a solution of

x′(t) = x(x(t), t) with x(t0) = t0 ,

defined for all t, and this solution is unique.

Proof. We have already proved uniqueness on any time interval. We have also proved existence on

at time interval of length at most 1/(2L). Dividing the whole line into a sequence of such intervals,

taken to be slightly overlapping, we easily piece together a global solution.
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5.2 Properties of the flow transformation

In this section we consider a vector field v(x, t) be a vector field defined on Rn × R such that

‖v(y, t)− v(x, t)‖ ≤ L‖y − x‖ for all x,y ∈ Rn and all t ∈ R.

Then for any x ∈ Rn and t0, t1 ∈ R, we define Φt1,t0(x) to be x(t1) where X is the unique

solution of x′(t) = x(x(t), t) with x(t0) = x.

Because that function t 7→ Φt,t0(x) give the unique solution of x′(t) = v(x(t), 0) passing through

x at time t0, and since this same solution passes through Φt1,t0(x) at time t1, it follows from the

definition that for any t2,

Φt2,t0 = Φt2,t1 ◦ Φt1,t0

and of course that

Φt,0t0(x) = x ,

which is to say that Φt,0t0 is the identity transformation.

Again, the uniqueness we have proved in Chapter 2 is essential for all of this. Furthermore, in

the course of proving uniqueness, we have already proved that solutions depend on the initial data

in a Lipschitz continuous manner. That is, we have already proved that

‖Φt1,t0(y)− Φt1,t0(x)‖ ≤ e|t1−t0|L‖y − x‖ ,

so that as a function of the initial data x, Φt1,t0(x) is Lipschitz continuous.

If we assume a little more about the vector field v, we shall have that Φt1,t0(x) is a continuously

differentiable function of x, and we can even have a formula for the derivative. However, we shall

not need this here, and instead turn to an important case in which even more is true – namely that

Φt1,t0 is a linear transformation; i.e., it is given by a matrix [Φt1,t0 ].

5.2.1 Non-autonomous linear systems

Let A(t) denote a continuous n× n matrix values function of t, and consider the vector field v(x, t)

on Rn given by

v(x, t) = A(t)x .

Then

‖v(y, t)− v(x, t)‖ = ‖A(t)(y − x)‖ ≤ ‖A(t)‖F‖y − x‖ ,

it follows that if

max
t∈[a,b]

‖A(t)‖F = L <∞ ,

then ‖v(y, t) − v(x, t)‖ ≤ L‖y − x‖ for all x,y and all t ∈ [a, b]. Thus, for each t) ∈ [a, b] and each

x0 ∈ Rn, the system of equation

x′(t) = A(t)x(t)

has a unique solution with x(t0) = x0, and this solution is defined for all t ∈ [a, b], If A(t) is

continuous on any open interval, even all of R, ‖A(t)‖F will be continuous, and therefore bounded on

any bounded. bounded closed subinterval. Thus the solution with exist and be unique on any such
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subinterval. But every point in the original interval belongs to some such subinterval, so the solution

is defined on all of any interval on which A(t) is continuous, and it is unique there.

Example 44. Consider the second order equation for a real function x(t):

x′′(t) + p(t)x′(t) + q(t)x(t) = 0 .

We introduce y(t) = x′(t) and x(t) = (x(t), y(t)) as usual, and have the equivalent system

x′(t) = A(t)x(t) (5.16)

where

A =

[
0 1

−q(t) −p(t)

]
.

Then

‖A(t)‖F =
√

1 + p2(t) + q2(t)

will be continuous on any interval on which p(t) and q(t) are continuous. Suppose for example that

p(t) and q(t) are continuous on t > 0, as would be the case, for, say,

p(t) =
1

t
and q(t) = − 1

t2
. (5.17)

Then, since the Lipschitz condition is satisfied on any bounded, closed subinterval of (0,∞), it follows

that for each x0 = (x0, y0), and each t0 ∈ (0,∞), there is a unique solution of (5.16) with x(t0) =

(x0, y0),

Equivalently, for each x0, y0 ∈ R and each t0 ∈ (0,∞) there exists a unique solution of x′′(t) +

p(t)x′(t) + q(t)x(t) = 0 with x(t0) = x0 and x′(t0) = y0 and this solution is defined on all of (0,∞).

Of course, the same analysis applies on (−∞, 0).

What we have seen in Example 44 proves an important theorem:

Theorem 24. Let (a, b) be an open interval in R. Let p(t), q(t) be continuous on (a, b). Then for

each t0 ∈ (a, b) and each x), y0 ∈ R, there is a unique solution of

x′′(t) + p(t)x′(t) + q(t)x(t) = 0

with x(t0) = x0 and x′(t0) = y0 and this solution is defined on all of (a.b).

We next prove the flow transformation Φt1,t0 corresponding to x′(t) = A(t)x(t) is a linear

transformation of Rn. Let x,y ∈ Rn and let α, β ∈ R. Then define x(t) = Φt,t0(x) and y(t) =

Φt,t0(y), so that x′(t) = A(t)y(t) and y′(t) = A(t)y(t). Then, define z(t) = αx(t) + βy(t). Since

differentiation is linear,

z′(t) = αx′(t) + βy′(t) = αA(t)x(t) + βA(t)y(t) = A(t)(αx(t) + βy(t)) = A(t)z(t) .

Moreover,

z(t0) = αx(t0) + βy(t0) = αx + βy .
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Therefore,

z(t) = Φt,t0(αx + βy) .

But by definition,

z(t) = αΦt,t0(x) + βΦt,t0(x) .

This proves:

Theorem 25 (Linearity of the flow transformation). Let A(t) be a continuous n× n matrix valued

function on the interval (a, b). for t0, t1 ∈ (a, b), let Φt1,t0 be th flow transformation corresponding to

the vector field v(x, t) = A(t)x. Then Φt1,t0 is a linear transformation of Rn.

5.2.2 Computing the flow transformation for a non-autonomous linear

system

Let A(t) be a continuous n × n matrix valued function on the interval (a, b). Suppose xj(t), t =

1, . . . , n, are n curves each satisfying

x′j(t) = A(t)xj(t) .

Suppose also that for some t0 ∈ (a, b), the matrix [x1(t0), . . . ,xn(t0)] is invertible, or, what is the

same thing, that {x1(t0), . . . ,xn(t0)} is linearly independent.

Form that matrix

M(t) = [x1(t), . . . ,xn(t)] .

Differentiating, we find

d

dt
M(t) = [x′1(t), . . . ,x′n(t)] = [A(t)x1(t), . . . , A(t)xn(t)] = A(t)M(t) .

Next deine

M̂(t) = M(t)(M(t0))−1 .

Since the matrix (M(t0))−1 is constant, we have

d

dt
M̂(t) = A(t)M̂(t) and M̂(t0) = I .

Now fix any x ∈ Rn, and defined x(t) = M̂(t)x. Then

x′(t) =

(
d

dt
M̂(t)

)
x = A(t)M̂(t)x = A(t)x(t) and x̂(t0) = M(t0)x = x .

However, by definition, the unique solution of x′(t) = A(t)x(t) with x(t0) = x is Φt,t0(x). We

conclude that for all x ∈ Rn

Φt,t0(x) = M̂(t) .

Since the flow transformation is one-to-one, and in fact,

‖Φt,t0(y)− Φt,t0(x)‖ ≥ e−|t−t0|L‖y − x‖ ,
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M(t) is one-to-one for all t. By the Fundamental Theorem of Linear Algebra, it is therefore invertible.

That is. the fact that M(t0) is invertible implies that M(t) is invertible for all t. Put still one more

way, for any n solutions {x1(t), . . . ,xn(t)} of x′(t) = A(t)x(t), linear independence at any one time

in (a, b) implies linear independence at all other times t. We have proved:

Theorem 26. Let A(t) be a continuous n× n matrix valued function on the interval (a, b). Suppose

xj(t), t = 1, . . . , n, are n curves each satisfying

x′j(t) = A(t)xj(t) .

Suppose also that for some t0 ∈ (a, b), the matrix [x1(t0), . . . ,xn(t0)] is invertible. Then for all

t, s ∈ (a, b), Φt,t0 is the linear transformation whose matrix is given by

Φt,s(x) = [x1(t), . . . ,xn(t)][x1(s), . . . ,xn(s)]−1 .

We see explicitly from this formula that the inverse of Φt,s is Φs,t, though we saw in Chapter 2

that this is always true of flow transformations by a more abstract argument.

To apply Theorem 26 one has to find the n solutions {x1(t), . . . ,xn(t)}. Threre is no completely

general effective method for this. But there is an important case in which there is a general method

for producing a second solution out of one particular solution, and for some problems with n = 2,

one can even find two solutions by inspection.

Example 45. We have seen in Example 44 that the second order linear equation

x′′(t) + p(t)x′(t) + q(t)x(t) = 0

can be put in the form x′(t) = A(t)x(t) for the 2× 2 matrix

A =

[
0 1

−q(t) −p(t)

]
.

We now considered the specific case

x′′(t) +
1

t
x′(t)− 1

t2
x(t) = 0

which was also introduced there. Since the coefficinets are powers of t, one might try to find solutions

of the form x(t) = Ctα, and since the equation is linear, so that any multiple of a solution is again

a solution, we may as well take c = 1. Inserting x(t) = tα into our equation,

α(α− 1)tα−2 + αtα−2 − tα−2 = (α2 − 1)t2−α

We get solutions with α = ±1.

Therefore we take x1(t) = t and x2(t) = t−1. Then

x1(t) = (x1(t), x′1(t)) = (t, 1) and x2(t) = (x1(t), x′1(t)) = (t−1,−t−2) .

We then have

M(t) =

[
t t−1

1 −t−2

]
and M−1(s) =

1

2

[
s−1 1

s −s2

]
.
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Therefore,

[Φt,s] = M(t)M−1(s) =
1

2

[
t2+s2

st
t2−s2
t

t2−s2
st2

t2+s2

t2

]
. (5.18)

As we have seen in the previous example, the key to computing the flow transformation Φt,s

associated to A =

[
0 1

−q(t) −p(t)

]
is to find two linarly independent soluttions of

x′′(t) + p(t)x′(t) + q(t)x(t) = 0 .

As we now explain, whenever you can find one non-zero solution, you can find another that is

linearly independent. Thus, whenver you can find one non-zero solution, you can compute Φt,s. We

now explain how.

Suppose that x1(t) is one solution. Let us seek a function v(t) such that

x2(t) = v(t)x1(t)

is also a solution. With this deifnition of x2(t), we compute

x′2(t) = v′(t)x1(t) + v(t)x′1(t) and x′2(t) = v′′(t)x1(t) + 2v′(t)x′1(t) + v(t)x′′1(t) .

Therefore,

x′′2(t) + p(t)x′2(t) + q(t)x2(t) = [x′′1(t) + p(t)x′1(t) + q(t)x1(t)]v(t)

+ [2x′1(t) + p(t)x1(t)]v′(t) + x1(t)v′′(t) .

(5.19)

Since, by hypothesis, x′′1(t) + p(t)x′1(t) + q(t)x1(t) = 0,

x′′2(t) + p(t)x′2(t) + q(t)x2(t) = 0

if and only if

[2x′1(t) + p(t)x1(t)]v′(t) + x1(t)v′′(t) = 0 ,

which can be written as
v′(t)

v(t)
= −2

x′1(t)

x1(t)
− p(t) .

Integrating, we find

v′(t) =
1

x2
1(t)

e−P (x) ,

where P ′(t) = p(t).

Integrating once more, we have

v(t) =

∫
1

x2
1(t)

e−P (t)dt+ C , (5.20)

and we may as well set C = 0

Our second solution is then

x2(t) =

(∫
1

x2
1(t)

e−P (t)dt

)
x1(t) .
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Then the matrix M(t) is given by

M(t) =

 x1(t)
(∫

1
x2
1(t)

e−P (x)dx
)
x1(t)

x′1(t)
(∫

1
x2
1(t)

e−P (x)dx
)
x′1(t) + 1

x2
1(t)

e−P (x)x1(t)

 .

Since the determinat function is linear in the columns of a matrix,

det(M(t)) = det

 x1(t)
(∫

1
x2
1(t)

e−P (x)dx
)
x1(t)

x′1(t)
(∫

1
x2
1(t)

e−P (x)dx
)
x′1(t)

+ det

([
x1(t) 0

x′1(t) 1
x2
1(t)

e−P (x)x1(t)

])
= 0 + eP (t) = eP (t) > 0 .

Since the detemrinant is not zero, (x1(t), x′1(t)) and (x2(t), x′2(t)) are linearly independent for all t.

We have proved:

Theorem 27. Let p(t) and q(t) be consitnuous on (a, b). Suppose that x1(t) is a solution of

x′′(t) + p(t)x′(t) + q(t)x(t) = 0 (5.21)

on (a, b) that is not identically zero. Let P (t) be any antiderivative of p(t) on (a, b). Define

v(t) :=

∫
1

x2
1(t)

e−P (t)dt , (5.22)

and

x2(t) = v(t)x1(t) (5.23)

Then x2(t) solves (5.21) on (a, b) and (x1(t), x′1(t)) and (x2(t), x′2(t)) are linearly independent for

all t ∈ (a, b).

Example 46. The second order linear equation

(1− t2)x′′(t)− 2tx′(t) + 2x(t) = 0

is the special case of Legendere’s equation

(1− t2)x′′(t)− 2tx′(t) + r(r + 1)x(t) = 0

with r = 1/2.

It is easy to see that x1(t) = t is a solution. To find the general solution, we divide through by

(1− t2) to put the equation in standard form:

x′′(t)− 2t

1− t2
x′(t) +

2

1− t2
x(t) = 0 . (5.24)

The coefficients p(t) and q(t) are continuous on (−1, 1). Let us find the general solution on this

interval.

Since

P (t) =

∫
p(t)dt =

∫
−2t

1− t2
dt = ln(1− t2),
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we have that v(t) in (5.22) is given by

v(t) =

∫
1

t2(1− t2)
dt =

1

2
ln

(
1 + t

1− t

)
− 1

t
.

Therefore,e by (5.23)

x2(t) =
1

2
t ln

(
1 + t

1− t

)
− 1

is a second solution. The general solution therefore has the form

c1t+ c2

(
1

2
t ln

(
1 + t

1− t

)
− 1

)
for arbitrary constant c1 and c2.

Example 47. Consider the second order equation

x′′(t)− f(t)x′(t) + [f(t)− 1]x(t) = 0

where f(t) is any continuous function on R, or some open interval in R. Note that x1(t) = et is a

solution. In this case

P (t) =

∫
p(t)dt = −

∫
f(t)dt = −F (t)

where F (t) is any antiderivaitve of f(t). Then

v(t) =

∫
e−2t−F (t)dt .

