
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Contemporary Mathematics
Volume 599, 2013
http://dx.doi.org/10.1090/conm/599/11905

Embedded three-dimensional CR manifolds and the
non-negativity of Paneitz operators

Sagun Chanillo, Hung-Lin Chiu, and Paul Yang

Abstract. Let Ω ⊂ C2 be a strictly pseudoconvex domain and M = ∂Ω
be a smooth, compact and connected CR manifold embedded in C2 with the
CR structure induced from C2. The main result proved here is as follows.
Assume the CR structure of M has zero torsion. Then if we make a small real-
analytic deformation of the CR structure of M along embeddable directions,
the CR structures along the deformation path continue to have non-negative
Paneitz operators. We also show that any ellipsoid in C2 has positive Webster
curvature.

1. Introduction

Throughout this paper, we will use the notation and terminology in ([14])
unless otherwise specified. Let (M,J, θ) be a smooth, closed and connected three-
dimensional pseudo-hermitian manifold, where θ is a contact form and J is a CR
structure compatible with the contact bundle ξ = ker θ. The CR structure J
decomposes C⊗ξ into the direct sum of T1,0 and T0,1 which are eigenspaces of J
with respect to i and −i, respectively. The Levi form 〈 , 〉Lθ

is the Hermitian form

on T1,0 defined by 〈Z,W 〉Lθ
= −i

〈
dθ, Z ∧W

〉
. We can extend 〈 , 〉Lθ

to T0,1 by

defining
〈
Z,W

〉
Lθ

= 〈Z,W 〉Lθ
for all Z,W ∈ T1,0. The Levi form induces a natural

Hermitian form on the dual bundle of T1,0, denoted by 〈 , 〉L∗
θ
, and hence on all the

induced tensor bundles. Integrating the hermitian form (when acting on sections)
over M with respect to the volume form dV = θ ∧ dθ, we get an inner product on
the space of sections of each tensor bundle. We denote the inner product by the
notation 〈 , 〉. For example

(1.1) 〈ϕ, ψ〉 =
∫
M

ϕψ̄ dV,

for functions ϕ and ψ.
Let {T, Z1, Z1̄} be a frame of TM⊗C, where Z1 is any local frame of T1,0, Z1̄ =

Z1 ∈ T0,1 and T is the characteristic vector field, that is, the unique vector field

such that θ(T ) = 1, dθ(T, ·) = 0. Then
{
θ, θ1, θ1̄

}
, the coframe dual to {T, Z1, Z1̄},

satisfies

(1.2) dθ = ih11̄θ
1 ∧ θ1̄
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for some positive function h11̄. We can always choose Z1 such that h11̄ = 1; hence,
throughout this paper, we assume h11̄ = 1

The pseudohermitian connection of (J, θ) is the connection ∇ on TM ⊗C (and
extended to tensors) given in terms of a local frame Z1 ∈ T1,0 by

∇Z1 = θ1
1 ⊗ Z1, ∇Z1̄ = θ1̄

1̄ ⊗ Z1̄, ∇T = 0,

where θ1
1 is the 1-form uniquely determined by the following equations:

dθ1 = θ1 ∧ θ1
1 + θ ∧ τ1

τ1 ≡ 0 mod θ1̄

0 = θ1
1 + θ1̄

1̄,

(1.3)

where θ1
1 and τ1 are called the connection form and the pseudohermitian torsion,

respectively. Set τ1 = A1
1̄θ

1̄. The structural equation for the pseudohermitian
connection is given by,

(1.4) dθ1
1 = Rh11̄θ

1 ∧ θ1̄ +A1
1̄
,1̄θ

1 ∧ θ −A1̄
1
,1θ

1̄ ∧ θ.

where R is the Tanaka-Webster curvature, see [18].
We will denote components of covariant derivatives with indices preceded by a

comma; thus we write A1̄
1,1̄θ

1 ∧ θ. The indices {0, 1, 1̄} indicate derivatives with
respect to {T, Z1, Z1̄}. For derivatives of a scalar function, we will often omit
the comma, for instance, ϕ1 = Z1ϕ, ϕ11̄ = Z1̄Z1ϕ − θ11(Z1̄)Z1ϕ, ϕ0 = Tϕ for a
(smooth) function.

