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CONTINUITY OF SOLUTIONS OF UNIFORMLY
ELLIPTIC EQUATIONS IN R?

SAGUN CHANILLOt AND YANYAN Lr*

1. Introduction

In this paper we prove that the Green’s function of the second order uniformly
elliptic operator in R? belongs to the space BMO. In fact we prove a little bit more.
Using this result, we generalize some of the results in Wente [W], Brezis-Coron
[BC], Bethuel and Ghidaglia [BG] and Brezis and Merle [BM].

Throughout the paper we assume {aij(z)} € L*°(R?), aij(z) = aji(z)(1 <
1,j <2) and, for some A > 0, we have the ellipticity condition,

(0.1) ATHER < aij(z)€:é; < AE?, Yz, € € R

Let L = 0i(ai;(-)0;) be a uniformly elliptic operator and G(-) denote the
global Green’s function of —L with pole at z € R? and the normalization
infg,(;) Gz = 0, namely, for fixed = € R?,

(0.2) ~LG.(y) = 6z(v).

Where §,(-) is the Dirac function at z. Here we have used the existence and
uniqueness upto constants of the global Green's function which can be found in
the Appendix of [KN].

Throughout the paper we use C; = C1()) > 0 to denote some constant de-
pending only on A and we let Cp > 0 be some universal constant. The values of
these constants may change from line to line.

In Section 1, we prove the following theorem.

{Partially supported by NSF grant DMS-9202051
*Partially supported by NSF grant DMS-9104293
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THEOREM 0.1. Under the hypothesis (0.1), and for every 1 < p < 2, there exists
some positive constant C = C(], p), such that, for all balls B = Bg(zy) C R?,

R(I}?I /B IVG. ()P dy))llp <c.

As will be explained in Section 1, one can conclude from Theorem 0.1 that G,
belongs to the space BMO for any z € R? and ||G:||pmo is bounded above by a
constant depending only on .

In Section 2, we establish the following result.

THEOREM 0.2. Let L be a uniformly elliptic operator satisfying (0.1), ! C R? be
any bounded domain with C* boundary. For u,v € H(Q), let $ € Wg*'() be
the unique solution to the problem,

—L¢ = Uz V2, — Uz, Vs, in§)
(0.3) $=0 on o9,

then ¢ € C(R) N H} () and
(0.4) | ¢ llz(a) + IVl Laa) < CallVullpa@) | VllL2g)-

We emphasize that C; is independent of (2.

Remark 0.1: When a;j(z) = §;j, namely, L = A, the result is due to Wente
[We] for @ = R?, and Brezis and Coron [BC] for £ a bounded simply-connected
domain. When a;;(-) € C*(Q), the result is due to Bethuel and Ghidaglia. After
we submitted this paper, we were informed that Bethuel and Ghidaglia have also
proved Theorem 0.2 in [BG] by other methods.

In Section 3 we first consider

—Lu=f(z) inQ
(0.5) u=0 on 012,

. where 2 C R? is a bounded domain, f € L!(f2) and L is defined as above.

We establish the following result which is the starting point of the rest of the
results in this section.

THEOREM 0.3. Under the hypothesis (0.1), there exists C; = C1()X) > 0, C2 =
C2(X) > 0, such that the solution u of (0.5) satisfies ‘

(0.6) /n exp(Cilu(@)l/ Iflh) dz < Ca(diam Q)?,
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where |||l = [, |f(z)| dz.

Remark 0.2: It is proved by Brezis and Merle [BM] that for L = A, one can
actually take C; = 4w — §,C; = 4w%/§ in (0.6) for any § > 0.

1.

In this section we prove that the Green’s function of the uniformly elliptic
operator in R? belongs to the space BMO. In fact we prove a little bit more.

Definition 1.1: f € L}, (R") is said to be of bounded mean oscillation on R™
(abbreviated as BMO) if there exists a constant M > 0, such that, for every ball
B C R™, we have

157 L 1#2) = folde < M,
where fp = ]%[ Jp f(z) dz is the mean value of f on B, | B| is the Lebesgue measure
of B.
For BMO functions, we introduce || f||ppmo = sgpﬁB—I Jp 1f(2) - fB|d=.