Then

x2(t) =

(∫
e−2t+F (t)dt

)
et

is a second linearly independent solution, and the general solution is

c1e
t + c2

(∫
e−2t+F (t)dt

)
et .

To make the example more specific, let

f(t) = 1 +
1

t

so that the equation is

x′′(t)− t+ 1

t
x′(t) +

1

t
x(t) = 0 (5.25)

where the coefficients are continuous on (0,∞) and (−∞, 0). In this case we find F (t) = t + ln(t),

so that

v(t) =

∫
e−t+ln tdt =

∫
te−tdt = −(t+ 1)e−t .

Thus,

x2(t) = v(t)x1(t) = −1− t .

As you can easily check, this is a second solution.
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The corresponding first order system is x′(t) = A(t)x(t) where A(t) =

[
0 1

−1/t (t+ 1)/t

]
. The

two solution found above are x1(t) = (et, et), and x2(t) = (− 1− t,−1). Hence we have

M(t) =

[
et −1− t
et −1

]
,

so that the corresponding flow transformation is given by the matrix

[Φt,s] = M(t)M−1(s) =
1

s

[
1 + t− et−s et−s(1 + s)− t− 1

1− et−s et−s(1 + s)− 1

]
,

whihc one finds after routine computation.

5.2.3 The derivative of Φt,s(x) in s

We already know, essential by the definition that

d

dt
Φt,s(x) = A(t)Φt,s(x) .

We now work out the derivative in s.

Observe that Φt,s(x) = Φt,s+h ◦ Φs+h,s so that

1

h
[Φt,s+h(x)− Φt,s(x)] = Φt,s+h

(
1

h
(x− Φs+h,sx)

)
.

Then since

lim
h→0

1

h
(Φs+h,sx− x) = A(s)x ,

we have proved:

Theorem 28. Let A(t) be a continuous n× n matrix valued function on the interval (a, b). Let Φt,s

be the corresponding flow transformation. Then for all t, s ∈ (a, b), and all x ∈ Rn,

d

dt
Φt,s(x) = A(t)Φt,s(x) and

d

ds
Φt,s(x) = −Φt,s(A(s)x) .

5.2.4 Duhamel’s formula for non-autonomous systems

In this subsection we study the inhomogeneous equation linear system

x′(t) = A(t)x(t) + b(t) with x(t0) = x0 .

This is equivalent to

Φt0,t(x
′(t)−A(t)x(t)) = Φt0,tb(t) .

However,

d

dt
(Φt0,tx(t)) =

(
d

dt
Φt0,t

)
x(t) +

d

dt
x′(t) = Φt0,t(x

′(t)−A(t)x(t)) .
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Therefore, our system is equivalent to

d

dt
(Φt0,tx(t)) = Φt0,tb(t) .

Integrating both sides, we see that this is solved by

Φt0,tx(t)− x0 =

∫ t

t0

Φt0,sb(s)ds .

Then, since Φt,t0 is the inverse of Φt0,t, and since Φt,t0Φt0,s = Φt,s, we have

x(t) = Φt,t0(x0) +

∫ t

t0

Φt,sb(s)ds .

We have proved:

Theorem 29. Let A(t) be a continuous n × n matrix valued function on the interval (a, b). Let

Φt,s be the corresponding flow transformation. Let b(t) be a continuous Rn values function on (a, b).

Then for all t, s ∈ (a, b), and all x0 ∈ Rn, there is a unique solution of

x′(t) = A(t)x(t) + b(t) with x(t0) = x0 ,

and it is given by Duhamel’s formula

x(t) = Φt,t0(x0) +

∫ t

t0

Φt,sb(s)ds .

Example 48. Let us find the solution to

x′′(t) +
1

t
x′(t)− 1

t2
x(t) = t2

Subject to the initial condition x(t0) = 1 and x′(t0) = −1.

The correspnding first order system is

x′(t) = A(t)x(t) + b(t) with x(t0) = (1,−1)

and with

A(t) =

[
0 1

t−2 −t−1

]
and b(t) = (1, t2) .

Having rewritten our equation as a fisr order system, we can apply Duhamel’s Formula to solve it.

We have found in Example 45 that the flow transformation for the corresponding homogeneous

system is given by the matrix

[Φt,s] = M(t)M−1(s) =
1

2

[
t2+s2

st
t2−s2
t

t2−s2
st2

t2+s2

t2

]
.

We compute ∫ t

t0

[Φt,s]b(s)ds =
1

2t2

∫ t

t0

(t(t2 − s2)s2, (t2 + s2)s2)ds
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To compute x(t), as opposed to (x(t), x′(t)), we need only the first component of this, which is

1

2t

(
1

3
t2(t3 − t30)− 1

5
(t5 − t50)

)
=

1

15
t4 − 1

6
tt30 +

1

10t
t50 .

Likewise, the first component of [Φt,t0 ]x0 is

1

2tt0
(t2 + t20 − t0(t2 − t20)) =

t

2t0
+
t0
2t

+
t20
2t
− t

2
.

Altogether, we have

x(t) =
t

2t0
+
t0
2t

+
t20
2t
− t

2
+

1

15
t4 − 1

6
tt30 +

1

10t
t50 .
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Chapter 6

BOUNDARY VALUE PROBLEMS

6.1 The vibrating string problem

6.1.1 Derivation of the equations of motion

Consider a string with constant mass density % units of mass per unit length with the ends fixed, or

pinned down, a distance of L units of length apart. Let T denote the tension in the string. Think

of a violin string, for example stretched quite tight so that the tension is relatively high, and when

the string vibrates, its oscillations do not have a large amplitude. Let x denote the position along

the string, and let h(x) denote vertical the displacement (in the x, y plane) of the part of the string

at distance x from the left fixed point at x = 0. When the string is at rest, h(x) = 0 for all x. If the

string is plucked, or otherwise set in motion, what will that motion be? We can deduce a system of

equations for this motion from Newton’s Second Law. Pick a large number N , and define

xj =
jL

N
and ∆x =

L

N
.

Then for j = 0, . . . , N , xj denotes the position of the the end of a segment of the string of length

∆x, and therefore of mass %∆x. Let yj(t) denote the vertical displacement (from the rest position)

of the center of this segment at time t. Since the ends are fixed,

y0(t) = yN (t) = 0 for all t . (6.1)

For 1 ≤ j ≤ N − 1, the vertical acceleration of the jth segment is y′′j (t), and so by Newton’s Second

Law,

(%∆x)y′′j (t) = Fj(t) , (6.2)

where Fj(t) is the vertical component of the force acting on the jth segment at time t. The forces

would be gravity and the tension in the string. But for a string under high tension, like a violin

string, the tension is the only significant force. We therefore neglect gravity. The segment at xj is

tugged on from the right and from the left. At time t, the vertical component of the force from the

c© 2014 by the author.
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left is

T
1√

∆x2 + (yj−1(t)− yj(t))2
[(xj−1, yj−1)− (xj , yj)]

and the vertical component of the force from the right is

T
1√

∆x2 + (yj+1(t)− yj(t))2
[(xj+1, yj+1)− (xj , yj)] .

Thus,

Fj(t) = T
1√

∆x2 + (yj−1(t)− yj(t))2
[(xj−1, yj−1)− (xj , yj)]+

T
1√

∆x2 + (yj+1(t)− yj(t))2
[(xj+1, yj+1)− (xj , yj)] . (6.3)

We now make a crucial approximation: We assume that, since the tension is high, the amplitude

of the vibrations is very small, so that for each j, |yj+1 − yj | is small compared to ∆x. Thus in (6.3)

we make the replacements√
∆x2 + (yj−1(t)− yj(t))2 → ∆x and

√
∆x2 + (yj+1(t)− yj(t))2 → ∆x .

This leads to the approximation

Fj(t) ≈
T

∆x
(yj+1t)− 2yj(t) + yj−1(t)) . (6.4)

Using this in (6.2), we obtain the linear approximation to the system of equations of motion for

the vibrating string:

(%∆x)y′′j (t) =
T

∆x
(yj+1t)− 2yj(t) + yj−1(t)) . , (6.5)

This equation is to be satisfied for all 1 ≤ j ≤ N − 1 with y0(t) = yN (t) = 0 for all t.

To write this linear system in matrix form, introduce the RN−1 valued functions y(t) where

y(t) = (y1(t), . . . , yN−1(t))

and the (N − 1)× (N − 1) matrix K given by

Ki,j =
1

∆x2


2 i = j

−1 |i− j| = 1

0 otherwise

.

That is, K has the structure

K =
1

∆x2



2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 0 . . .
...

...
...

. . .
...

...

0 . . . 0 −1 2 −1

0 . . . 0 0 −1 2


.



6.1. THE VIBRATING STRING PROBLEM 139

Each diagonal entry of K is 2∆x−2, and each entry just above or below the diagonal is −∆x−2 and

all others are zero.

Finally, introduce

c :=

√
T

%
.

Then the system (6.5) can be written as

y′′(t) = −c2Ky(t). , (6.6)

This is a familiar equation, since the matrix K is not only symmetric; all of its eigenvalues are

strictly positive, so that the matrix K is positive definite. To see this, make the simple computation

showing that for any y = (y1, . . . , yN−1) ∈ RN−1,

y ·Ky =
1

∆x2

N−1∑
j=0

(yj+1 − yj)2

 , (6.7)

where we put y0 = yN = 0. As a sum of squares, this is non-negative, and is equal to zero if and

only if yj+1 = yj for all j = 0, . . . , N − 1. Then since y0 = yN = 0, this means that y = 0. In other

words, y ·Ky = 0 if and only if y = 0, and hence K is positive definite.

We could proceed to analyze this equation by seeking the eigenvectors of K. However, it is in

many ways more enlightening to make a further approximation, taking the continuum limit. This

will lead us to consider a new class of problems involving second order differential equations, namely

boundary value problems. Furthermore, once we have dealt with the continuum limit, it will be much

easier to find the eigenvectors and eigenvalues of K.

Let h(x, t) denote the vertical displacement of the part of the string at horizontal coordinate x

and at time t. Form the vector

h(t) = (h(x1, t), . . . , h(xN−1, t)) .

Then for each j = 1, . . . , N − 1,

(Kh(t))j =
1

∆x2
[−h(xj−1, t) + 2h(xj , t)− h(xj+1, t)]

= − 1

∆x

[
h(xj + ∆x, t)− h(xj , t)

∆x
− h(xj , t)− h(xj −∆x, t)

∆x

]
.

If for each t, h(x, t) is a twice continuously differentiable function of x,

lim
∆x→0

1

∆x

[
h(xj + ∆x, t)− h(xj , t)

∆x
− h(xj , t)− h(xj −∆x, t)

∆x

]
=

∂2

∂x2
h(xj , t) .

The continuum approximation to (6.6) then is to take ∆x to zero, and hence N to infinity, and to

replace (6.6) with
∂2

∂t2
h(x, t) = c2

∂2

∂x2
h(x, t) , (6.8)

where the equation (6.8) is to hold at each x ∈ (0, L) and each t, and we also require

h(0, t) = h(L, t) = 0 (6.9)
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for all t. The equation (6.8) is a partial differential equation known as the wave equation. The theories

of partial differential equations and ordinary differential equation are intimately connected, and the

theory of ordinary differential equations cannot be developed in isolation from the theory of partial

differential equations. First of all, we have seen that the wave equation (6.8) arises as the continuum

limit of a system of ordinary differential equations. This is true of many other partial differential

equations. Second, as we shall see, the continuum limit often brings along a certain simplicity. In the

case at hand, it will be be much easier to find the eigenvectors and eigenvalues of K once we have

studied the continuum limit. Third, we shall see that there is a method of solving (6.8) that rests on

solving a family of ordinary differential equations.

6.1.2 The wave equation on R

Before considering the wave equation on [0, L] with the boundary condition h(0, t) = h(L, t) = 0, let

us consider it on the whole real line. We seek functions h(x, t) on R × R such that (6.8) is true for

all x, t.

Note that(
∂2

∂t2
− c2 ∂

2

∂x2

)
h(x, t) =

(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
h(x, t) =

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
h(x, t) .

Therefore, h(x, t) solves the wave equation if either(
∂

∂t
+ c

∂

∂x

)
h(x, t) = 0 or

(
∂

∂t
− c ∂

∂x

)
h(x, t) = 0 . (6.10)

These first order equations have a simple geometric meaning. Since(
∂

∂t
+ c

∂

∂x

)
h(x, t) = (c, 1) ·

(
∂

∂x
,
∂

∂t

)
h(x, t) = (c, 1) · ∇h(x, t) ,

where ∇ denotes the gradient in the variables x, t, the first equation in (6.10) is satisfied if and only

if the directional derivative of h(x, t) in the direction of (1, c) is zero. That is the case if and only if

h(x, t) is constant along each of the lines x = ct + x0, so that h(x, t) only depends on x0 = x − ct.
That is, h(x, t) = g(x−ct) for some function g. Conversely, it is easy to check that if g is continuously

differentiable, then

h(x, t) = g(x− ct)

does satisfy the wave equation when g is continuously differentiable.

Considering the second equation in (6.10), the same reason leads to the fact that

h(x, t) = g(x+ ct)

satisfies the wave equation when g is continuously differentiable. These two solutions describe trav-

eling waves moving to the right and to the left, respectively.

Consider a ‘blip’ function g(x) of the general form

g(x) =

A(x2 − a2)2 −a ≤ x ≤ a

0 |x| ≥ a
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for some a > 0 and some A 6= 0. Here is an image of this function for a = 1/2 and A = 6.

Next, we plot h(t, x) = g(x − ct) for c = 1 and t = 3/2. The peak of g(x) is located at x = 0,

so the peak of g(x − 3/2) is located where x = −3/2 = 0; i.e., at x = 3/2. The ‘blip’ moves to the

right, keeping its shape:

To graph the solution y = h(x, t) = g(x− ct) of the wave equation, one simply shifts the graph

of y = g(x) to the right through a distance of ct. This tells us the meaning of c: It is the speed of

wave propagation for the string. Likewise, the solution h(x, t) = g(x + ct) gives propagation to the

left at speed c.

We have deduced an important fact from our analysis of the wave equation: Small amplitude

disturbances will travel along the string at a velocity that is the square root of the mass density %

times the tension T . Of course here we are referring to the special solutions satisfying (6.10), but we

shall soon see that all physical solutions are linear combinations of such solutions.

We now wish to solve the initial value problem for (6.8) on R in which we seek a solution h(x, t)

that satisfies

h(x, 0) = g(x) and
∂

∂t
h(x, t)

∣∣∣∣
t=0

= v(x) (6.11)

for all x and for given functions g(x) and v(x).