Next we introduce several natural differential operators occuring in this paper.
For a detailed description, we refer the reader to the article [14]. For a smooth
function ϕ, the Cauchy-Riemann operator ∂b can be defined locally by

∂bϕ = ϕ1θ
1,

and we write ∂̄b for the conjugate of ∂b. A function ϕ is called CR holomorphic if
∂̄bϕ = 0. The divergence operator δb takes (1, 0)-forms to functions by δb(σ1θ

1) =

σ1,
1, and similarly, δ̄b(σ1̄θ

1̄) = σ1̄,
1̄.

If σ = σ1θ
1 is compactly supported, Stokes’ theorem applied to the 2-form θ∧σ

implies the divergence formula: ∫
M

δbσθ ∧ dθ = 0.

It follows that the formal adjoint of ∂b on functions with respect to the Levi form
and the volume element θ ∧ dθ is ∂∗

b = −δb. The Kohn Laplacian on functions is
given by the expression,

�b = 2∂̄∗
b ∂̄b.

Define

(1.5) P3ϕ = (ϕ1̄
1̄
1 + iA11ϕ

1)θ1

(see [14]) which is an operator whose vanishing characterizes CR-pluriharmonic
functions.

We also define P 3ϕ = (ϕ1
1
1̄ − iA1̄1̄ϕ

1̄)θ1̄, the conjugate of P3.

Definition 1.1. The CR Paneitz operator P4 is defined by

(1.6) P4ϕ = δb(P3ϕ).
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More explicitly, define Q by Qϕ = 2i(A11ϕ1),1, then

P4ϕ =
1

4
(�b�b − 2Q)ϕ

=
1

4
(�b�bϕ− 4i(A11ϕ1)1)

=
1

8

(
(�b�b + �b�b)ϕ+ 8Im(A11ϕ1)1

)
.

By the commutation relation [�b,�b] = 4iImQ, we see that 4P4 = �b�b − 2Q =
�b�b−2Q. It follows that P4 is a real and symmetric operator (see [4] for details).

Definition 1.2. We say the Paneitz operator P4 is nonnegative if and only if∫
M

(P4ϕ)ϕ̄ ≥ 0,

for all smooth functions ϕ. We use the notation P4 ≥ 0 to denote non-negative
Paneitz operators.

Note that the nonnegativity of P4 is a CR invariant in the sense that it is
independent of the choice of the contact form θ. This follows by observing that if

θ̃ = e2fθ be another contact form, we have the following transformation laws for
the volume form and the CR Paneitz operator respectively (see Lemma 7.4 in [12]):

θ̃ ∧ dθ̃ = e4fθ ∧ dθ; P̃4 = e−4fP4.

In the higher dimensional case, there exists an analog of P4 which however
seems not to satisfy the covariant property. In this case, Graham and Lee, in
[11], had shown the nonnegativity of P4. To be specific, non-negativity of P4 is a
condition in dimension three but it is a given in higher dimensions. Moreover the
invariance property for the Paneitz discussed above does not hold in dimensions
five and higher.

We will restrict ourselves exclusively to the three dimensional case in our paper.
We next observe that when the Webster torsion A11 ≡ 0, then the Paneitz operator
P4 is given by,

(1.7) P4 =
1

4
�b�b.

It follows that the vanishing of torsion implies that P4 ≥ 0. This is because
when the torsion vanishes identically, the two operators �b and �b commute, and
hence are simultaneously diagonalizable on each eigenspace of �b of a nonzero
eigenvalue(see [4]). We also recall that the vanishing of torsion is equivalent to
LTJ = 0 where L is the Lie derivative, see [18]. We summarize a part of the facts
above as a proposition, which will prove useful later.

Proposition 1.3. Let the Webster torsion tensor identically vanish, i.e. A11 ≡
0. Then,

(1.8) kerP4 = kerP3 = CR-pluriharmonic functions.

Moreover one has,

(1.9) P4 ≥ 0.
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It remains an interesting problem to determine the precise geometrical condi-
tion under which the kernel of the Paneitz operator is exactly the pluri-harmonic
functions or even a direct sum of a finite dimensional subspace with the pluri-
harmonic functions.