Proposition 1.1: Let L be the uniformly elliptic operator satisfying (1.1), G = G,
then for any 1 < p < 2,1 < ¢ < 400, there exist some positive constants A;(p, A),

A2(q, ), such that,
1/p
([ wer)” <atm,
B3(0)

(/;3’(0) |G|q)1/q < Az(g, ).

Remark1.1: For our applications, we only need to know Proposition 1.1 for the
casep=gq=1.

Remark1.2: Proposition 1.1 is due to Stampacchia see also Gruter-Widman [GW]
and Kinderlehrer-Stampacchia [KS].

Proof of Theorem 0.1. It is clear that we only need to prove Theorem 0.1 for z = 0.
The general case follows from a translation. We denote G¢ by G in the following:
Case One: The pole which is the origin is the center of B, namely, B = Br(0)
for some R > 0.

Let G(z) = G(Rz) - i“flzlsz G(Rz), a.'j(:f) = a..-j(R:c), L= 3.'((‘1,',‘(*)6,‘). It is
very easy to see that (since we are in R?), G is the Green’s function of —L. It
then follows from Proposition 1.1 that for 1 < p < 2,

- \Yr
(/ |VG|P) < Ai(p, ),
B3(0)

1 1/1’
R| —— VG") <A ).
<1Bn(0)n oy VOT) S AEA)

namely,
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Case Two: 0 € B = Bg(zo), for some z9 € R?, R > 0.
In this case, B2r(0) D B. Therefore we have, for 1 < p < 2,

(o)

4 P 1/p
<R —— v
(le(on Ban) ')

41/
< =5 A 2).
The last inequality follows from Case One.

Case Three: 0 ¢ B = Bg(zo), R < |zo| < 3R, for some z, € R?, R > 0.
In this case, we have, for 1 < p < 2, that

1 - 1/p
R —/ \vJ )
(lB | /B Ivel
1/p
(2]20])?
< —_ VG|P
(Rszlzd(o) Bijzg1(0) | |
1
< ‘2' .6%/7. AI(P’ A).
The last inequality again follows from Case One.

Case Four: 0 ¢ Bg(zo),|zo| > 3R, for some zo € R?,R > 0.

In this case we have

Let G(z) = G(|zo|z) ~ infzj<a G(|20l2), dij(z) = aij(|zol2), L = 8:(ai;()9;),
o = 2. Note |o| = 1.

As we have pointed out that G is the Green’s function of —L with pole at the
origin. By Cacciopoli’s inequality (since G is a solution to LG = 0 outside the
pole ) and Proposition 1.1, we have

_\1/2 C\1/2
( / IVGI’) scl( / IGI’) .
By () By ()
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We apply the Harnack inequality to obtain

Y ]
(/ |G12) <af @l
B%(U) B*(G)

Further, by Proposition 1.1, we have

/ |c:'|g/ 1G] < Cy.
B%(”) B3(0)

R(I—II?] /B |\7c:|=)1/z <a.

By Hoélder’s inequality we get from the estimate above that for 1 < p < 2,

1 1/p
R -—/ VG") <.
(IBI 1Vl :

Theorem 0.1 follows from Cases One - Four.

Scaling back, we obtain

Corollary 1.1: For the Green’s function G(y) defined above, we have
IG=(")llzmo < Cy, V= € R%.
Proof. By the Poincaré-Sobolev inequality we have, for any z € R%,1 < p < 2,

L o=t [ar)” <or(L [ vap)”
18] % " 181 Js 157 Js

for all balls B C R? with radius R > 0.

The conclusion of our Corollary follows immediately from Theorem 1.1 and
the above inequality.

2.
LEMMA 2.1. Let (a;;(z)) satisfy (0.1) and L, G, be as before. Let p € H!(R?),
the Hardy space, ¥(z) = Jza Gz(v)e(y) dy, then
1]l (ma) < Cillellne.