We will take advantage of the linearity of the wave equation. Since differentiation is linear, it is

evident that if hj(x, t), j = 1, 2 both satisfy the wave equation and aj , j = 1, 2 are any two numbers,

h(x, t) = a1h1(x, t) + a2h2(x, t)

is also a solution of the wave equation.

Therefore, if h1(x, t) solves the wave equation and satisfies

h1(x, 0) = g(x) and
∂

∂t
h1(x, t)

∣∣∣∣
t=0

= 0 (6.12)

for all x, and h2(x, t) is the solves the wave equation and satisfies

h2(x, 0) = 0 and
∂

∂t
h2(x, t)

∣∣∣∣
t=0

= v(x) (6.13)
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for all x, then h(x, t) = h1(x, t) + h2(x, t) solves the wave equation and satisfies (6.11).

To solve the wave equation subject to the initial data (6.12), we superimpose a wave moving to

the left with a wave moving to the right which cancels the initial velocity. That is, we define

h1(x, t) =
1

2
[g(x− ct) + g(x+ ct)] . (6.14)

It is easy to check that h(x, t) solves the wave equation since it is a linear combination of two solutions,

and clearly

h1(x, 0) =
1

2
[g(x) + g(x)] = g(x)

and
∂

∂t
h1(x, t)

∣∣∣∣
t=0

1

2
[cg′(x)− cg′(x)] = 0 .

Therefore, the formula (6.14) gives us a solution of the wave equation that satisfies (6.12).

To get a solution that satisfies (6.12), we make the following observation: Suppose that h̃(x, t)

is a solution of the wave equation satisfying (6.12) for some function g̃(x). Define the function

y(x, t) =
∂

∂t
h̃(x, t) .

Then, as an easy consequence of Clairault’s Theorem.

∂2

∂t2
y(x, t) =

∂3

∂t3
h̃(x, y) =

∂

∂t

(
∂2

∂t2
h̃(x, t)

)
=

∂

∂t

(
c2
∂2

∂x2
h̃(x, t)

)
= c2

∂2

∂x2

∂

∂t
h̃(x, t)

= c2
∂2

∂x2
y(x, t) . (6.15)

Hence, y(x, t) satisfies the wave equation. By construction,

y(x, 0) =
∂

∂t
h(x, t)

∣∣∣∣
t=0

= 0

and
∂

∂t
y(x, t)

∣∣∣∣
t=0

=
∂2

∂t2
h̃(x, t)

∣∣∣∣
t=0

= c2
∂2

∂x2
h̃(x, 0) = c2g̃′′(x) .

Therefore, if we choose g̃(x) to solve

c2g̃′′(x) = v(x) (6.16)

for all x ∈ (0, L), then

h̃(x, t) =
∂

∂t

1

2
[g̃(x− ct) + g̃(x+ ct)] =

c

2
[g̃′(x+ ct)− g̃′(x− ct)] (6.17)

is the solution we seek. We may take

g̃(x) =
1

c2

∫ x

0

(∫ z

0

v(w)dw

)
dz ,
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in which case (6.28) gives the solution

h2(x, t) =
c

2
[g̃′(x+ ct)− g̃′(x− ct)] =

1

2c

(∫ x+ct

0

v(z)dz −
∫ x−ct

0

v(z)dz

)
=

1

2c

∫ x+ct

x−ct
v(z)dz .

Therefore, superimposing the two solutions h1(x, t) and h2(x, t)

h(x, t) =
1

2
[g(x− ct) + g(x+ ct)] +

1

2c

∫ x+ct

x−ct
v(z)dz (6.18)

satisfies the wave equation and (6.11). The formula (6.18) is known as d’Alembert’s Formula.

Example 49. Let us use d’Alembert’s Formula to find a solution on the wave equation on R such

that

h(x, 0) = 0 and
∂

∂t
h(x, t)

∣∣∣∣
t=0

= v(x)

where v(x) is the blip function

v(x) =

A(x2 − a2)2 −a ≤ x ≤ a

0 |x| ≥ a

for a = 1/2 and A = 15. This is somewhat taller version of the same blip as before, except now it is

a velocity blip. Integrating, we find the function f(x) given by

f(x) :=

∫ x

0

v(z)dz =


0 x ≤ −1/2

1
2 + 15

8 x− 5x3 + 6x5 −1/2 ≤ x ≤ 1/2

1 x ≥ 1/2 .

This is a smoothed sort of ‘step function’, smoothly interpolating between the value 0 for all x ≤ −1/2,

and the value 1 for all x ≥ 1/2. Here is a plot of f(x) for −3 ≤ x ≤ 3.

By d’Alembert’s Formula, with c = 1, we have that the solution is

h(x, t) =
1

2
[f(x+ t)− f(x− t)] .

The following plot shows this difference of smooth step functions for t = 2:

Notice that the velocity blip spreads out from the center, becoming broader and broader. It is not

a traveling wave, but the speed at which it spreads is exactly the speed of the traveling waves, which

is natural since it was built out of traveling wave solutions.
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Example 50. It is interesting to see how the traveling wave solution h(x, t) = g(x− ct) comes from

d’Alembert’s formula. We easily compute that with h(x, t) = g(x− ct)

h(x, 0) = g(x) and
∂

∂t
h(x, t)

∣∣∣∣
t=0

= −cg′(x)

so that we have v(x) = cg′(x) for this solution. But then

1

2c

∫ x+ct

x−ct
v(z)dz = −1

2
[g(x+ ct)− g(x− ct)] .

Therefore, d’Alembert’s formula gives

h(x, t) =
1

2
[g(x+ ct) + g(x− ct)]− 1

2
[g(x+ ct)− g(x− ct)] = g(x− ct) .

6.1.3 Conservation of energy and uniqueness

d’Alembert’s Formula gives us a solution of the wave equation on R that satisfies the initial conditions

(6.11). But is this the only such solution? The answer is yes, provided the initial data have finite

energy as we now explain.

At first sight, there may not seem to be any issue with uniqueness, since we have derived the

wave equation as the continuum limit of the system of N − 1 ordinary differential equations (6.6).

We can rewrite this as a system of 2(N − 1) first order equations,

(y,y′)
′

= −L(y,y′)

where L is the 2(N − 1)× 2(N − 1) matrix

L =

[
0 I

−K 0

]

with −K in its lower left (N − 1)× (N − 1) block, the (N − 1)× (N − 1) identity matrix in its upper

right block, and zeros everywhere else.

Like all matrices, L defines a Lipschitz vector field, and so we have a unique solution with

(y(0),y′((0)) = (g,v)

for any g,v ∈ RN−1. However, the Lipschitz constant diverges to infinity as N tends to infinity, and

so it diverges in the continuum limit. To see this note that

Le1 =
c2

∆x2
(eN+1 − 2eN )

so that ‖ Le1‖ =
√

5c2∆x−2 Taking x = 0 and y = e1, we have that

‖Ly − Lx‖ =
√

5c2∆x−2‖y − x‖ ,

and so the Lipschitz constant must be at least as large as
√

5c2∆x−2, which diverges to infinity as

∆x goes to zero; i.e., as we take the continuum limit.
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Therefore, our main uniqueness theorem for Lipschitz vector fields does not tell us anything in

the continuum limit.

However, there is another method for proving uniqueness based on conservation of energy. In-

troduce the potential energy function

V (y) = (%∆x)
1

2
y ·Ky .

Then ∇V (y) = −c2Ky, so that (6.6) can be written as

(%∆x)y′′(t) = −∇V (y(t) .

(We have restored the mass %∆x so that our energy has the correct units, though this constant

multiple is not important for the conservation property itself.) Therefore, we define the energy at

time t

Et(y,y
′) =

1

2
(%∆x)‖y′(t)‖2 + V (y(t)) =

1

2
(%∆x)‖y′(t)‖2 +

1

2
(%∆x)y ·Ky , (6.19)

and we have that Et(y,y
′) does not depend on t when y(t) solves (6.6).

We can use the conservation of energy to prove uniqueness since the system (6.6) is linear. Let

y1(t) and y2(t) be two solutions of (6.6). Then z(t) = y2(t) − y1(t) is again a solution, and so for

any t and t0,

Et(z, z
′) = Et0(z, z′) .

Now observe that is y2(t0) = y1(t0), z(t0) = 0, and therefore Et0(z, z′) = 0. By the conservation

of energy, Et(z, z
′) = 0 for all t. Writing this out in terms of y1(t),y2(t), and dropping a constant

multiplicative factor,

‖y′1(t)− y′2(t)‖2 + (y2(t)− y1(t)) ·K(y2(t)− y1(t)) = 0 .

Hence y′2(t) = y′1(t) for all t, and then since y2(t0) = y1(t0), y2(t) = y1(t) for all t.

As we now show, conservation of energy still holds in the continuum limit, and gives us a proof

of uniqueness whenever the initial data for the wave equation has finite energy.

To take the continuum limit of the energy function (6.19) return to (6.7) to note that

y ·Ky =

N−1∑
j=0

(
yj+1 − yj

∆x

)2

where we define y0 = 0 and yN = 0,. Letting yj(t) = h(xj , t) as before, we see that

lim
∆x→0

%∆x (y ·Ky) = %

N−2∑
j=1

(
h(xj+1, t)− h(xj , t)

∆x

)2

∆x

which is a Riemann sum approximation to

%

∫
R

∣∣∣∣ ∂∂xh(x, t)

∣∣∣∣2 dx .

Likewise, ‖y′‖2%∆x is a Riemann sum approximation to

%

∫
R

∣∣∣∣ ∂∂th(x, t)

∣∣∣∣2 dx .
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Therefore, given a continuously differentiable function h(x, t), define the energy at time t to be

Et(h, ∂h/∂t) =
%

2

∫
R

∣∣∣∣ ∂∂th(x, t)

∣∣∣∣2 dx+
%c2

2

∫
R

∣∣∣∣ ∂∂xh(x, t)

∣∣∣∣2 dx .

Then, supposing that h solves the wave equation on R and both h and ∂h/∂t tend to zero as x tends

to infinity, so that we can integrate by parts,

1

%

d

dt
Et(h, ∂h/∂t) =

∫
R

∂

∂t
h(x, t)

∂2

∂t2
h(x, t)dx+

c2

2

∫
R

∂

∂x
h(x, t)

∂2

∂x∂t
h(x, t)dx

=

∫
R

∂

∂t
h(x, t)

∂2

∂t2
h(x, t)dx− c2

2

∫
R

∂2

∂x2
h(x, t)

∂

∂t
h(x, t)dx

=

∫
R

[
∂2

∂t2
h(x, t)− c2 ∂

2

∂x2
h(x, t)

]
∂

∂t
h(x, t)dx = 0 . (6.20)

The boundary terms we have discarded in the integration by part are

lim
x→∞

∂

∂x
h(x, t)

∂

∂t
h(x, t)− lim

x→−∞

∂

∂x
h(x, t)

∂

∂t
h(x, t) ,

so as long as out solutions tend to zero at spatial infinity, there is no problem. In fact, it is not hard

to justify the integration by parts only under the condition that the energy is finite.

Now we proceed as before. Let h1(x, t) and h2(x, t) be two solutions of the wave equation, and

suppose that both satisfy (6.11) for given g(x) and v(x). Suppose furthermore that

1

2

∫
R
g2(x)dx+

1

2

∫
R
v2(x)dx <∞ .

Then both solutions have finite energy. Let h(x, t) = h1(x, t)− h2(x, t). Then h(x, t) solves the wave

equation, and for each t, it has finite energy. Indeed, using the inequality (a − b)2 ≤ 2(a2 + b2) in

the integrals defining the energy, is is simple to see the the difference (or sum) of two finite energy

solutions is a finite energy solution.

Hence, the energy is conserved, and since both h(x, 0) = 0 and ∂h/∂t(x, 0) = 0 for all x, it

follows that the energy of h(x, t) is zero for all t. That is, for all t,

1

2

∫
R

∣∣∣∣ ∂∂t (h2(x, t)− h1(x, t))

∣∣∣∣2 dx+ c2
1

2

∫
R

∣∣∣∣ ∂∂x (h2(x, t)− h1(x, t))

∣∣∣∣2 dx = 0 .

Therefore the x, t gradient h2(x, t)− h1(x, t) is zero for all x, t, and so h2(x, t)− h1(x, t) is constant.

Since h2(x, 0) − h1(x, 0) = g(x) − g(x) = 0, it follows that h2(x, t) = h1(x, t) for all x, t. We have

proved:

Theorem 30. Let g(x) and v(x) be continuous square integrable functions on R. There is exactly

one solution to the wave equation (6.8) on R that satisfies (6.11), and this solution is given by

d’Alembert’s formula (6.18)

In particular, we see that every finite energy solution of the wave equation is a linear combination

of the special solutions satisfying the first order equations in (6.10), so that these special traveling

wave solutions are not special after all.
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6.1.4 The wave equation for a pinned string on [0, L]

We now return to the problem of solving the wave equation on [0, L] subject to the boundary condi-

tions

h(0, t) = h(L, t) = 0 for all t , (6.21)

which represent the condition that the ends of the string are pinned down.

Given functions g(x) and v(x) on [0, L], we see to find a function h(x, t) satisfying the wave

equation, the boundary conditions (6.21) and the initial data

h(x, t) = g(x) and
∂

∂t
h(x, t)

∣∣∣∣
t=0

= v(x) (6.22)

Because of the boundary conditions,

∂

∂t
h(x, t)

∣∣∣∣
x=0

=
∂

∂t
h(x, t)

∣∣∣∣
x=L

= 0 for all t , (6.23)

and consequently, we must have v(0) = v(L) = 0. Furthermore, we shall assume that g(x) is

continuously differentiable on (0, L) with a derivative that extends continuously to [0, L], and that

v(x) is continuous on [0, L].

The energy of such a solution is defined to be

Et(h, ∂h/∂t) =
%

2

∫ L

0

∣∣∣∣ ∂∂th(x, t)

∣∣∣∣2 dx+
%c2

2

∫ L

0

∣∣∣∣ ∂∂xh(x, t)

∣∣∣∣2 dx .

In this case, the boundary terms in the integration by part if (6.20) are clearly zero due to (6.23).

Therefore, the energy is constant along solutions of the wave equation.

It follows that if h1(x, t) and h2(x, t) are two solutions of the wave equation on [0, L] satisfying

(6.21) and (6.22), then h(x, t) = h1(x, t) − h2(x, t) is a solution whose energy is zero at time t = 0,

and therefore, for all t. But then, just as on the whole real line, this implies that h(x, t) = 0 for all

x ∈ [0, L] and t ∈ R. Therefore, we know that solutions of the wave equation satisfying (6.21) and

(6.22) are unique whenever they exist.