Definition 1.4. Suppose that θ̃ = e2fθ. The CR Yamabe constant is defined
by

inf
˜θ {

∫
M

R̃ θ̃ ∧ dθ̃ :
∫
θ̃ ∧ dθ̃ = 1}.

The CR Yamabe constant is a CR invariant.
We now come to the primary results of our paper. To motivate the results, it

is helpful to recall the main result in our earlier paper [6].

Theorem 1.5. Let M3 be a closed CR manifold.
(a) If P4 ≥ 0 and R > 0, then the non-zero eigenvalues λ of �b satisfy

λ ≥ minR.

It follows the range of �b is closed. Coupled with the result of Kohn stated
above, under the conditions P4 ≥ 0 and R > 0, M globally embeds into some C

n.
(b) A consequence of part (a) is that: If P4 ≥ 0 and the CR Yamabe constant

> 0, then M3 can be globally embedded into C
n, for some n.

Our aim is to investigate a converse to the theorem stated above. More specif-
ically we want to know if for embedded structures, the CR Paneitz operator is
non-negative. We recall the following example due to Grauert, Andreotti-Siu [1]
and Rossi [17] and referred to as Rossi’s example in the literature [7].

Example 1.6. On the standard sphere (S3, J0), we consider the deformation Jt
given by the vector field Z1̄ + tZ1, with t ∈ R and |t| 
= 0, 1. This structure fails to
embed globally since it is known that the CR functions for this structure are even.
We note ut = z1 (which is an odd function) is a continuous family of eigenfunctions

for P t
4 with eigenvalue λ(t) = −3t2

(1−t2)2 . This means that we are unable to find a CR

function ϕt for the CR structure (S3, Jt) which is as close to u0 = z1 as we please.
The key observation is that the Paneitz operator is negative and the structure fails
to embed.

The example thus suggests that indeed it is possible that for embedded struc-
tures the CR Paneitz operator may indeed be non-negative. The main result in Sec-
tion 2 of our paper is a result that ensures non-negativity of the Paneitz operator,
for CR structures embedded in C2 along a deformation path that is real-analytic.
More precisely, we are given a triple (M,J0, θ), the background CR structure. This
CR structure is given to be embedded in C2. Now we deform the almost complex
structure J0 via a real-analytic path Jt, keeping of course the contact form θ fixed.
That is each CR structure along the path of deformation Jt is smooth for fixed t,
but the dependence is real-analytic in the variable t. In the sequel when we perform
deformations, the Paneitz operator associated to the deformed structures Jt will be
denoted by P t

4 . The Paneitz operator for the reference structure J0 will be denoted
by P4 instead of P 0

4 .

Theorem 1.7. Let (M,J0, θ) be a CR structure that is embedded in C
2. Let

Jt be a deformation from J0 along an embeddable direction with real-analytic de-
pendence on the deformation parameter t. Assume, each structure Jt for fixed t is
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smooth and embedded in C2. Let P t
4 denote the Paneitz operator associated to the

structure (M,Jt, θ). Assume further that the Paneitz operator at t = 0, P4(= P 0
4 )

is non-negative and

kerP4 = CR-pluriharmonic functions.

Then for some δ > 0 and |t| < δ we have:

P t
4 ≥ 0.

Corollary 1.8. Under the hypothesis of zero torsion, A11 ≡ 0, the hypothesis
of Theorem 1.7 are met by virtue of Proposition 1.3. Thus if the structure J0 has
zero torsion, it follows P t

4 ≥ 0 for |t| < δ.

Remark 1.9. Theorem 1.7 is a consequence of a local deformation theorem
proved in Section 2. It is based in part on the stability of CR functions and a
theorem of Lempert [15]. It is also important to note that in light of Rossi’s
example, the hypothesis that Jt is an embedded structure along the deformation
path, cannot be removed.