Proof. We point out that in the identity
¥(z) = /; | G:(v)e(v) dy,

the integral is to be interpreted suitably on a dense class of functions in the Hardy
space. See Stein’s book [St] (page 225) for a suitable dense class which is com-
posed of Schwartz functions. By using the result of C. Fefferman [Fe] on the
duality between Hardy spaces and BMO and Corollary 1.1, we immediately get
the conclusion of this Lemma.

Before we proceed further we give a technical extension of the main result of
[Ch) which is the basis of an alternative proof pf Lemma 2.3. This is stated as
Lemma 2.2.
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LEMMA 2.2. Let f € H*(R"), g(z) = (gi(z))~, with V-g = 0 and g €
L*(R™,R™). Further we assume for some 1 < p < +o00,

1 1/p
(2.1) supr <-;‘-/ |Vh|") =A< +oo.
T, r B,(z)

Then
< e(n)A|V fllLa e llgll 2 (&)

/ fg-Vhde
mn

/ Vf-ghdz
R»

and

< c(n)A||V fllLam)llgllarm)-

Remark 2.1: The case p > 2 is proved in [Ch]. Moreover the weighted analog of
the result above can also be proved as in [Ch] where the weight w(z) has now to
be chosen in the Muckenhoupt class A, if p < 2 and in A, for p > 2. The two
inequalities above are equivalent as an integration by parts shows.

Proof. The proof is exactly the same as in [Ch], except that an L? version of
Lemma 2.1 is required to prove Lemma 2.7. Lemma 2.1 is replaced in the proof of
Lemma 2.7 by the following well-known inequality which is the inequality for the
Littlewood-Paley g — function, see Theorem 1 on page 82 in [St]. For F(z,y) the
harmonic extension to R} of F(z) we have,

(2.2 (L vivreor ayei) <o,

Lemma 2.1 is the case p = 2 of the inequality above, in which case it is a conse-
quence of Green’s theorem, see [Ch].

Using this inequality in lieu of Lemma 2.1 at every application one may prove
Lemma 2.7 in [Ch] under the hypothesis (2.1). To prove Lemma 2.6 in [Ch] under
the hypothesis (2.1) we apply the John-Nirenberg inequality [JN] to show, with
the notation of [Ch],

1/2
sup (—1—- / |h — hao)? du) < sup —1-; |h — hgy|du.
B(z,t) t

z,t n z,t B(z,t)

Now notice that the Poincaré-Sobolev inequality immediately shows that the
right side of the inequality above is bounded by a uniform constant given that
(2.1) holds.

The situation in dimension 2 (which is the situation of interest in this paper)
is even simpler as we can dispense with the John-Nirenberg inequality and right
away see by the Poincaré-Sobolev inequality that for any p > 1, '

1 1/2 . 1/p
sup —2/ [h = Rao|? du < supt —,;/ |VAIP du .
2t \ t* JB(z,) gt \ 1?2 JB(z,y
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The right side is less than a constant in view of (2.1). Given that Lemma 2.6
and Lemma 2.7 in [Ch] hold under (2.1), the rest of the proof in [Ch] remains
unchanged. Since (2.2) is valid with weights in the Muckenhoupt class 4,, we also
get the corresponding analogs of Lemma 2.2 with 4, weights.

LEMMA 2.3. Let (a;j(z)) satisfy (0.1) and L, G, be as before. Assume u,v €
H'(R?) with compact supports, and let

$(z) = / Go(y) {2, — Uz, 02, } diy daz,
ml
then

(2.3) 16l may + IVYllL2 ey < Cil| Vel Lams) | Vol 23 (ma)-

Proof. There are two ways to see this result. The first way is to use the result of
R. Coifman, P.L. Lions, Y. Meyer and S. Semmes[CLMS), vz, vz, — vz, u5, belongs
to the Hardy space H!(R?); and

[uz,vz; — Vo, Uz, |2 < Col|Vullpana) || Vol L2 (n2)-

Thus applying Lemma 2.1,

(2.4) ¥l L ma) < CallVullLama) | VollLacma)-

Alternatively one applies Lemma 2.2, remembering that by Theorem 1.1.
G:(y) satisfies (1) for some p < 2, and 4z, vz, — uz,V;, is of the form Vf - g,
with g = (vg;, —vz,) and f = u. Thus V.- g = 0. (2.3) again follows from lemma
2.2. We now prove the estimate on V4 in (2.3).