We now show that solutions do exist. The main idea is to extend the initial data to the whole

real line in a manner that produces traveling wave that cross each other and ‘cancel out’ as they

cross the boundaries at x = 0 and x = L.

Before going into the details, let us explain this simple idea more fully. Consider once more our

‘blip function’ initial data. Let g1(x) be the blip function shifted so that it is centered on x = −3/2.

Define

g2(x) = −g1(−x) ,

which will be a negative blip; i.e., and ‘anti-blip’ centered on x = 3/2. The next picture shows the

superposition of g1 and g2.



148 CHAPTER 6. BOUNDARY VALUE PROBLEMS

Now consider the solution of the wave equation given by

h(x, t) = g1(x− ct) + g2(x+ ct) .

Then the blip on the left moves to the right with speed c, while the anti-blip on the right moves to

the left with speed c. By the formula defining g2,

g2(x− ct) = −g1(ct− x) ,

and so

h(0, t) = g1(ct) + g2(ct) = g1(ct)− g1(ct) = 0 .

That is, the blip and the anti-blip cancel each other out at x = 0 – but then they pass through

each other and reemerge. At the single instant when the blip and anti-blip are exactly on top of

each other, the string is completely flat. However, the velocity of the string is not zero, so the blips

reemerge.

After they have passed each other, their shapes return and they keep going. Here is a graph

of y = h(x, t) for a time t large enough that the blips have cleared one-another. The blip on the

right keeps moving to the right, and the anti-blip on the left keeps moving to the left. The condition

h(x, t) = 0 is satisfied for all t.

Notice that the solution h(x, t) we have plotted has the property that for each t is is antisymmetric

as a function of x:

h(−x, t) = −h(x, t)

for all x, t.

To take care of the boundary conditions at both x = 0 and x = L, we introduce an important

class of functions:
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Definition 20 (Doubly antisymmetric functions). A function real valued function g on R is anti-

symmetric about x = 0 and x = L provided

g(−x) = −g(x) and g(L− x) = −g(L+ x)

for all x ∈ R.

Geometrically, a function g is antisymmetric about x = L if upon reflecting the graph y = g(x)

about both the lines x = L and y = 0, the graph is unchanged. For example, the function g(x) = sin(x)

is antisymmetric about both x = 0 and x = π. In fact, the function g(x) = sin(x) is antisymmetric

about both x = kπ for all k ∈ N. From here, it is easy to see that each of the functions

gk(x) = sin(kπx/L) ,

k ∈ N is antisymmetric about x = 0 and x = L.

The relevance of the definition is this: If g(x) is antisymmetric about x = 0 and x = L, then

h(x, t) =
1

2
[g(x+ ct) + g(x− ct)] (6.24)

satisfies

h(0, t) =
1

2
[g(ct) + g(−ct)] = 0 and h(L, t) =

1

2
[g(L+ ct) + g(L− ct)] = 0 .

Since differentiation is linear, any linear combination of solutions of the wave equation is again a

solution of the wave equation. Therefore, by what e have noted above, when g(x) is antisymmetric

about x = 0 and x = L, and h(x, t) is defined in therms of g(x) by (6.24), then h(x, t) satisfies the

wave equation and the boundary condition h(0, t) = h(L, t) for all t.

Furthermore, it is clear that with this definition,

h(x, t) =
1

2
[g(x) + g(x)] = g(x) and

∂

∂t
h(x, t)

∣∣∣∣
t=0

=
1

2
[cg′(x)− cg′(x)] = 0 .

In summary, whenever g(x) is antisymmetric about x = 0 and x = L, (6.24) defines a solution of

the wave equation satisfying the boundary conditions h(0, t) = h(L, t) for all t and with initial data

h(x, t) = g(x) and
∂

∂t
h(x, t)

∣∣∣∣
t=0

= 0 (6.25)

for all x ∈ (0, L).

We are now ready to show that we always have a solution of our initial data problem in the

special case v(x) = 0; i.e., the case in which the initial data id of the form (6.25).

All we need do is to observe that every twice continuously differentiable function g(x) defined

on [0, L] such that g(0) = g(L) = 0 has a unique extension to all of R that is antisymmetric about

x = 0 and x = L. This function can be produced by ‘repeated reflection’, as we now explain:

Since g(x) is required to be antisymmetric about x = 0, knowing the values of g(x) for x ∈ [0, L],

we know them also for x ∈ [−L, 0]: For x ∈ [0, L], g(x) = −g(−x). This extends the domain of

definition of g from [0, L] to [−L,L].
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Next, since g(x) is required to be antisymmetric about x = L, knowing the values of g(x) for

x ∈ [−L,L], we know them also for x ∈ [−L, 3L]: For z ∈ [0, 2L], g(L + z) = −g(L − z). Since

L− z ∈ [−L,L], the right hand side is known, and this gives us the values of g(L+ z) for z in[0, 2L],

or, what is the same, the values of g(x) for x ∈ [L, 3L]. Repeating the procedure extends g to the

whole real line.

The extended function is continuously differentiable since it continues across the points of re-

flection with the same slope. However there may be a ‘jump’ in the second derivative at the points

x = jL, j an integer. For instance, if g is concave on [0, L] (i.e., g′′(x) is negative on [0, L], then the

extension by reflection will be convex on [L, 0]: The second derivative will change sign going across

the points of reflection. However, if the second derivative of g is zero at x = 0 and x = L, then the

extended function will be twice continuously differentiable on all of R, as is the case, for sin(kπx/L).

We have proved:

Lemma 9. Let g(x) be a twice continuously differentiable function on (0, L) such that

lim
x→0,L

g(x) = lim
x→0,L

g′′(x) = 0 .

Let g(x) also denote the unique extension of g to all of R that is antisymmetric about x = 0 and

x = L. Then g(x) is twice continuously differentiable on R, and

h(x, t) =
1

2
[g(x− ct) + g(x+ ct)]

satisfies the wave equation (6.8) for all x, t, and the boundary conditions (6.9) for all t, and the initial

condition (6.25).

The solutions constructed in Lemma 9 correspond to pulling the string into an initial profile

g(x), and then letting the string go, giving it no initial velocity. For example if one plucks a string

on a violin, one sets it into motion in this way.

But what about imparting an initial velocity as well? We would also like to solve the wave

equation (subject to the boundary conditions) with the initial data

h(x, t) = 0 and
∂

∂t
h(x, t)

∣∣∣∣
t=0

= v(x) (6.26)

for all x ∈ (0, L).

Just as on the whole real line, we can leverage Lemma9 by taking the time derivative of the

solutions its provides to construct solutions with a specified initial velocity: Suppose that h(x, t) is

the solution of the wave equation described in Lemma 9 for some function g(x). As before, define

the function

y(x, t) =
∂

∂t
h(x, t) .
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Then, as an easy consequence of Clairault’s Theorem.

∂2

∂t2
y(x, t) =

∂3

∂t3
h(x, y) =

∂

∂t

(
∂2

∂t2
h(x, t)

)
=

∂

∂t

(
c2
∂2

∂x2
h(x, t)

)
= c2

∂2

∂x2

∂

∂t
h(x, t)

= c2
∂2

∂x2
y(x, t) .

Furthermore y(0, t) = y(L, t) = 0 since h(0, t) and h(L, t) are constant. Hence y(x, t) satisfies both

the wave equation and the boundary conditions (6.9). By construction,

y(x, 0) =
∂

∂t
h(x, t)

∣∣∣∣
t=0

= 0

and
∂

∂t
y(x, t)

∣∣∣∣
t=0

=
∂2

∂t2
h(x, t)

∣∣∣∣
t=0

= c2
∂2

∂x2
h(x, 0) = c2g′′(x) .

Therefore, if we choose g(x) to solve

c2g′′(x) = v(x) (6.27)

for all x ∈ (0, L), and let h(x, t) be the corresponding solution of the wave equation provided by

Lemma 9, then its time derivative y(x, t) is the solution we seek.

To apply Lemma 9, we need not only that (6.27) be satisfied, but also that g(0) = g(L) = 0.

This is our first encounter with a boundary value problem for an ordinary differential equation.

We are required to solve (6.27) not for given values g(0) and g′(0), but for given values of g(0) and

g(L); i.e., the values of g at at the boundary points of its domain.

(There is one more condition in Lemma 9, which is that g′′(0) = g′′(L) = 0. However, since

v(0) = 0, we will automatically have this for any solution of (6.27).)

To solve this simple boundary value problem, note that if g(x) is any solution of (6.27), then the

function g(x)− ax− b satisfies the same equation for all a and b. Defining g(x) as a double integral,

and subtracting off the requisite linear term, we get out solution: Define

g(x) =
1

c2

[∫ x

0

(∫ z

0

v(w)dw

)
dz − x

L

∫ L

0

(∫ z

0

v(u)du

)
dz

]
.

Clearly, g(0) = g(L) = 0 and (6.27) is satisfied. Let w(x) denote the doubly antisymmetric extension

of this function g(x) to all of R, then

h(x, t) =
∂

∂t

1

2
[w(x− ct) + w(x+ ct)] =

c

2
[w′(x+ ct)− w′(x− ct)] (6.28)

is the solution we seek.

Altogether we have proved:
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Theorem 31. Let g(x) be a twice continuously differentiable function on (0, L) such that

lim
x→0,L

g(x) = lim
x→0,L

g′′(x) = 0 .

Let g(x) also denote the unique extension of g to all of R that is antisymmetric about x = 0 and

x = L.

Let v(x) be continuous on [0, L] with v(0) = v(L) = 0, and define w(x) on [0, L] by

w(x) =
1

c2

[∫ x

0

(∫ z

0

v(w)dw

)
dz − x

L

∫ L

0

(∫ z

0

v(u)du

)
dz

]
,

and we let w(x) also denote the unique extension of w to all of R that is antisymmetric about x = 0

and x = L.

Then

h(x, t) =
1

2
[g(x− ct) + g(x+ ct)] +

c

2
[w′(x+ ct)− w′(x− ct)]

satisfies the wave equation (6.8) for all x, t, and the boundary conditions (6.21) for all t, and the

initial condition (6.22), and it is the only such solution.

Example 51. Fix positive integers m and n, and define

g(x) = sin(mπx/L) and v(x) = sin(nπx/L) .

Then ∫ x

0

(∫ z

0

v(u)du

)
dz =

L

nπ

∫ x

0

[1− cos(nπz/L)]dz =
L

nπ
x−

(
L

nπ

)2

sin(nπx/L) ,

so that

w(x) =
1

c2

[
L

nπ
x−

(
L

nπ

)2

sin(nπx/L)− L

nπ
x

]
=

(
L

cnπ

)2

sin(nπx/L)

and finally,

w′(x) =
L

c2nπ
cos(nπx/L) .

The solution then is

h(x, t) =
1

2
[sin(mπ(x+ ct)/L) + sin(mπ(x− ct)/L)] +

L

2nπc
[cos(nπ(x+ ct)/L)− cos(nπ(x− ct)/L)] .

By the angle addition formulae,

1

2
[sin(mπ(x+ ct)/L) + sin(mπ(x− ct)/L)] = sin(mπx/L) cos(mπct/L)

and
1

2
[cos(nπ(x+ ct)/L)− cos(nπ(x− ct)/L)] = sin(nπx/L) sin(nπct/L) .

Finally,

h(x, t) = sin(mπx/L) cos(mπct/L) + sin(nπx/L)
L sin(nπct/L)

nπc
.

It is clear that h(x, 0) = sin(mπx/L), and differentiating, we find

∂

∂t
h(x, t) = −cmπ

L
sin(mπx/L) sin(mπct/L) + sin(nπx/L) cos(nπct/L) ,
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from which it is clear that
∂

∂t
h(x, t)

∣∣∣∣
t=0

= sin(nπx/L).

Notice that this solution is a superposition of two solutions (one determined by g and the other

determined by v) both of which are of th form

u(x)v(t)

for some function u of x along and some function v of t alone.

6.1.5 Separation of variables

In Example 51, we found solutions of the wave equation of a very special form:

h(x, t) = u(x)v(t) . (6.29)

In such a solution, one might say that the variables separate. We now ask: For which functions u

and v does (6.29) define a solution of the wave equation?

Computing,

∂2

∂t2
u(x)v(t) = u(x)v′′(t) and

∂2

∂x2
u(x)v(t) = u′′(x)v(t) .

Therefore, (6.29) defines a solution of the wave equation exactly when

u(x)v′′(t) = c2u′′(x)v(t) . (6.30)

For x, t such that u(x) 6= 0 and v(t) 6= 0, this is equivalent to

c−2 v
′′(t)

v(t)
=
u′′(x)

u(x)
. (6.31)

Since the left side is independent of x and the right hand side is independent of t, both sides must

be constant on the set of all (x, t) such that u(x) 6= 0 and v(t) 6= 0.

Let λ denote the constant. We seek to solve

u′′(x) = λu(x) (6.32)

subject to the boundary conditions

u(0) = u(L) = 0 . (6.33)

Suppose that u(x) is such a solution. Then

λ

∫ L

0

U2(x)dx =

∫ L

0

u′′(x)u(x)dx = −
∫ L

0

|u′(x)|2dx .

where we have integrated by parts, and there are no boundary terms due to (6.33). The right hand

side is strictly negative (unless u(x) = 0 for all x), and we conclude that

λ < 0

whenever u(x) is a non-trivial solution.
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Now fix λ < 0, and let us try to solve (6.32) subject to (6.33). The general solution of (6.32) is

u(x) = a sin(
√
|λ|x) + b cos(

√
|λ|x) .

The condition u(0) = 0 tells us b = 0, and then the condition u(L) = 0 tells us that

sin(
√
|λ|L) = 0 .

This in turn tells us that
√
|λ|L is an integer multiple of π. That is,√

|λ|L = kπ ,

where k is a non-negative integer. We therefore define

uk(x) = sin(kπx/L) k = 1, 2, . . . . (6.34)

Therefore, there is a non-trivial solution of (6.32) that satisfies (6.33) if and only if λ = −k2π2.

Let us define

λk = −k
2π2

L2
k = 1, 2, . . . . (6.35)

Now let us find the functions vk(t) such that uk(x)vk(t) solves the wave equation. The equation

c−2 v
′′(t)

v(t)
= λk

is the same as (for t such that v(t) 6= 0) the equation

v′′(t) = −
(
ckπ

L

)2

v(t) .

We know that the general solution vk of this equation is vk(t) = a cos(ckπt/L) + b sin(ckπt/L).