Remark 1.10. In the theorem above, we need to start deforming from a mani-
fold which is embedded and whose CR Paneitz operator is non-negative. Examples
of such manifolds are many. The sphere S3 is such a manifold. The CR struc-
ture remains invariant under a circle action and as remarked above, this forces the
CR structure to have vanishing torsion and so as observed above, the CR Paneitz
operator for the sphere is non-negative.

The sphere is simply-connected. We can consider now the manifold for (z, w) ∈
C2 given by

|z|2 + 1

|z|2 + |w|2 = 100.

It is evident that the CR structure is invariant under a circle action. It is also
evident that the manifold is not simply connected. Thus this example provides an
example of a starting structure that is not simply connected and has a non-negative
Paneitz operator.

Remark 1.11. A result in [5], Prop. 4.1 states that for embedded structures
M :

(1.10) c

∫
M

|f |2 ≤
∫
M

|P4f |2

which is valid ∀ f ∈ (kerP t
4)

⊥, with c > 0 and independent of f . That is P4 has
closed range for embedded structures. However it is not obvious that when one
performs a deformation along embedded directions, the constant c in the inequality
above stays uniformly positive. If one were to obtain a uniform positive lower bound
for c along the deformation path, one would be able to improve the conclusion of
Theorem 1.7 to a global result valid for all t in any compact interval containing
t = 0

This brings us to the remaining part of the converse in Theorem 1.5. That
is, do embedded structures have positive Yamabe constant or positive Webster
curvature. This is unlikely globally but certainly true if the CR structures are
small perturbations of the standard CR structure of S3. This is just by continuity.
In fact by continuity if one performs a small perturbation from any CR structure
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whose Webster curvature is positive, the deformed CR structure does have positive
Webster curvature. However, for one large class of important hypersurfaces in C2,
the ellipsoids, we do show that the Webster curvature is positive no matter how
much deformed the ellipsoid is. The principal result in Section 3 is:

Theorem 1.12. The Webster curvature for all ellipsoids is positive.

We have been informed by Song-Ying Li that he too was aware of the theorem
stated above.

Now we specialize the situation to S3 and consider small deformations of the
standard CR structure of the sphere. In particular our goal is to consider the
deformed structure on S3 given by,

Zt
1̄ = Zφt

1̄
= F (Z1̄ + tφZ1),

where F = (1 − t2|φ|2)−1/2, Z1̄ = z̄2
∂

∂Z1
− z̄1

∂
∂Z2

and t ∈ (−ε, ε). The factor F is
introduced to normalize the Levi form so that h11̄ ≡ 1. The CR Paneitz operator
for the deformed structure will be denoted by P t

0 . We now consider the 3-sphere
S3 ⊂ C

2 � (z1, z2) and denote by

Pp,q = span{za1zb2z̄c1z̄d2 |a+ b = p, c+ d = q}
and the spherical harmonics

Hp,q = {f ∈ Pp,q| −Δs3f = (p+ q)(p+ q + 2)f}.
For a given φ ∈ C∞(S3) one has the Fourier representation

φ ∼
∑

φpq

where φpq is the projection of φ onto Hp,q.

Definition 1.13. We say φ satisfies condition (BE) if and only if

φpq ≡ 0 for p < q + 4, q = 0, 1, · · · .

Remark 1.14. Since for p > q

Pp,q = Hp,q ⊕ · · · ⊕Hp−q,0.

It follows that if φ ∈ Pp,q, then φ satisfies (BE) if and only if p ≥ q+4. Furthermore,
the example of Rossi corresponds to φ = 1 and thus fails condition (BE).

Burns and Epstein proved in [3] that for t ∈ (−ε, ε) and φ satisfying (BE) the
CR structure embeds into some Cn. Conversely Bland [2] showed that embeddabil-
ity of a CR structure close to the standard structure on S3 implies condition (BE).
To summarize we have

Theorem [ Burns-Epstein-Bland]. A CR structure close to the standard
structure on S3 is embeddable if and only if φ satisfies condition (BE).