It is easy to see that
=Ly = Uz, vz, — Uz, Vs,
where % and v have compact support. Let n be a smooth cut-off function such

that » = 1 on Bg, 7 = 0 outside B3R, |Vy| < 4, where Bp is a ball centered at
the origin which contains the support of u and v.

Employing the test function ¥5? in an integration by parts we get,

/ 7*(AVY, Vy) dz = / (g 2y — Uz, ¥z, )90 da
B3 R?
—2 /- (A, Vo) da.

421



CHANILLO - LI

By Schwartz’s inequality and straight-forward manipulation it follows from
above,

/ VI dz < C / iz 02y — ayve, | 6] dz + Cy / Va2 de
12 i3 R32
< Cill$lle@e) (IVellL2@nll VollLame) + 9]z ma)) -

Applying (2.4) to the right side above and keeping in mind that 7 = 1 on Bg we
get

[ 199 d= < CullVullsa 1900y
R
Letting R — 400 it follows that

IV¥llLa@ms) < CillVullLawa)l|Vllams)-

This completes the proof of (2.3).

Corollary 2.1: Let (a;j(x)) satisfy (0.1) and L be as before. Assume u,v €
HY(B;(0)) and ¢ € W,*}(B1(0)) be the unique solution to

(2.5) { ~L¢ =uz,Vz, — Uz,¥z,  in By(0)

¢=0 on 9B;(0)
where B;(0) C R? is the open unit ball. Then ¢ € C°(B,(0)) N H}(B1(0)) and
(2.6) I¢llzee B0y + IV llL2(Bic0)) < Call VeellLacai (ol VVllLa(Bi0))-

Proof. Let i =u — TB—:ﬁm JBa0) ©1% =V = 15wy S, (0) - Where | B1(0)] denotes
the Lebesgue measure of B;(0), it is well known that

@l L2 (By(oy) < CollVillL2 (B, (o))
151l 2By (0)) S CollVDllL2(By(0))-

It is also well known that there exists an extension operator P : H*(B;(0)) —
H2(R?) (here H!(R?) denotes the set of functions in H!(R?) which have compact
supports), such that, for any w € H(B,(0)),

| Pw| 1 ma) < Collwllr2(sy (o)),
Pw=w a.e. inB(0),
supp Pw is compact.
Let U = Pa, V = P%. It is easy to see that

{ IVU||L2@2) < CollVullLa(By(0))»

(2.7)
IVVlizame) < CollVvl[z3(B, (o))
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Consider '/’(z) = fmﬂ G (y) {Un Vi, = Uy, V;lx} dy; dyz. We see easily that ¢—19
satisfies

~L($-¥)=0 in By(0).

It follows from the maximum principle that

18llze=(B1(0)) < N¥llLo(Bi(o)) + 16 — ¥llzoo(By(0))
< l1¥llze(Bicoy) + 16 — ¥llLo (a8, (0))
= ||z (Bs(0)) + I1¥ll Lo (0B (0))
< 2/Yll L By (o))
< CillVullzas, o) I VYl 2281 (0)) -

The last inequality follows from Lemma 2.1 and (2.7).
The estimate of ||V||13(5,) follows, as before, an integration by parts argu-
ment and the estimate for ||¢|| L~ (B,(0)) Which we have established.