Replacing the constant b by the constant Lb/(ckπ) for convenience later on, we define

vk(t) = a cos(ckπt/L) + b
L sin(ckπt/L)

ckπ
(6.36)

for some constants a, b ∈ R.

In conclusion, for each k = 1, 2, . . . , let uk be given by (6.34) and let vk be given by (6.36) for

any a, b ∈ R. Then

hk(x, t) = uk(x)vk(t)

solve the wave equation and satisfies the boundary conditions h(0, t) = h(L, t) = 0 for all t.

We see that

hk(x, 0) = a sin(kπx/L) and
∂

∂t
hk(x, t)

∣∣∣∣
t=0

= b sin(kπx/L) . (6.37)

Therefore, by what we have proved above, hk(x, t) is the unique solution of the wave equation

satisfying the boundary condition h(x, t) = h(L, t) = 0 for all t and the initial conditions (6.37).

By taking linear combinations of such solutions, we arrive at the unique solution of the wave

equation for a very wide class of initial data. Suppose that for some integer N and numbers a1, . . . , aN

and b1, . . . bN ,

g(x) =

N∑
k=1

ak sin(kπx/L) and v(x) =

N∑
k=1

bk sin(kπx/L) . (6.38)
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Then the unique solutions of the wave equation satisfying the boundary condition h(x, t) = h(L, t) = 0

for all t and the initial conditions

hk(x, 0) = g(x) and
∂

∂t
hk(x, t)

∣∣∣∣
t=0

= v(x) (6.39)

is

h(x, t) =

N∑
k=1

sin(kπx/L)

[
ak cos(ckπt/L) + bk

L sin(ckπt/L)

ckπ

]
. (6.40)

This observation is useful because it turns out that every continuous function f(x) on [0, L]

satisfying f(0) = f(L) has a uniformly convergent Fourier series

f(x) =

∞∑
k=1

αk sin(kπx/L) (6.41)

where for each k

αk =
2√
L

∫ L

0

f(x) sin(kπx/L) . (6.42)

The sequence {αk} is the sequence of Fourier coefficients of f .

We shall not prove this in full detail, but part of the story is simple and well-worth explaining

here.

Definition 21. Let f and g be two real-valued continuous functions on [0, L]. Let %(x) be a given

strictly positive function on [0, l]. Theinner product of f and g with respect to the weight % is the

quantity 〈f, g〉 defined by

〈f, g〉 =

∫ L

0

f(x)g(x)%(x)dx .

(Dince usually the wieght is fixed in advance, we do not make it explicit in our notation.) The

L2-norm of f is the number ‖f‖2 defined by

‖f‖2 =
√
〈f, f〉 .

Two continuous functions f and g on [0, L] are orthogonal in case

〈f, g〉 = 0 .

A sequence of continuous functions {fn} on [0, L] is orthonormal in case

〈fn, fm〉 = 0 for all n 6= m and ‖fn‖2 = 1 for all n .

To motivate this definition, pick a large N ∈ N, and let ∆x = L/N . Define xj = j∆x. Then the

Riemann sum approximation to integral that defines 〈f, g〉 for this partition of [0, L] is∫ L

0

f(x)g(x)dx ≈
N−1∑
j=0

f(xj)g(xj)%(xj)∆x .

Define the vector fN ∈ RN by

fN =
√
%(xj)∆x(f(x0), f(x1), . . . , f(xN−1))
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and likewise for gN . We then have

〈f, g〉 = lim
N→∞

fN · gN ,

and also

‖f‖22 = lim
N→∞

f · f = lim
N→∞

‖fN‖2 .

Thus, the inner product is a limiting form of the dot product in RN , and this justifies our terminology.

Furthermore, by the Cauchy-Schwarz inequality in RN ,

|fN · gN | ≤ ‖fN‖‖gN‖ .

Therefore, taking the limit N →∞, we obtain the Cauchy-Schwarz inequality for integrals:

|〈f, g〉| ≤ ‖f‖2‖g‖2 . (6.43)

Likewise, it follows that ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2, and so we can define the mean square distance

d2(f, g) between two continuous functions f and g on [0, L] to be the quantity

d2(f, g) = ‖f − g‖2 .

Theorem 32. For each k ∈ N, define the function

uk(x) =

√
2

L
sin(kπx/L) .

Then {uk} is orthonormal with respect to the uniform weight %(x) = 1.

Proof. By the identity

sin(kπx/L) sin(`πx/L) =
1

2
[cos((k − `)πx/L)− cos((k + `)πx/L)[ ,

we have that for k 6= `∫ L

0

sin(kπx/L) sin(`πx/L)dx =
L

2π

[
1

k − `
sin((k − `)x)− 1

k + `
sin((k + `)x)

] ∣∣∣∣l
0

= 0

and for k = `, ∫ L

0

sin(kπx/L) sin `πx/L)dx =
1

2

∫ L

0

[1− cos(2kπx/L)]dx =
L

2
.

Given a function a continuous f(x) on [0, L], let us try to approximate f(x) in the mean square

sense by a function of the form
∑N
k=1 αkuk.

Theorem 33 (Bessel’s theorem). Let f be a continuous function on [0, L]. Let {un} be any or-

thonormal sequence with respect to any weight function %. Let ‖ · ‖2 denote the corresponding norm.

Then for all N and all numbers α1, . . . , αN ,∥∥∥∥∥f −
N∑
k=1

αkuk

∥∥∥∥∥
2

2

= ‖f‖22 −
N∑
k=1

〈f, uk〉2 +

N∑
k=1

α2
k =

N∑
k=1

(〈f, uk〉 − αk)2 .
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In particular, among all functions of the form
∑N
k=1 αkuk, the best mean square approximation to f

is given by

fN (x) :=

N∑
k=1

〈f, uk〉uk(x) , (6.44)

and

‖f − fN‖22 = ‖f‖22 −
N∑
k=1

〈f, uk〉2 . (6.45)

Proof. By definition,∥∥∥∥∥f −
N∑
k=1

αkuk

∥∥∥∥∥
2

2

=

〈
f −

N∑
k=1

αkuk, f −
N∑
`=1

α`u`

〉

= 〈f, f〉 − 2

N∑
k=1

αk〈f, uk〉+

N∑
k,`=1

αkα`〈uk, u`〉

= ‖f‖22 − 2

N∑
k=1

αk〈f, uk〉+

N∑
k=1

α2
k

where we have used the orthonormality of {uk} in the last step. Completing the square,

−2

N∑
k=1

αk〈f, uk〉+

N∑
k=1

α2
k =

N∑
k=1

(〈f, uk〉 − αk)2 −
N∑
k=1

〈f, uk〉2 ,

and this proves the identity.

As a consequence of (6.45),
∑N
k=1〈f, uk〉2 ≤ ‖f‖22, and therefore the infinite sum

∑∞
k=1〈f, uk〉2

is convergent and
∞∑
k=1

〈f, uk〉2 ≤ ‖f‖22 . (6.46)

This is Bessel’s inequality. It has the following consequence: Let fN be the Nth partial sum of the

Fourier series as in (6.44). Then is is a simple consequence of the orthonormality that for N > M ,

‖fN − fM‖22 =

N∑
j=M+1

〈f, uk〉2 ≤
∞∑

j=M+1

〈f, uk〉2

and so by (6.46) for all ε > 0 there is an Mε so that

∞∑
j=Mε+1

〈f, uk〉2 ≤ ε2 .

This means that

M,N ≥Mε ⇒ ‖fN − fM‖2 ≤ ε .

In other words, the sequence {fN} is a Cauchy sequence in the means-square metric. One of the

key advantages of the Lebesgue Theory of Integration is that if one extands the space of Reimann

suqare-integrable functions to include the large class of Lebesgue square integrable functions, our

metric space becomes a complete metric space, maening that the Cauchy sequence converges to some

square integrale function f̃ , which may or may not be the same as f .
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However, since

f̃ =

∞∑
k=1

〈f, uk〉uk,

〈f̃ , uk〉 = 〈f, uk〉, and so

〈f̃ − f, uk〉 = 0

for all k. (Here, concerning f̃ , we are taking inner products using Lebesgue integrals, but they satisfy

all of the formulas we have derived using Reimann integrals.)

In other words, f̃ − f is orthogonal to uk for every k. This brings us to an inportant definition:

Definition 22 (Complete orthonormal sequensce). A sequence of functions {uk} that is orthonormal

with repsect to some weight function % on [0, L] is complete in case the only continuous function g(x)

satisfying ∫
g(x)uk(x)%(x)dx = 0 (6.47)

for all k is the zero function g(x) = 0 for all x.

It can be shown that when {uk} is complete, the only Lebesgue square integrable functions g

When {uk} is complete, the only Lebesgue sqaure integrable function satisfying (6.47) is the zero

functions, and thus f̃ − f = 0. That is,

f = lim
N→∞

fN =

∞∑
k=1

〈f, uk〉uk .

Finally, it is not hard to show (this is done in the exercises) that the orthonormal sequences de-

fined in Theorem 32 is complete. Thus, every continuous functions has a convergent Fourier series

representation. Hence, one actually has Paseval’s identity

∞∑
k=1

〈f, uk〉2 = ‖f‖22 . (6.48)

In conclusion, general initial data for the wave equation can be approximated, to arbitrary

accuracy, by initial data of the form (6.38) for which we have a formula for the unique solution.

Moreover, we have a simple formula for computing the approximations to the initial data.

In the next section we show that separation of variables strategy leads to similar formulas for

the solution of a wide variety of equations.

6.2 Sturm-Liouville Theory

6.2.1 Sturm-Liouville operators

In this section we explain how for a wide class of partial differential equations, the method of sepa-

ration of variables leads to an ordinary differential equation boundary value problem whose solution

yields a complete orthonormal sequence of functions that may be used to express the solution of the

partial differential equation as a series of simple product solutions.
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Let %(x) and p(x) be strictly positive continuous functions on [0, L]. Let q(x) be any continuous

function on [0, L].

For any continuous function u(x) on [0, L] that is twice continuously differentiable on (0, L),

define the function Lu(x) by

Lu(x) =
1

%(x)

[
d

dx

(
p(x)

d

dx
u(x)

)
+ q(x)u(x)

]
. (6.49)

The transformation of the function u(x) in to the new function Lu(x) is often called an operation,

and then L itself is called an operator. In this specific form, it is the Strum-Liouville operator

For different choices of %(x), p(x) and q(x), the Sturm-Lioville operator arrises in connection

with important partial differential equations. Here are three examples.

Example 52 (The wighted string). Consider a string whose mass per unit length depends of the

position x, so that instead of a constant density %, the density is function %(x). If the tension in the

string is T , the derivation of the wave equation that we made for constant density % now gives, in

exactly the same way,

%(x)
∂2

∂t2
h(x, t) = T

∂2

∂x2
h(x, t) . (6.50)

Let us again impose the boundary conditions h(0, t) = h(L, t) = 0 for all t, and seek solutions of the

form h(x, t) = u(x)v(t). We find

%(x)u(x)v′′(t) = Tu′′(x)v(t) ,

so that
v′′(t)

v(t)
=

T

%(x)

u′′(x)

u(x)
.

Since the left side is independent of x, and the right side is independent of t, both sides must equal

some constant λ, and we are left with the two equations

v′′(t) = λv(t) (6.51)

and
T

%(x)
u′′(x) = λu(x) . (6.52)

This can be written as

Lu(x) = λu(x) (6.53)

where L is the Sturm-Liouville operator with the given weight %(x), and with p(x) = T , which is

constant, and q(x) = 0, again constant.

As we shall see, these is sequence of negative numbers {λn} such limn→∞ λn = −∞ and such

that (6.53) has a solutions satisfying u(0) = u(L) = 0 if and only if λ = λn for some n.

The general solution of (6.51) with λ = λn is

v(t) = a cos(
√
|λn|t) +

b√
|λn|

sin(
√
|λn|t)
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If we then let un(x) denote the solution to Lu = λnu subject to the boundary conditions u(0) =

u(L) = 0,

hn(x, t) =

[
a cos(

√
|λn|t) +

b√
|λn|

sin(
√
|λn|t)

]
un(x)

is the solution of our equation subject to our boundary conditions and satisfying

h(x, 0) = aun(x) and
∂

∂t
h(x, 0) = bun(x) .

By expanding initial data as linear combinations of the un, we arrive at the general solution of the

equation.

In a later example, we shall explicitly compute all of the λn and un for the particular case

%(x) = (1 + x)−2.

Example 53 (The heat equation). Consider a metal rod of length L, and let x be the coordinate

marking position along the rod form one end (x = 0) to the other (x = L).

Let h(x, t) denote the temperature at x at time t. Heat, which is thermal energy, flows along the

rod. The rate of flow depends on the local difference in temperature: heat flows from hot to cold.

The rate at which heat flows from right to left across x at time t is

p(x)
∂

∂x
h(x, t)

where p(x) is a proportionality constant called the thermal conductivity. Note that if the derivative

is positive, the metal rod is hotter to the right of x than it is to the left, and there will be positive heat

flow from right to left, so that p(x) ≥=. It is equal to zero if and only if the metal rod is a perfect

thermal insulator at x, so that no heat flows.

The amount of thermal energy entering the part of the rod between x and x + ∆x in a time ∆t

Is what flows in across the boundary of this segment in time ∆t. By what we have explained above,

this is

p(x+ ∆x)
∂

∂x
h(x+ ∆x, t)− p(x)

∂

∂x
h(x, t) .

The quantity of heat in the segment is (proportional to) the temperature times the length. Thus

[h(x, t+ ∆t)− h(x, t)]∆x

is the change in thermal energy in the segment, in the limit in which ∆x is so smaller that h is

essentially constant on the interval. Thus equating the change in thermal energy to the flux across

the boundary, we have

[h(x, t+ ∆t)− h(x, t)]∆x = p(x+ ∆x)
∂

∂x
h(x+ ∆x, t)− p(x)

∂

∂x
h(x, t) ,

absorbing an additional proportionality constant into p(x). Dividing by ∆x∆t and taking both to zero,

we obtain
∂

∂t
h(x, t) =

∂

∂x

(
p(x)

∂

∂x
h(x, t)

)
. (6.54)

This can be written as
∂

∂t
h(x, t) = Lh(x, t) . (6.55)
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where L is the Sturm-Liouville operator with %(x) = 1 and q(x) = 0, and p(x) as given.

If the rod is insulated, there is no heat flux at the ends of the rod, and so, since heat flux is

proportional to the temperature derivative, the natural boundary conditions are

∂

∂x
h(0, t) =

∂

∂x
h(L, t) = 0 . (6.56)

Let us try to solve the heat equation by separation of variables. We seek solutions of the form

h(x, t) = u(x)v(t). We find

u(x)v′(t) = (Lu(x))v(t) ,

so that
v′(t)

v(t)
=
Lu(x)

u(x)
.