One of the results proved in Section 2 our paper, which is obtained by combining
the results in our earlier paper [6], Theorem 1.5 with the results obtained in Section
2 of this paper and the theorem of Burns-Epstein-Bland cited above is:

Theorem 1.15. Let us consider the three sphere S3 and a CR structure Jt
obtained as a small perturbation of the standard CR structure on S3 and whose CR
vector field is given by Zt

1̄ above. Then the following are equivalent.
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(1) The CR structure embeds in C2.
(2) �t

b, the Kohn Laplacian for the deformed structure has closed range.
(3) The deformation function φ(·) used to define the CR vector field Zt

1̄, sat-
isfies the Burns-Epstein condition (BE).

(4) The CR Paneitz operator P t
4 for the deformed structure is non-negative

and the Yamabe constant for the deformed structure is positive.

As pointed out earlier, the Yamabe constant is positive for the deformed struc-
ture and follows simply by continuity and the fact we are only making a small
deformation of the standard structure on S3. The Yamabe constant is of course
positive for the standard CR structure on S3.
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2. Small deformations of a CR structure

In the sequel we will always assume D ⊂ C
2 is a strictly pseudoconvex, bounded

domain with (M,J0) = ∂D, in particular M is compact. Suppose that Jt be
a deformation from J0 defined by a family of smooth functions in the coordinate
variable of the manifold denoted by · and real analytic in the deformation parameter
variable t. The deformation functions on M will be denoted by ψ(·, t). That is,

the vector field Z
t

1 = Z1 + ψ(·, t)Z1 defines a CR holomorphic vector field with
respect to Jt. We also fix notation and denote the CR Paneitz operator wrt to the
background CR structure J0 as P4 instead of P 0

4 .
We now define the notion of stability for the Paneitz operator.

Definition 2.1. We say the Paneitz operator P t0
4 associated to the CR struc-

ture Jt0 is stable, if given ε > 0, there exists δ > 0 such that for all t such that
|t− t0| < δ, and given any f ∈ kerP t0

4 , there exists g ∈ kerP t
4 such that

||f − g||C0(M) < ε.

There is a similar notion for the stability of CR functions. Stability of CR
functions was established in a paper by Lempert [15].

The proof of the next proposition was communicated to us by C. Epstein [9].
For our purposes we need the projection operators constructed in Prop. (8.18) in
[8], except for the zero eigenspace, to be continuous even at t = 0. This is the
content of the following proposition. To state the lemma we need a few facts. We
consider a family Lt of operators on M , that is holomorphic in t ∈ C for |t| < δ.
For real t we assume that the operators Lt are Hermitian with respect to L2(M)
defined using a fixed measure independent of t which for our purposes is θ ∧ dθ.
Our operators Lt are densely defined on C∞(M) and the examples we need them
for are Kohn’s Laplacian �t

b and P t
0 . We assume moreover that

(1) Each Lt has closed range.
(2) Each Lt has pure point, discrete eigenvalues with finite dimensional eigen-

spaces.
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(3) In particular it follows from the above two assumptions that for each Lt

we do not have non-zero eigenvalues with zero as limit point.
(4) We assume the spectrum of Lt is bounded below.

Since we will apply the proposition to families of Paneitz operators P t
0 associated

to embedded families of CR structures (M,Jt) and associated Kohn Laplacians �t
b,

we note that the closed range hypothesis for embedded structures is satisfied for P t
0

by a result in [5] and for �t
b by a result in [13]. Now further assume there exists

r > 0, such that
((−r, 0) ∪ (0, r)) ∩ spectrum L0 = ∅.

Non-zero eigenvalues of Lt that lie in (−r, r) will be called small, using the termi-
nology of [8].

Proposition 2.2. Let Lz be a holomorphic family as above. Then the small
eigenvalues of Lt are finitely many and depend real-analytically on t for t ∈ (−δ, δ).
The projection Pt

i into the eigenspace for the small eigenvalue λi(t) of Lt depends
real-analytically on t ∈ (−δ, δ). Moreover if Pt denotes the projection into the small
eigenvalues, then the rank of Pt is constant in t.

Proof. In Proposition (8.18) [8], the analytic dependence of the small eigen-
values is already established. What remains to be proven is the second part of our
lemma. Recall the definition of P t

i eqn. (8.23) in [8] which is,

(2.1) P t
i = λi(t)Πj �=i(λi(t)− λj(t))P

t
i.