Corollary 2.2: Let (a;;(z)) satisfy (0.1) and L be as before, ! C R? be any bounded
simply connected domain with C? boundary. Let u,v € H*(Q) and ¢ € W,"'(Q)
be the unique solution of

(2.8) { —L¢ = ug, vz, — V3, Uz, in Q
¢=0 on 90N

then ¢ € C(Q) N H} () and
(2.9) lgllze () + IVSllL2a) < CillVullLa@) I VollLa(a)-

Remark2.2: The above constant C) is independent of {2 as long as (2 is a bounded
simply connected domain with C* boundary.

Corollary 2.1 follows from the observation that the problem is invariant under
conformal transformations. We only need to apply the Riemann mapping theo-
rem to find a conformal mapping which maps 2 onto B1(0) and this reduces the
situation to Corollary 2.1. We leave it to the reader to check the details.

To prove Theorem 0.2, we use the co-area formula to reduce it to Corollary
2.2. This reduction argument is due to Bethuel and Ghidaglia. We include it here
for the sake of completeness and to point out that in fact the extension is not
dependent on the smoothness of the coefficients a;;(z) which is crucial for us.

We first assume that (a;j(z)), u,v are smooth functions. Without loss of
generality, we assume [, [Vul? = [, [Vo[? = 1. Clearly, ¢ € C}(Q).

For A > 0, we set W(4) = {z € Q||¢(z)| < A}.

By Sard’s Theorem, for almost every A > 0, dW(A) N9 = @, IW(A) is a
one dimensional manifold.

In the following we make use of the co-area formula due to Federer and Fleming
[F]. See also [ABL], [Br] and [BG] for related applications of the co-area formula.
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LEMMA 2.4 (Co-area formula). Suppose f € C*(R?%,R) and g € C°(R%,R,).
Then for every measurable set X, we have

[avna= [ ( / _l(t)nxgdl) at.

We apply the co-area formula with the choice f = ||, X = Qn f~([C,C +
D]),C,D > 0 and g = |Vu|+ |Vv|. C and D will be specified later. It follows

then that
c+D
/ (/ (IVu| + |Vv|)d£> dt
c l¢(z)|=t

=/x(|Vu|+|Vv|)lV|¢||dz
<va([ IWI’)m-

By the mean value theorem, there exists A € [C,C + D], which is a regular
value of both ¢ and —¢, such that

2
(210) [ (vul+ 19ol) de < 2198l
ow(4)

The set W (A) is the union of a finite number of Jordan curves, say, W (4) =
N
U J;. We denote by Hy,--- , H; the holes in 2 and w; the bounded component of
i=1
R?\J;.
We are going to establish the inequality

1 2
(2.11) 9z < A+ Ci(1+ 557 /n IVe[*)".

Case 1: "¢I|Los(ﬂ) < A.

In this case, (2.11) obviously holds.

Case 2: ||4||L~(n) > A and [¢(20)| = [|¢||r=(q) for some 2o € wi, (1 < io <
N) and J;, is contractible in Q. Apply Corollary 2.2 to ¢ + eA(e = +1or —1), we
have

¢ + eAllLoo (wig) < C1

and (2.11) follows.

Case 3: "¢||Lee(n) > A and Ilﬁ(:co)l = ||¢||Loo(g) for some =y € Wiy (1 < g <
N), but J;, is not contractible in Q. This last case is more subtle.

Let Ji,--- ,Ji be all the Jordan curves which belong to w;, and Hj,--- , Hp be
all the holes which belong to w;, (after relabeling if necessary). Let Jq,--- ,Jq be
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the maximal curves with respect to inclusion in the union J;U---UJyU8H; U---U
0H, (obviously the 0H; cannot be maximal). The holes Hj,--- ,H, are included

in M, = jéle C wi,. By the maximality of Jy,--- ,J;, we know that w; Nw; = ¢
f1<i<j<gq
It follows from (2.10) that for any o; € dw;,

(2.12) fq_:

2
< 3“V¢“L’(n),

i)
u(o;) — — d
) = oyl p, )%

where |Ow;| denotes the length of dw;.
We first define #(z) for z € (,Lquwj) N as follows.
=

{ w(z) if [u(z) - e Jou, w(s) ds| < BlIV4llLaa)
ﬂ(z) =

18+','[ faw,- u(s)ds + & V|| L2(q)sign (u(z) - ]—5:—,—’,-[ fbw,- u(a)ds) elsewhere.
Then we define $(z) for z € M;, by

#(z) if [¢(z)| <A
d(z)=< 4 if ¢(z)>4
-A if ¢(z) < —A.