Once again, since the right hand side depends only on x and the left hand side only on t, both sides

are constant, and so for some λ,

v′(t) = λv(t) and Lu(c) = λu(x) .

Once again, we are led to the problem of solving an eigenvalue equation for a Sturm-Liouville

operators; i.e., Lu(c) = λu(x), but this time subject to the Neumann boundary conditions

u′(0) = u′(L) = 0 . (6.57)

As we shall see, when p is continuously differentiable and strictly positive on [0, L], there is a

sequence of numbers λn tending to −∞ as n increases so that Lu(c) = λu(x) has a solutions satisfying

(6.57) if and only if λ = λn for some n, and for each n, there is exactly one such solution (up to

constant multiples) which we may call un.

Since v′(t) = λnv(t) is solved uniquely (up to a constant multiple) by v(t) = etλn , we will then

have that

hn(x, t) = ane
tλnun(x)

is a solution of the heat equation for any choice of the constant an. It will turn out that the {un}
will be a complete orthonormal sequence so that we can readily express the solution for essentially

arbitrary initial data as a linear combination of these special solutions. Finally, as explained in the

exercises, energy methods can be used to prove a uniqueness theorem for the heat equation.

6.2.2 The Sturm-Liouville eigenvalue problem

Given a Sturm-Liouville operator L that acts on twice continuously differentiable functions u(x) on

[0, L], the Sturm-Liouville eigenvalue problem is to find all numbers λ so that there is a nontrivial

(i.e., not identically zero) function u(x) such that

Lu(x) = λu(x)

on [0, L] and such that either the Dirichlet boundary conditions

u(0) = u(L) = 0 (6.58)
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or the Neuman boundary conditions

u′(0) = u′(L) = 0 (6.59)

are satisfied. The values of λ for which such a solution exists are called the eigenvalues of L, and the

corresponding non-trivial solutions are called the eigenfunctions of L.

We assume that L is given by (6.49) where % and p are strictly positive and continuous on [0, L],

and p is continuously differentiable on (0, L).

We have seen how the wave equation and the heat equation may be solved by solving a Sturm-

Liouville eigenvalue problem that arrises through separation of variables. Now we turn to solving the

Sturm-Liouville eigenvalue problem itself, and explaining the nature of the eigenfunctions that this

leads too. The first important fact is that we always get an orthonormal set of eigenfuctions.

Lemma 10. Consider a Sturm-Liouville operator with either Neuman or Dirichlet boundary condi-

tions imposed. Let u1, u2 be two eigenfunctions of L corresponding to different eigenvalues λ1, λ2.

Then ∫ L

0

u1(x)u2(x)%(x)dx = 0 . (6.60)

In other words, u1 and u2 are orthogonal with respect to the weight %. Moreover every eigenvalue λ

of L satisfies

λ ≤ min
x∈[0,L]

{q(x)/%(x)} . (6.61)

Proof. We compute

λ1u1(x)u2(x)%(x) = (Lu(x))u2(x)%(x) .

Integrating both sides in x, and then integrating by parts.

λ1

∫ L

0

u1(x)u2(x)%(x)dx =

∫ L

0

[(p(x)u′1(x))′ + q(x)u1(x)]u2(x)dx

= [p(x)u′1(x)]u2(x)

∣∣∣∣x=L

x=0

−
∫ L

0

[p(x)u′1(x)u′2(x) + q(x)u1(x)]u2(x)dx

= −
∫ L

0

[p(x)u′1(x)u′2(x) + q(x)u1(x)]u2(x)dx

since the boundary terms vanish under either Dirichlet or Neuman boundary conditions.

The right hand side is symmetric in u1 and u2. Therefore, we get the same result interchanging

the roles of 1 and 2, so that

λ1

∫ L

0

u1(x)u2(x)%(x)dx = λ2

∫ L

0

u1(x)u2(x)%(x)dx .

Since λ1 6= λ2, this means that (6.60) is true.
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Next, replacing u2 with u1, the same calculation shows that

λ1

∫ L

0

|u1(x)|2%(x)dx = −
∫ L

0

[p(x)|u′1(x)|2 + q(x)|u1(x)|2dx

≤ −
∫ L

0

q(x)|u1(x)|2dx

= −
∫ L

0

q(x)

%(x)
|u1(x)|2%(x)dx

≤ − min
x∈[0,L]

{q(x)/%(x)}
∫ L

0

|u1(x)|2%(x)dx .

This proves (6.61).

Next, let us seek the eigenvalues. The point of writing the Sturm-Liouville operator in the form

we wrote it is that this form makes it easy to prove the orthogonality of the previous lemma, and,

more important, the coefficient functions in this form often have a physical meaning. For example,

the coefficient p(x) may represent a thermal conductivity function in a heat equation problem.

However, for other purposes, it is preferable to write the equation in a different form. The

eigenvalue equation can be written as

%(x)Lu(x) = λ%(x)u(x)

and we can expand this as

u′′(x) +
p′(x)

p(x)
u′(x) +

1

p(x)
[q(x)− λ%(x)]u(x) = 0 .

This in turn can be written as

u′′(x) + P (x)u′(x) +Q(x)u(x) = 0 (6.62)

which is the second order linear equation that we have studied in the previous chapter.

We know that if u1(x) and u2(x) are any two linearly independent solutions of this equation, the

general solution has the form

au1(x) + bu2(x)

for arbitrary constants a and b. Our goal is to choose the constants a and b so that our boundary

conditions (either Dirichlet or Neuman) are satisfied. In general, this will only be possible for certain

particular values of λ.

The reason is this: We know that as long as P (x) and Q(x) are continuous on [0, L], there is a

unique solution of (6.62) for any specified values of u(0) and u′(0). Furthermore, by the uniqueness

and the linearity, if u(x) is the solution with

u(0) = 0 and u′(0) = 1 , (6.63)

and a 6= 0, defining v(x) by v(x) = au(x), we see that v(x) is the solution of the same equation with

v(0) = 0 and v′(0) = a .
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clearly, u(L) = 0 if and only if v(L) = 0. Therefore, if we want to satisfy both u(0) = 0 and u(L) = 0,

we see that this can be done if and only if u(L) = 0 where u(x) is the solution satisfying (6.63).

Now, either this solution satisfies u(L) = 0 or it does not. The eigenvalues are the special values

of λ that ‘adjust’ Q(x) to make this happen. The solution is quite analogous for Neuman boundary

condition in place of dirichlet boundary conditions; se the next example.

We see from this discussion that finding eigenvalues of a Sturm-Liouville problem is closely

connecting with the question of determining the set of zeros of solutions of (6.63); i.e., the set of

points at which the solution satisfies u(x) = 0.

Example 54. Consider the case Lu(x) = u′′(x) with Neumann boundary conditions on [0, L]. Since

q(x) = 0, all of the eigenvalues will be non-positive. For λ < 0, the general solution of

u′′ = λu(x)

is

u(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x) .

Then

u′(x) =
√
|λ|(−a sin(

√
|λ|x) + b cos(

√
|λ|x)) ,

and we have u′(0) = 0 if and only if b = 0. In this case

u′(L) = b
√
|λ| cos(

√
|λ|L) ,

and so for b 6= 0, so we do not have the trivial solution, u′(L) = 0 if and only if

cos(
√
|λ|L) = 0 ,

and this means that √
|λ|L = kπ − π

2

for some positive integer k. The corresponding eigenfunction is, up to a multiple, uniquely given by

uk(x) = sin
((
kπ − π

2

)
x
)
.

There is one more eigenvalue: We know λ ≤ 0, but we have so far found only the strictly negative

eigenvalues. Is λ = 0 an eigenvalue? To determine this, note that the general solution of u′′(x) = 0

is u(x) = ax + b, so that u′(x) = a. To satisfy u′(0) = 0, we must take a = 0, and then u′(L) = 0

automatically. Hence,

λ0 = 0

is an eigenvalue, and the corresponding eigenfunction is

u0(x) = 1 .

The general solution of the heat equation

∂

∂t
h(x, t) =

∂2

∂x2
h(x, t)
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with Neumann boundary conditions on [0, L] is therefore of the form

h(x, t) =

∞∑
k=0

αke
tλktuk(x) .

Since λk < 0 for k > 0,

lim
t→∞

h(t, x) = α0 .

That is the temperature tends to a constant. It is easy to see that

d

dt

∫ L

0

h(x, t)dx = 0

and so

α0L = lim
t→∞

∫ L

0

h(x, t)dx =

∫ L

0

h(x, 0)dx .

That is

α0 =
1

L

∫ L

0

h(x, 0)dx .

Therefore, if the initial temperature profile is given by h(x, 0) = g(x), we can see that

lim
t→∞

h(t, x) =
1

L

∫ L

0

g(x)dx .

That is, the temperature converges to its average value as the heat diffuses through the metal rod.

Notice that this happens exponentially fast: The least negative non-zero eigenvalue is

λ1 = − π2

4L2
.

All of the other terms in the solution decay away at least as fast as e−tπ
2/4L2

.

Example 55. Consider the case Lu(x) = 1
%(x)u

′′(x) with Dirichlet boundary conditions on [0, L].

Since q(x) = 0, all of the eigenvalues will be non-positive. This arrises in the wave equation for a

weighted string with mass density %(x). To carry out explicit computations, we fix the choice

%(x) = (1 + x)−2 .

We seek the general solution of

u′′(x) = λ(1 + x)−2u(x) .

It is natural to look for solutions of the form

u(x) = (1 + x)α

for some undetermined α. Inserting this into our equation, we find

α(α− 1) = λ

This quadratic equation has the roots

α =
1

2
(1±

√
1 + 4λ) .
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For λ 6= −1/4, we get two distinct roots and hence two linearly independent solutions.

For −1/4λ ≤ 0,
√

1 + 4λ is real, and so the general solution is

u(x) = a(1 + x)
1
2 (1+

√
1+4λ) + b(1 + x)

1
2 (1−

√
1+4λ) .

Then, u(0) = 0 forces b = −a. But then

u(L) = a
(

(1 + L)
1
2 (1+

√
1+4λ) − (1 + L)

1
2 (1−

√
1+4λ)

)
,

and this is not zero unless a = 0. Hence for −1/4λ ≤ 0, the only solution is the trivial solution, and

there are no eigenvalues in this range

For λ = 1/4, we have only the single solution u1(x) =
√

1 + x. We get a second solution by

multiplying by ∫
1

u2
1(x)

dx = ln(1 + x) ,

where we have use the fact that P (x) = 0 in this case. Hence our second solution is

u2(x) =
√

1 + x ln(1 + x) ,

and the general solution is

u(x) =
√

1 + x(a+ b ln(1 + x)) .

To satisfy u(0) = 0, we must have a = 0, and then u(L) = b
√

1 + L ln(1 + L), which is zero only if

b = 0; i.e., only for the trivial solution. Hence λ = −1/4 is not an eigenvalue.

Things are different when λ < −1/4. In this case

√
1 + 4λ = i

√
4|λ| − 1

is pure imaginary. Thus,

(1 + x)
1
2 (1+

√
1+4λ) =

√
1 + xei

1
2

√
4|λ|−1 ln(1+x)

=
√

1 + x
(

cos( 1
2

√
4|λ| − 1 ln(1 + x)) + i sin( 1

2

√
4|λ| − 1 ln(1 + x))

)
.

The real and imaginary parts give two independent solutions, and so the general solution is

u(x) =
√

1 + x
(
a cos( 1

2

√
4|λ| − 1 ln(1 + x)) + b sin( 1

2

√
4|λ| − 1 ln(1 + x))

)
.

Then u(0) = 0 requires a = 0, in which case

u(L) = b
√

1 + x sin( 1
2

√
4|λ| − 1 ln(1 + L)) ,

and for b 6= 0, this is satisfied if and only if√
|λ| − 1/4L = kπ

for some positive integer k. The solution of this is

λk = − k2π2

(ln(1 + L)2
− 1

4
.

The corresponding eigenfunctions are

uk(x) =
√

1 + x sin( 1
2

√
4|λk| − 1 ln(1 + x)) .
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In the last two examples, we have found infinite sequences of eigenvalues and eigenfunctions by

direct computation. It is not always possible to make these computation explicitly, but it turns out

that once can show the existence of such sequences in great generality by indirect means, and can

even say write a lot about the properties of the eigenvalues and eigenfunctions. This is done through

an investigation of the zeros of solutions of the second order linear equation. As we have seen in

the last example, when there are plenty of zeros, due to oscillation, we have a chance to match both

boundary conditions. Our investigation of the zeros will make frequent use of the Wronskian of two

functions.

Definition 23 (Wronskian). Let u1(x) and u2(x) be two continuously differentiable functions. Their

Wronskian is the function

Wu1,u2
(x) = u1(x)u′2(x)− u′1(x)u2(x) = det

[
u1(x) u2(x)

u′1(x) u′2(x)

]
.

Lemma 11. Let u1(x) and u2(x) be two solutions of (6.63) on an interval [x1, x2]. Then

Wu1,u2(x2) = e
∫ x2
x1

P (x)dx
Wu1,u2(x1) .

In particular, if Wu1,u2
(x1) > 0, then Wu1,u2

(x2) > 0 as long as the solutions are defined on the

interval bounded by x1 and x2.

Proof. Differentiating,

d

dx
Wu1,u2

(x) = u1(x)u′′2(x)− u′′1(x)u2(x)

= u1(x)[−P (x)u′2(x)−Q(x)u2(x)]− [−P (x)u′1(x)−Q(x)u1(x)]u2(x)

= −P (x)[u1(x)u′2(x)− u′1(x)u2(x)]

= −P (x)Wu1,u2
(x)

(6.64)

and this first order linear equation has the solution

Wu1,u2
(x) = e

−
∫ x
x1
P (z)dz

Wu1,u2
(x1) .

Since the exponential function is strictly positive, if Wu1,u2
(x1) 6= 0, then for all x, Wu1,u2

(x) 6= 0

and has the same sign as Wu1,u2(x1).

Theorem 34. Let u1(x) and u2(x) be two linearly independent solutions of (6.63). Then their zeros

interlace. That is, the zeros are isolated, and between any two successive zeros of u1, there is exactly

one zero of u2.

Proof. First we claim that the zeros of any nontrivial solution of (6.63) are isolated, in that around

any zero there is an open interval containing no other zeros. This is because if u(x) is a non-trivial

solution, and u(x0) = 0, then u′(x0) 6= 0 since the only solution with both u(x0) = 0 and u′(x0) = 0

is the trivial solution. But if u′(x0) 6= 0, the solution passes though through x = x0 with a non-zero
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slope, and so there is an open interval in which x0 is the only zero. Hence, it makes sense to speak

of successive zeros.