For u, v ∈ L2(M), define the function g(t)

g(t) =
< P t

i u, v >

λi(t)Πj �=i(λi(t)− λj(t))
.

Then g(t) is holomorphic in a punctured nbhd. of t = 0. The function g(t) can
have only poles of finite order as singularities at t = 0 and on the real axis via (2.1),
for |t| < ε the function g(t) is bounded. Thus the singularity at t = 0 is removable
and then arguing now as the rest of Proposition (8.18) in [8] we conclude that
the projection operators are real-analytic and converges to a finite rank projection
operator at t=0. Since

rank P
t = trace P

t,

we obtain the integer valued function rank Pt is continuous and hence constant. �
Proposition 2.3. Suppose (M,J0) is embedded in Cn. Let Jt be a deformation

from J0 along an embeddable direction, with t varying real-analytically and |t| < δ.
Let P4 ≥ 0 and assume further that the CR Paneitz operator P4 for the structure J0
is stable. Then P t

4 cannot have small eigenvalues. In particular there does not exist
any continuous family of eigenfunctions ut corresponding to non-zero eigenvalues
of P t

4 branching out from a function u0 in the kernel of P4. One therefore concludes
P t
4 ≥ 0.

Proof. We argue by contradiction. Assume P t
4 has small eigenvalues. Then

by Prop.2.2, the eigenvalues vary continuously in t and the projection operators to
these non-zero eigenvalues Pt

i are also continuous. From the continuous dependence
of Pt

i and λi(t) on t we conclude that any eigenfunction ut for a non-zero small
eigenvalue can be written as ut = u0 + ft, where u0 is in the kernel of P4, and
||ft||2 = o(1). We normalize ||u0||2 = 1. From our stability assumption, there
exists a function gt in kerP t

4 such that ‖u0 − gt‖ < ε. Now < ut, gt >= 0 as they



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

NONNEGATIVITY CRITERION FOR PANEITZ OPERATORS 73

are eigenfunctions for distinct eigenvalues of P t
4 . Thus for each t 
= 0 small enough

we have

0 =< ut, gt >

=< ut, u0 > + < ut, gt − u0 >

= 1+ < ft, u0 > + < ut, gt − u0 >= 1 + o(1) 
= 0,

(2.2)

which is a contradiction. Thus there are no small eigenvalues of P t
4 . The operator

P4 ≥ 0 by assumption. Thus it follows that P t
4 ≥ 0 for |t| < δ. �

We are now in a position to supply the proof of Theorem 1.7. It is a consequence
of the next proposition.

Proposition 2.4. Assume the kernel of P4 consists of exactly the CR pluri-
harmonic functions for the structure (M,J0). Assume the CR structures (M,Jt)
are all embedded in C2. Then the Paneitz operator P4 associated to the structure
J0 is stable.

Proof. By assumption any function f ∈ kerP4 is a CR pluriharmonic func-
tion. Locally then f is the real part of a CR holomorphic function F . We may now
locally extend F into Ω where M = ∂Ω. We continue to denote the extension by
the symbol F . We now denote points in C2 by (z, w). Next note in Ω that (Re F )z
is a holomorphic function defined globally in a nbhd of M in Ω. This is because
Re F = f is globally defined on M . Since M is connected, by Hartog’s theorem we
can even assume that (Re F )z is defined in all of Ω. Let us denote the restriction
to M of (Re F )z by Ξ. Now Ξ is a CR function. We apply the stability theorem
of Lempert [15] to obtain a function Ξt which is a CR function for the structure Jt
and such that

||Ξ− Ξt||∞ < ε.

Being a CR function Ξt lies in the kernel of P t
4 . Next we consider the extension

of Ξt to the interior as a holomorphic function. This globally exists by Hartog’s
theorem again. We continue to denote this extension by Ξt. Next we integrate Ξt

in the z variable, that is we consider the indefinite integral

Ft(z, w) =

∫
Ξt dz.

There may be an ambiguity in the definition of Ft, because of imaginary periods
but the Real part of Ft is well-defined. Set ft = Re Ft. Then ft is pluriharmonic
and its restriction to M is CR-pluriharmonic. Similarly we also consider

H(z, w) =

∫
Ξ dz

Note that H(z, w) may differ from F because of imaginary periods. But their real
parts do coincide.