Now we construct u#(z) for z € w;, as follows.
w#(z) =u(z) if 2 €wi)\Mj,

u#(z) = / u(s)ds if zr€wjandz ¢,
Ow;j

1
|Ow;]

and

o) = au,“""”+¢( 2 (5~ ,|/w,“(3"”)

if 2 € @; N Q. Where ¢; = ﬂ—l € {£ 1} for z € dw;.
We make the same constructlon for v#.
It follows from a straight forward computation that

199l < O (1+ horUig, V410,

(2.13)
I9# s < Co(1+ lor(Uig, V47 ).
Consider
o* # go# .
—L'/) = 821 gzz - 01:23 %%:T m wi,
$=0 on Jw;,.
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Notice that w;, is simply connected, it follows from Corollary 2.2 that

Bl Lo (wig) < Coll Ve || Lauig) I VO# 123w -
Using (2.13) we obtain

2

1
¥l < €3 (14 5 | 199F)

Noticing that u# = u,v# = v in w;\M;,, it follows from the maximum
principle that

1% — bl Lo (wig) < Nl Lo (a(wig\Mig)) + ¥l Lo (wiy)-

Hence

|
1 2 |
Il = 8lamugy < 4+ o (1+ gz [ 1V6F) - |

We have thus established (2.11) in Case 3. Clearly, Cases 1-3 are all the
possibilities. Hence we have established (2.11). |

By choosing C = 1, D = ||V@||3(q), we have, for some 1 < A < 14]|V@||L3(q),
that

/n V6P < 6ll=ca)
1 2
<A+C (1 + Z)
< V@l + Cr.

Notice that the first inequality follows from multiplying (2.8) by ¢ and integrating
by parts. This gives a bound on ||V¢||z2(g):

IVélizaa < Ca.

The bound of ||¢||z=(q) follows from (2.11) and the bound for ||V¢|[13(q)-.

We have now proved Theorem 0.2 under the assumption that a;;(z), u, v are
smooth functions. Observe that the constant C; in (2.9) does not depend at all
on the smoothness of a;;(z), u, v. Smoothness was orly used so as to apply the
co-area formula. Thus we are using smoothness in a qualitative way only.

This makes it possible to use a simple approximation argument to establish
(2.9) in the general case.
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Let GS;)(Z), u®), v(¥)(k =1,2,3,...) be a sequence of smooth functions with
the following properties.

7P < P (2)€it; < vIEP, Ve, € € R?, R =1,2,3,...
k) k—+oo

a'gj (z) — aij(z) in LP(R),
"'E;)(z) 'f—’—-’.o.i’ aij(z) ae.,in{,
WO E(),
o® 2, in H'(Q).

Let ¢(*) be the unique solution of
{ ~0,(aP(@)08 ) ool -l i 1,
¢*) =0 on 99.
Since we have proved (2.9) in the smooth coeflicients use, we have
4® |z @) + IVP L3y < CollVa®|l1a@) I VoP |2 (a).-

- k—+ -
By passing to the limit, we can assume that for some ¢ € Hj(Q2), ¢ =, ¢

weakly in H} ().
It follows easily that ¢ satisfies

{ —L$ = Uz Vzy — Uz Uz, in Q
$=0 on 99.

By the maximum principle, ¢ = ¢.

For any p > 1, ¢(¥ Lot ¢ strongly in LP(Q2). Therefore we deduce from
149 llzeq) < 1OP219P L @) < CalRPCIVaD 22| Tz

that
l¢llzecy < CLlQIMPIVul| L2y I VollLaay-

Letting p — +00, we have
¢l (a) < CallVullLaa)IVollLaa)-

The estimate for || V|| 2(q) follows as before.
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3.
We first study (0.5) and prove Theorem 0.3.
Let R = %dia.mﬂ and  C Bg. Extend f to be zero outside .
Set
#=) = [ Cwlfwld.