Let x1 and x2 be successive zeros of u1(x). Since u1 and u2 are linearly independent, u2(x1) 6= 0

and u2(x2) 6= 0: The vectors (u1(xj), u
′
1(xj)) and (u2(xj), u

′
2(xj)) are linearly independent for

j = 1, 2.

Then, since u2(x1) = u2(x2) = 0,

Wu1,u2
(x1) = −u′1(x1)u2(x1) and Wu1,u2

(x2) = −u′1(x2)u2(x2) .

Since the Wronskian does not change sign, u′1(x1)u2(x1) has the same sign as u′1(x2)u2(x2).

We may suppose, replacing either u1 or u2 by −u1 or −u2 as necessary, which does not affect

the location of zeros, that both u1 and u2 are not only non-zero, but strictly positive on (x1, x2).

Then since u2(x1) 6= 0 and u2(x2) 6= 0, u2 is strictly positive on [x1, x2].

Since u1(x) is positive on (x1, x2) and zero at the boundary of this interval, the slope must be

strictly positive at x1, and strictly negative at x2, since the slope of u1 cannot be zero at a zero of

u1.

Therefore, u′1(x1) > 0 and u′1(x2) < 0, so that u′1(x1) and u′1(x2) have the opposite sign. The

same holds in the same way u1 is negative on (x1, x2), But then it must be that case that u2(x1)

and u2(x2) have opposite signs, and then by the Intermediate Value Theorem, u2(x) = 0 for some

x ∈ (x1, x2).

Thus, there is a zero of u2 between each pair of successive zero of u1. But then there cannot

be any more zeros of u2 in [x1, x2], since otherwise u1 would fail to have any zeros in between two

successive zero of u2, and that cannot happen since, switching the roles of u1 and u2, we have just

proved that between any to zero of u2, there must be a zero of u1.

We now show that to study the zeros of solutions of (6.63), we need only study the zeros of

solutions of a simpler equation, namely

y′′(x) + V (x)y(x) = 0 . (6.65)

Here is why.

Lemma 12. Let u(x) be twice continuously differentiable. Define

v(x) = e
1
2

∫
P (x)dx , (6.66)

and define

V (x) = Q(x)− 1

4
P 2(x)− 1

2
P ′(x) . (6.67)

Then

y(x) = u(x)v(x)

satisfies (6.65) if and only if u(x) solves (6.63).

Proof. Let y(x) and w(x) be any two twice continuously differentiable functions, and define u(x) =

w(x)y(x). Then

u′ = w′y + wy′ and u′′ = w′′y + 2w′y′ + wy′′ .
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Therefore,

u′′ + Pu′ +Qu = [w′′y + 2w′y′ + wy′′] + P [w′y + wy′] +Qy

= wy′′ + [2w′ + Pw]y′ + [w′′ + Pw′ + w′′]y = 0 .

To eliminate the coefficient of y′, we require that

2w′ + Pw = 0

and this is a first oder linear equation that is solved by

w = e−
1
2

∫
Pdx .

Making this choice for w(x), we see that u(x) = w(x)y(x) satisfies (6.63) if and only if y(x) satisfies

(6.65). Then, with v(x) = 1/w(x), y(x) = v(x)u(x) and v(x) is given by (6.66).

The point of this lemma is that since the exponential function is never zero, the functions y(x)

and u(x) have the same zeros. Therefore, studying the properties of the set of zeros of the equation

(6.63) is the same as studying the properties of the set of zeros of the equation (6.65) when V (x) and

Q(x) are related by (6.67).

Therefore, in what follows, we study properties of the set of zeros of the equation (6.65), knowing

that this tells us about the properties of the set of zeros of the equation (6.63) when V (x) and Q(x)

are related by (6.67).

Example 56 (Bessel’s equation and its standard form). Let a ≥ 0, and consider the equation

x2u′′(x) + xu′(x) + (x2 − α2)u(x) = 0 (6.68)

on the interval (0,∞). This is Bessel’s equation with parameter a. dividing through by x2, we find

u′′(x) +
1

x
u′(x) +

(
1− α2

x2

)
u(x) = 0 .

In this case P (x) = 2/x, and so

v(x) = e
1
2

∫
P (x)dx = eln x = x .

Computing V (x), we find that the standard form is

y′′(x) +

(
1 +

1− 4α2

4x2

)
y(x) . (6.69)

Notice that for α = 1/2, this reduces to y′′ + y = 0 which is solved by y(x) = a cosx + b sinx. It

follows that

u(x) = a
sinx

x
+ b

cosx

x

is the general solution of Bessel’s equation for α = 1/2.

Notice that for α = 1/2, every solution of Bessel’s equation has infinitely many zeros. As we shall

soon see, this is true for all values of α. To show this, we need an alternative to direct calculation of

the the solution.
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Theorem 35. If y(x) is a non-trivial solution of y′′(x) +V (x)y(x) = 0 and V (x) < 0 for all x, then

u(x) has at most one zero.

Proof. Suppose that there is at least one zero. Let x0 be such that y(x0) = 0. Since y(x) is a

non-trivial solution, y′(x0) 6= 0, and we may assume that y′(x0) > 0. Suppose there is another

zero of y(x) to the right of x0. Let x1 be the first such zero. Then y(x) > 0 on (x0, x1), and so

(y′(x))′ = −V (x)y(x) > 0 on (x0, x1). That is, y′(x) is strictly increasing on (x0, x1) and then since

y′(x0) > 0, y′(x) > 0 on (x0, x1). It follows that

y(x1) = y(x0) +

∫ x1

x0

y′(x)dx ≥
∫ x1

x0

y′(x0)dx = y′(x0)(x1 − x0) > 0 .

This contradicts y(x1) = 0. Therefore, there can be no zero of y(x) to the right of x0.

A similar argument shows that there can be no zero of y(x) to the left of x0.

Theorem 36. If y′′(x) + V (x)y(x) = 0 and for some x0, V (x) > 0 for all x ≥ x0 and∫ ∞
x0

V (x)dx =∞ ,

then u(x) has infinitely many zeros.

Proof. If there are only finitely many zeros, then there is a last one, and we may suppose that

u(x) > 0 for all x > x0. Define

v(x) = −u
′(x)

u(x)
.

Then

v′(x) = V (x) + v2(x) ≥ V (x) .

Therefore,

v(x) ≥
∫ x

x0

V (z)dz + v(x0) .

Taking x large enough, we see that for all x sufficiently large v(x) > 0, and u′(x) < 0.

But since u′(x) is decreasing on [x0,∞) since (u′(x))′ = −V (x)u(x) is negative there, the slope

is always less than some strictly negative number from some point on. Hence, for all sufficiently large

x, the graph of u(x) lies below a line with negative slope. Hence u(x) must have another zero. This

shows there can be no last zero.

Example 57. We see that for all values of α, there is an x0 so that

V (x) =

(
1 +

1− 4α2

4x2

)
> 0

and ∫ ∞
x0

V (x)dx =∞ .

It now follows that every solution of y′′(x) + V (x)y(x) = 0 has infinitely many zeros. But every

solution of Bessel’s equation with parameter α is a non-zero multiple of such a solutions. Hence,

every solution of Bessel’s equation with parameter α has infinitely many zeros.
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Theorem 37 (Sturm Comparison Theorem). Suppose

y′′(x) + V (x)y(x) = 0 and z′′(x) + U(x)z(x) = 0

on an interval [a, b] and that

V (x) > U(x)

on [a, b]. Then y has at least one zero between any two zero of z.

Proof. Suppose that x1, x2 are successive zeros of z(x) in [a, b] and that y(x) has no zeros on (x1, x2).

Then without loss of generality, we may suppose that z(x), y(x) > 0 for all x ∈ (x1, x2). Now,

d

dx
Wy,z(x) = y(x)z′′(x)− z(x)y′′(x) = (V (x)− U(x))y(x)z(x) > 0 .

Thus,

y(x2)z′(x2) = Wy,z(x2) > Wy,z(x1) = y(x1)z′(x1) .

But since z(x) > 0 on (x1, x2) and z(x1) = z(x2) = 0, we have z′(x1) > 0 and z′(x2) < 0. But then

y(x2)z′(x2) ≤ 0 and y(x2)z′(x2) ≥ 0. This is impossible so y(x) must have a zero in (x1, x2).

Theorem 38 (Bounds on separation of zeros). Let V be a continuous function on [a, b] satisfying

0 < m2 < V (x) < M2

for all x ∈ [a.b]. Let y(x) be any nontrivial solutions of y′′(x) + V (x)y(x) = 0 on [a, b]. Then if x1

and x2 are successive zeros of y(x) in [a, b],

π

M
≤ x2 − x1 ≤

π

m
.

Moreover, if y(a) = y(b) = 0, and y(x) = 0 at exactly n− 1 points in (a, b), then

m <
nπ

b− a
< M .

Proof. The function

z(x) = sin(m(x− x1))

satisfies

z′′(x) +m2(x) = 0 and z(x1) = 0 .

The next zero of z(x) is at x1 + π/m. By the Sturm Comparison Theorem, y(x) must have a zero in

(x1, x1 + π/m). Since x2 is the successive zero, x2 < x1 + π/m. This proves the first upper bound.

Next, the function

z(x) = sin(M(x− x1))

satisfies

z′′(x) +M2(x) = 0 and z(x1) = 0 .

The next zero of z(x) is at x1 + π/M . By the Sturm Comparison Theorem, z(x) must have a zero in

(x1, x2). Hence x1 + π/M < x2. This gives the lower bound. x2 < x1 + π/m. This proves the first

upper bound.
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For the second part, the zeros of y(x) divide [a, b] into exactly n intervals bounded by successive

zeros of y(x). The average length of these intervals is

b− a
n

.

They could all be exactly this length, but in any case the minimum is no greater than the average,

and the maximum is no less.

Hence, focusing first on the minimum, there exist successive zeros x1 and x2 of y(x) with

x2 − x1 ≤
b− a
n

.

But then, by the above

π

M
< x2 − x1 ≤

b− a
n

and hence M >
nπ

b− a
.

A similar argument proves the other bound.

Theorem 39. Consider a Sturm-Liouville operator L on [0, L] satisfying the continuity and posi-

tivity conditions imposed above. Then there is a sequence {λn} of strictly decreasing numbers with

limn→∞ λn = −∞ such that

Lu(x) = λu(x) with u(0) = u(L) = 0

has a nontrivial solutions if and only if λ− λn for some n. The corresponding solution un(x) is zero

at exactly n− 1 points in (0, L).

Proof. We can convert the equation Lu(x) = λu(x) into standard form

y′′(x) + Vλ(x)y(x) = 0 ,

where Vλ has the form

V0(x)− λ%(x)

p(x)
.

Decreasing λ increases both the minimum and maximum of Vλ on [0, L].

Now consider the solution of y′′(x) + Vλ(x)y(x) = 0 with y(0) = 0 and y′(0) = 1. As λ is

decreased, the solutions become more and more oscillatory. More and more zeros ‘move in’ to the

interval [0, L]. Every time a new zero enters through the right, we get a new eigenvalue.

Let Mλ be the square root of maximum of Vλ on [0, L]. We must have

Mλ ≥
nπ

L
.

This requires λn to be very negative for large n. This is the basis of the claim that

lim
n→∞

λn = −∞ .

However, we can say more: Let mλ be the square root of the minimum of Vλ. Then mλ cannot

be larger than nπ/L, and so λn cannot be too negative.
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Example 58 (Estimation of eigenvalues). Consider the Sturm-Liouville operator

Lu(x) = ((1 + x)u′(x))′

with Dirichlet boundary conditions on [0, L]. Then the eigenvalue equation Lu(x) = λu(x) can be

written as

u′′ +
1

1 + x
u′ − λ

1 + x
u = 0 .

The standard form of this equation is y′′ + V (x)y = 0 where

V (x) =
−λ

1 + x
+

1

4

1

(1 + x)2
.

We know all eigenvalues are non-positive, so we only consider λ ≤ 0. Differentiating, we see that

V (x) is monotone decreasing so that

−λ
1 + L

+
1

4

1

(1 + L)2
= V (L) ≤ V (x) ≤ −λ+

1

4
= V (0)

for all x ∈ [0, L]. Therefore, with

m2
λ =

−λ
1 + L

+
1

4

1

(1 + L)2
and M2

λ = −λ+
1

4
,

we have that the condition of Theorem 38 are satisfied. Since λn has exactly n− 1 zeros,

m2
λn ≤

n2π2

L2
≤M2

λn .

Therefore,
−λn
1 + L

+
1

4

1

(1 + L)2
≤ n2π2

L2
≤ −λn +

1

4
.

Rearranging terms,

−(L+ 1)
n2π2

L2
+

1

4

1

L+ 1
≤ λn ≤ −

n2π2

L2
+

1

4
.
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Chapter 7

GREEN’S FUNCTIONS FOR

SECOND ORDER EQUATIONS

’

7.1 Inverting Sturm-Liouville operators

7.1.1 The advantages of the Sturm-Liouville form

We have already studied the inhomogeneous second-order linear differential equation

u′′(x) + P (x)u′(x) +Q(x)u(x) = g(x) . (7.1)

We have seen that provided P , Q and g are continuous and bounded on some open interval containing

a, then for each γ, δ ∈ R, there exists a unique solution of (7.1) satisfying

u(a) = γ and u′(a) = δ . (7.2)

In this chapter we are concerned with corresponding boundary value problem, in which we seek

to solve (7.1) on some interval (a, b) subject to

u(a) = γ and u(b) = δ . (7.3)

As we shall see, the key to this, and to an even more general problem, is to focus first on the special

case

u(a) = 0 and u(b) = 0 . (7.4)

As we have seen, on any interval on which P and Q are continuous and bounded, there are two

linearly independent u1(x) and u2(x) solutions of the homogeneous equation

u′′(x) + P (x)u′(x) +Q(x)u(x) = 0 . (7.5)

c© 2014 by the author.
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For any such pair of solutions, define

M(x) =

[
u1(x) u2(x)

u′1(x) u′2(x)

]
.