Clearly ¢ satisfies
—-L$=|f] inR2

Because of the maximum principle, (0.6) follows from

(3.1) /n exp(C114(2)|/|fll1) de < Ca(diam ),

for some C; = C1(A) > 0,C, = C,(A) > 0.
Proposition3.1: ¢ is in BMO and ||¢|lBmo < Cil|fll1-

Proof. For any ball B C R?,
1 1
42 -7 [ 6= [ [6:0) - 57 [ G- deirwl e

Thus,

1 1 1 1
57 1) - 5 [Aas < i [ [ 16200~ i [ G-l ifwldedy.

Notice that for fixed y, G;(y) is the Green’s function of the adjoint operator
of L, which is also of divergence form with the same structure constant A.

Therefore G(y) is also in BMO as a function of z for fixed y. Thus, for
Gz(y) = G(=,y),
I¢llznmo < sup IG(sw)lamoll flx

< Cillflla-

Since ¢ is in BMO, we may use the John-Nirenberg estimate to get,

l{z € Br:|¢(z) — §| > u}| < Coe~*/I¢llzmo g2
< Cpe~ /Gl g2

where § = 51 /5, ¢-
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It follows immediately that

1

(32) l—B_-l eCl|¢(:l:)-.,}|/“f"l dz < C,.
Rl JBg
Now recall that
yy 1
¢ = _IBRI B ¢(z) dz
R
1
" 1Bal /B /]., G=(y)|f(v)| dy dz.
R
Thus,
b 1
(3.3) |¢l < sup —B""'/ G,(y) dz - "f"l-
{(veBr) |BRr| JBx

If R =1, it follows from Proposition 1.1 that

(3.4) sup G:(y)dz < Ch.
y€B; B,

Thus from (3.3) we obtain, when R = 1,|8|/||f|l1 < Ci. Therefore we can deduce
(3.1) in the case diam Q = 2 from (3.2), (3.3) and (3.4). As indicated before, we
have established (0.6) in the case diam Q = 1.

The general case follows simply from a scaling argument as follows.

Without loss of generality, 0 € Q.

Let ﬂ_ = 1Q, then diamQ = 2 and for z € Q, f(z) = R*f(Rz),aj(z) =
t;j(Rz), L = 8;(a:j(z)ai;), #(z) = u(Rz). It is obvious that @ satisfies

{—Eﬁ:f in O
=0 on 1.

[}

Notice that diam §} = 2, thus,
(3.5) [ (cna(z)l/uﬂh) iz < Cs.
Q

Notice ||f]l1 = ||f|l1. Changing variables in (3.5) we thus obtain (0.6).
Theorem 0.3 has been established.
In the following we state a number of corollaries which can be proved essentially
the same way as in [BM], provided we have Theorem 0.3.
Corollary 3.1: Let u be a solution of (0.5) with f € L!}(Q). Then for every
constant k > 0,
vl e L' (Q).
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Corollary 3.2: Suppose u is a solution of
{ —Lu =V (z)e* in Q

3.6
(3.6) u=0 on 0.

with V € L?(2) and e* € L?' () for some 1 < p < o0, p' = —E-. Then
u € L>(Q).
Corollary 3.3: Suppose u € L}, (R?) satisfies

loc
—Lu = V(z)e* in R?
with V € LP(R?) and e* € L? (R?) for some 1 < p < oo, p' = 727+ Then
u € L*°(R?).
Corollary 3.4: There exists some €g = €(A) > 0, such that, for any (u,) 2
sequence of solutions of

(3.7) —Lup = Vyp(z)e®™ in Q
with u, = 0 on 99,

[[Vallzr £ A for some 1< p< oo,

[ Wale <o
Q
we have ||us]lL~ < C(), 4).
Corollary 3.5: There exists some €; = €1(A) > 0, such that, for any (u,) a
sequence of solutions of (3.7) with

and

[Vallzr < 41 for some 1< p< oo,

il < Az

/ Wale™ < &
Q

we have (u}) is bounded in L2 (£2).
Corollary 3.6: Assume (u,) is a sequence of solutions of (3.7) with u,, =0 on
09, satisfying, for some 1 < p < o0,

and

lle** Iz < A

and one of the following conditions:

either
[Va(z)] S W(z) Vn with W e LP(R)

or
VooV in LP(Q).