Then the flow transformation for the corresponding first order system is

Φx,y = M(x)M−1(y) =
1

u1(y)u′2(y)− u2(y)u′1(y)

[
u1(x) u2(x)

u′1(x) u′2(x)

][
u′2(y) −u2(y)

−u′1(y) u1(y)

]

=
1

u1(y)u′2(y)− u2(y)u′1(y)

[
u1(x)u′2(y)− u2(x)u′1(y) u2(x)u1(y)− u1(x)u2(y)

u′1(x)u′2(y)− u′2(x)u′1(y) u′2(x)u1(y)− u′1(x)u2(y)

]
.(7.6)

Then the unique solution u(x) of (7.1) subject to (7.3) is given, together with is derivative, by

(u(x), u′(x)) = Φx,a(γ, δ) +

∫ x

a

Φx,y(0, g(y))dy . (7.7)

On the other hand, it turns out that there may be no solution to (7.1) subject to (7.4). It will be

easiest to see when there is, and is not, such a solution by writing our equation in a different form.

Define p(x) = e
∫ x
a
P (z)dz. Since p(x) is never zero, the equation we get by multiplying (7.1)

through by p(x) has the same set of solutions as the original. Since p′(x) = P (x)p(x), the new

equation is

(p(x)u′(x))
′
+ p(x)Q(x)u(x) = p(x)g(x) .

Therefore, let us define

q(x) = p(x)Q(x) and f(x) = p(x)g(x) ,

and the Sturm-Liouville operator L by

Lu(x) = (p(x)u′(x))
′
+ q(x)u(x) .

Then the equation (7.1) is equivalent to

Lu(x) = f(x) . (7.8)

This is the Sturm-Liouville form of the inhomogeneous equation (7.1).

We will prove the following theorem:

Theorem 40. Let p and q be continuous on [a, b] with a and b finite. Suppose also that p is strictly

positive and continuously differentiable on [a, b]. Let L denote the Sturm-Liouville operator Lu =

(pu′)′ + qu. Then, if there is no non-trivial solution of

Lu = 0 with u(a) = u(b) = 0 , (7.9)

there is a unique solution of

Lu = f with u(a) = u(b) = 0 (7.10)

for every continuous function fon [a, b].
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If there does exist a nontrivial solution ũ of (7.9), then then all such solutions are multiples of

one another, and in this case there exist infinitely many solutions of (7.10) if and only if∫ n

a

ũ(x)f(x)dx = 0 . (7.11)

Otherwise, if (7.11) is not satisfied, there does not exist any solution of (7.10).

This Theorem bears a strong resemblance to a theorem from linear algebra which we now quote

for comparison:

Theorem 41. Let A be an n× n matrix. Suppose also that A is symmetric; i.e., A = At. Suppose

that Ax = 0 has no solutions except the zero solution. Then

Ax = b

has a unique solution for all b ∈ Rn.

However, if there exist non-zero vectors x̃ such that Ax̃ = 0, then Ax = b never has a unique

solution: It will always have either infinitely many or none, and it has infinitely many precisely when

x̃ · b = 0

for all x̃ such that Ax̃ = 0.

Proof. if Ax = 0 has only the zero solution, the linear transformation represented by A is one-to-one.

Since this is a transformation from Rn to Rn, the Fundamental Theorem of Linear Algebra tells us

that A is invertible, and so the unique solution of Ax = b is given by x = A−1b.

So far, we have made no use of the symmetry of A; the first part of the theorem is true without

this hypothesis. Now suppose that Ax̃ = 0, but x̃ · b 6= 0. Then if Ax = b,

x̃ · b = x̃ ·Ax = (Ax̃) · x = 0 .

Therefore, whenever Ax = b has solutions x, those solutions must be orthogonal to every vector x̃

such that Ax̃ = 0. It remains to be seen that when x̃ · b = 0 for all x̃ such that Ax̃ = 0, then

solutions do exist. This will be left to the exercises.

In some sense, the linear algebra theorem is more complicated: There can exist several linearly

independent solutions of x̃ of Ax = 0, and all of them must be taken into account. As we shall see,

there is at most one solution ũ, up to constant multiples, of Lu = 0.

In the linear algebra theorem, the symmetry of the matrix of A came into play when we showed

that x̃ · b = 0 for all x̃ such that Ax̃ = 0 was necessary for solutions to exist.

We have already introduced the idea that the inner product

〈u, v〉 =

∫ b

a

ux)v(x)dx

is an analog of the dot product. Also, the transformation sending u to Lu is linear. We now show

that

〈Lu(x), v(x)〉 = 〈Lu(x),Lv(x)〉
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which corresponds to the symmetry condition

x̃ ·Ax = (Ax̃) · x

used in the proof given above.

Lemma 13 (Symmetry of the Sturm-Liouville operator). For all twice continuously differentiable

functions u, v on (a, b) with

u(a) = v(a) = u(b) = v(b) = 0 , (7.12)∫ b

a

(Lu(x))v(x)dx =

∫ b

a

u(x)(Lv(x))dx .

Proof. By definition,∫ b

a

(Lu(x))v(x)dx =

∫ b

a

(p(x)u′(x))′v(x)dx+

∫ b

a

q(x)u(x)v(x)dx .

We integrate by parts twice on the first term:∫ b

a

(p(x)u′(x))′v(x)dx = (p(x)u′(x))′v(x)

∣∣∣∣b
a

−
∫ b

a

(p(x)u′(x))v′(x)dx

= −
∫ b

a

u′(x)(p(x)v′(x))dx

= −u(x)(p(x)v′(x))

∣∣∣∣b
a

+

∫ b

a

u(x)(p(x)u′(x))dx

=

∫ b

a

u(x)(p(x)u′(x))dx ,

where the boundary terms are zero because of (7.12). Now combining the terms, we obtain the

desired identity.

Just as in the linear algebra case, this gives us a necessary condition for Lu = f to have a

solution.

Lemma 14 (Necessary condition for the solution of Lu = f). Suppose that there exists a non-trivial

solution ũ of Lũ = 0 satisfying ũ(a) = ũ(b) = 0. Let f be continuous and not identically zero on

[a, b]. Then unless ∫ b

a

ũ(x)f(x)dx = 0 , (7.13)

there is no solution of Lu = f satisfying u(a) = u(b) = 0.

Proof. Suppose that there does exist a solution of Lu = f satisfying u(a) = u(b) = 0. Then∫ b

a

ũ(x)f(x)dx =

∫ b

a

ũ(x)(Lf(x))dx =

∫ b

a

(Lũ(x))u(x)dx = 0 ,

where we have used Lemma 13 in the last line.
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We will see later that this condition is also necessary for the solution to exist. We now turn to

another advantage of the Sturm-Liouville form of our equation:

By (7.6) and (7.7), the unique solution u(x) of (7.1) with u(a) = u(b) = 0 is

u(x) =

∫ x

a

1

u1(y)u′2(y)− u2(y)u′1(y)
[u2(x)u1(y)− u1(x)u2(y)]g(y)dy .

Then with f(x) = g(x)/p(x), the unique solution u(x) of Lu = f with u(a) = u(b) = 0 is

u(x) =

∫ x

a

1

[u1(y)u′2(y)− u2(y)u′1(y)]p(y)
[u2(x)u1(y)− u1(x)u2(y)]f(y)dy .

This formula now simplifies since, as we show next, [u1(y)u′2(y)− u2(y)u′1(y)]p(y) is constant.

Lemma 15. Define

W̃ (y) = [u1(y)u′2(y)− u2(y)u′1(y)]p(y) = u1(y)[p(y)u′2(y)]− u2(y)[p(y)u′1(y)] .

We compute the derivative:

W̃ ′(y) = u′1(y)[p(y)u′2(y)] + u1(y)[p(y)u′2(y)]′ − u′2(y)[p(y)u′1(y)]− u2(y)[p(y)u′1(y)]′

= u1(y)[p(y)u′2(y)]′ − u2(y)[p(y)u′1(y)]′

= −u1(y)q(y)u2(y) + u2(y)q(y)u1(y) = 0

(7.14)

where we have used the Luj = 0 for j = 1, 2.

Therefore, let us define the constant

C := [u1(a)u′2(a)− u2(a)u′1(a)]p(a) . (7.15)

Notice that with p defined by p(x) = e
∫ x
a
P (z)dz, we have p(a) = 1, so that

C = [u1(a)u′2(a)− u2(a)u′1(a)] .

By Lemma 15, our formula for the unique solution u(x) of Lu = f with u(a) = u(b) = 0 simplifies

to

u(x) =
1

C

∫ x

a

[u2(x)u1(y)− u1(x)u2(y)]f(y)dy .

We get the general solution to Lu = f by adding this particular solution to the general solution

of the homogeneous equation Lu = 0, which is

αu1(x) + βu2(x)

for arbitrary constant α and β. We summarize:

Theorem 42. With L defined as above and f continuous on [a, b], the general solution of Lu = f is

u(x) = αu1(x) + βu2(x) +
1

C

∫ x

a

[u2(x)u1(y)− u1(x)u2(y)]f(y)dy .

Note that advantage of the Sturm-Liouville form: The denominator in the usual formula one

gets from Duhamel’s formula is constant, and comes outside the integral.
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7.1.2 The Green’s functions as the inverse of L

Our goal in this subsection is to prove that when Lu = 0 has no non-trivial solution with u(a) =

u(b) = 0, then there exists a unique solution to Lu = f satisfying u(a) = u(b) = 0 for every continuous

functions f on [a, b]. Moreover, we shall find an explicit formula for the solution. This amounts to

computing the inverse of the operator L.

Our strategy is to use the fact that we have an explicit formula for the solution of the initial

value problem. We seek to match one of these solutions to our boundary conditions.

That is, we seek to choose α and β so that u(a) = u(b) = 0. This leads to the system of equations

αu1(a) + βu2(a) = 0

αu1(b) + βu2(b) = − 1

C

∫ b

a

[u2(b)u1(y)− u1(b)u2(y)]f(y)dy (7.16)

This system of equations has a unique solution if and only if the matrix

[
u1(a) u2(a)

u1(b) u2(b)

]
is invertible.

Define

D = det

([
u1(a) u2(a)

u1(b) u2(b)

])
= u1(a)u2(b)− u2(a)u1(b) . (7.17)

Let us assume for the moment that D 6= 0. Then the unique solution of (7.16) is

α =
1

CD
u2(a)

∫ b

a

[u2(b)u1(y)− u1(b)u2(y)]f(y)dy

β = − 1

CD
u1(a)

∫ b

a

[u2(b)u1(y)− u1(b)u2(y)]f(y)dy (7.18)

Altogether, the unique solution of Lu = f

1

CD
[u1(x)u2(a)− u2(x)u1(a)]

∫ b

a

[u2(b)u1(y)− u1(b)u2(y)]f(y)dy

+
1

C

∫ x

a

[u2(x)u1(y)− u1(x)u2(y)]f(y)dy . (7.19)

Breaking the integral for a to b into two pieces, one from a to x and the other from x to b, we can

writ this is

u(x) =
1

CD

∫ b

x

[u1(x)u2(a)− u2(x)u1(a)][u2(b)u1(y)− u1(b)u2(y)]f(y)dy

+
1

CD

∫ x

a

[u1(x)u2(a)− u2(x)u1(a)][u2(b)u1(y)− u1(b)u2(y)]f(y)dy

+
1

CD

∫ x

a

[u1(a)u2(b)− u2(a)u1(b)][u2(x)u1(y)− u1(x)u2(y)]f(y)dy .

Noting that

[u1(x)u2(a)−u2(x)u1(a)][u2(b)u1(y)−u1(b)u2(y)]+[u1(a)u2(b)−u2(a)u1(b)][u2(x)u1(y)−u1(x)u2(y)]

= [u1(y)u2(a)− u2(y)u1(a)][u2(b)u1(x)− u1(b)u2(x)] .
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Therefore, we define the Green’s function G(x, y) for L on (a, b) by

G(x, y) =
1

CD

[u1(x)u2(a)− u2(x)u1(a)][u2(b)u1(y)− u1(b)u2(y)] y ≥ x

[u1(y)u2(a)− u2(y)u1(a)][u2(b)u1(x)− u1(b)u2(x)] x ≥ y .
(7.20)

We have proved that, provided D 6= 0, so that the Green’s function is defined, for all continuous and

bounded functions f on [a, b], there is a unique solution of Lu = f satisfying u(a) = u(b) = 0, and it

is given by

u(x) =

∫ b

a

G(x, y)f(y)dy .

We summarize our results:

Theorem 43. With L as above, let u1 and u2 be two linearly independent solutions of Lu = 0.

Suppose that

D = u1(a)u2(b)− u2(a)u1(b) 6= 0 . (7.21)

Then there exists a unique solution to Lu = f satisfying u(a) = u(b) = 0 for every continuous

functions f on [a, b], and this solution is given by u(x) =
∫ b
a
G(x, y)f(y)dy where the Green’s function

G(x, y) is given by (7.20).

Now note that if D = 0, the matrix

[
u1(a) u2(a)

u1(b) u2(b)

]
is not one-to-one, and so there exists a

non-zero (α, β) such that [
u1(a) u2(a)

u1(b) u2(b)

]
(α, β) = (0, 0) .

Then, with this choice of α and β,

ũ(x) = αu1(x) + βu2(x)

satisfies Lũ(x) = 0 and ũ(x) = ũ(b) = 0. Up to a multiple, any such solution that is non-trivial

satisfies ũ(a) = 0 and ũ′(a) = 1, and since there is a unique solution of the equation with these initial

conditions, all such solutions are the same up to a multiple.

We have already proved that unless
∫ b
a
ũ(x)f(x)dx = 0, there can be no solutions of Lu = f .

On the other hand, suppose
∫ b
a
ũ(x)f(x)dx = 0. Since we may take u1and u2 to be any two linearly

independent solutions of Lu = 0, we may take u1 = ũ. Then from Theorem 42, one solution to

Lu = f is given by

u(x) =
1

C

∫ x

a

[u2(x)u1(y)− u1(x)u2(y)]f(y)dy .

Evidently this solution satisfies u(a) = 0. Next, we see that

u(b) =
1

C

∫ b

a

[u2(b)u1(y)− u1(b)u2(y)]f(y)dy

=
1

C
u2(b)

∫ b

a

u1(y)f(y)dy − 1

C
u1(b)

∫ b

a

u2(y)f(y)dy = 0

where we use the facts that ∫ b

a

u1(y)f(y)dy = 0 and u1(b) = 0 .
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Thus we have at least one solution. But adding any multiple of u1 to this solution gives us another

solutions. Also, the difference of any two solutions satisfies Lu = 0 and u(a) = u(b) = 0, and is

therefore a multiple of u1. Thus, the general solution has the form

γu1(x) +
1

C

∫ b

a

[u2(b)u1(y)− u1(b)u2(y)]f(y)dy

for an arbitrary constant γ.

Putting it all together, we have now proved Thoerem 40. Moreover, we have found explicit

formulae for the solutions when they exist, provide we can find two linearly independent soltiions of

the homogeneous equation Lu = 0.