Then ||un||lL~ < C.
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4.
In this section we study a sequence {u,} of solutions of
0 {7}
-1 ——ais —uUn) = Vo Un H
(4.1) o2 (a ,(z)azju ) = Va(z)e in Q

where Q is a bounded domain in R?, (a;j(z)) € C} () for some 0 < v < 1 satisfies
(0.1).

We define the blow up set by
§ = {= € Q:there exists a sequence z,, in @ such that z, — z and un(z,) — +oo}.

THEOREM 4.1. Assume that (u,) is a sequence of solutions of (4.1), (ai;j(z))
satisfies the conditions mentioned above. If for some 1 < p < +o00,

(4.2) Vo220 inQ
43) Vallzs < G2
and

(4.4) lle*llL» < Ca,

Wherep’:;;_z_Tifl<p<+oo,p’=11'fp=+oo.

Then there exists a subsequence u,, satisfying the following alternative:
Either
(i) (wn,) is bounded in LS, (£2), or
(i) %p,(2) = —oo uniformly on compact subsets of 2, or
(iii) the blow up set S (relative to (un,)) is finite, nonempty and uy,(z) == —c0
uniformly on compact subsets of Q\S. In addition V,, e*"* converges in the
sense of measures on {2 to T;a,;8,; with a; > 2wa,;/p' and § = L‘J{a.'}.

Where a,; = 2/d¢:t(a,-j(a.-))"l/2 for a; € Q.
The proof of Theorem 4.1 will be essentially the same as the proof of Theorem
3 in [BM] once we have Lemma 4.1. We will only indicate some changes.

LEMMA 4.1. Under the hypothesis of Theorem 4.1, for any z¢ € Q, G;4(z) =
Guo + hzo(z), where Gy,(z) is the Green’s function of the constant coefficient
operator —32—‘(0..',-(1:0)-52—’,) and h, is Holder continuous.

-1/2
To

Proof of Lemma 4.1. Clearly, G, = Cx, log E'o'(; — where E,, = A
4z, = (aij(20)), Czo = det(Ez,). [
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It is also clear that h,, satisfies

= o (f).

It follows from the Holder continuity of (ai;(z)), that f; € L _ for some p > 2.

loc

It then follows from standard elliptic theory that h,, is locally Holder continuous
in Q.

It is very easy to see that fn €®*0G=0(?) dz = to0o and, due to the Holder
continuity of hy,, [, e**0%=0(®) dz = +o0.

PROOF OF THEOREM 4.1. Since {Vpe*"} is bounded in L!(2) we may extract
a subsequence (still denoted as V,e*") such that V,e"" converges in the sense of
measures on {} to some nonnegative bounded measure p, namely

(45) [ Ve — [

for every ¥ € Cc(Q).

Definition 4.1: We say z¢9 € (1 is a regular point if there is a function ¢ €
C:(R), 0 < ¢ <1, with ¥ = 1 in some neighborhood of z¢, such that,

/1/)41;1. < 2mag, [p'.

We denote by I the set of nonregular points in . Clearly zo € Ziff p({zo}) >
2rag, / p' and

card(X) < C1C; - inefnp'/21razo < C1Cap' M [4n.
Zo

Step 1: S=1X.
Step 2: S = 0 implies (i) or (ii) holds.
- Step 3: S # 0 implies (iii) holds.
All the three steps can be proved essentially the same way as in [BM], with
our definition of . We leave the details to the reader.
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