We now easily see using the the stability estimate above,

||f − ft||L∞(M) < ε.

We have proved stability.
IfM were simply connected then the proof of the proposition is quite easy, since

then f being CR pluriharmonic can be taken to be the real part of a CR function
G which is defined globally on M . One may then apply the result of Lempert on
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stability of CR functions to G. The stability of the pluriharmonic functions follows
by consideration of the real part. �

The proof of Theorem 1.7 follows because under the hypothesis of the theorem
that the kernel of P4 is exactly the CR pluri-harmonic functions, we obtain via
Proposition 2.4 that the Paneitz operator P4 is stable. Thus the hypothesis of
Proposition 2.3 is satisfied and we may conclude that P t

4 ≥ 0 for |t| < δ.
Deformation functions ψ(·, t) = tφ(·) where φ ∈ C∞(S3) have been studied in

an important paper by Burns-Epstein[3]. The standard CR structure on S3 has
vanishing torsion. Thus combining the results in [3] and our Theorem 1.7 we also
have:

Corollary 2.5. Suppose that (S3, J0) is the sphere S3 equipped with the stan-
dard CR structure and ψ(·, t) = tφ(·) is a deformation function where φ(·) satisfies
the Burns-Epstein condition. If we define the deformation Jt of the CR structures
by ψ(·, t) then P t

4 ≥ 0 for t small enough.

The previous Corollary when combined with the results in [2], [3] and [6], easily
yields Theorem 1.15 of the introduction.

3. The Webster curvature for Ellipsoids

In this section, we are going to show Theorem 1.12 of the introduction. We
will need a formula for the Webster curvature for hypersurfaces embedded in C

2 in
a form suitable for our computations. Other formulae have been derived in [16],
see Theorem 1.1 there.

Let M ↪→ C2 be a hypersurface defined by a defining function u(z1, z2):

M3 = {(z1, z2) ∈ C
2 | u(z1, z2) = 0},

where du(z) 
= 0 for all z ∈ M . Equipped with the induced CR structure from C2

and the contact form

θ =
i(∂̄u− ∂u)

2
|M3 ,

M is a pseudohermitian manifold, provided that θ ∧ dθ 
= 0. It is easy to see that
the induced CR structure can be defined by the complex (1, 0)-vector

(3.1) Z1 = u2
∂

∂z1
− u1

∂

∂z2
.

We will use the notations:

uj =
∂u

∂zj
, ujk =

∂2u

∂zj∂zk
,

for all j, k ∈ {1, 2, 1̄, 2̄}. The characteristic vector field T is a real vector field which
is uniquely defined by

(3.2) dθ(T ∧ ·) = 0, θ(T ) = 1.

Let {θ1, θ1̄, θ} be the dual frame to {Z1, Z1̄, T}. Then we have

(3.3) dθ = ih11̄θ
1 ∧ θ1̄,

for some nonzero real function h11̄. If necessary, we could change the sign for u and
assume, without loss of generality, that h11̄ > 0.
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Let

(3.4) J(u) =

∣∣∣∣∣∣
u u1̄ u2̄

u1 u11̄ u12̄

u2 u21̄ u22̄.

∣∣∣∣∣∣
Proposition 3.1. On M3, we have

(3.5) h11̄ = −J(u).

Proof. We compute, on M ,

dθ = −id(∂u)

= −id(
2∑

j=1

ujdzj) = −i(
2∑

j=1

duj ∧ dzj)

= i

2∑
j,k=1

ujkdzj ∧ dzk + i

2∑
j,k=1

ujk̄dzj ∧ dzk̄

= i
2∑

j,k=1

ujk̄dzj ∧ dzk̄.

(3.6)

Therefore

h11̄ = −idθ(Z1 ∧ Z1̄)

=

2∑
j,k=1

ujk̄dzj ∧ dzk̄((u2
∂

∂z1
− u1

∂

∂z2
) ∧ (u2̄

∂

∂z1̄
− u1̄

∂

∂z2̄
))

= u11̄u2u2̄ + u22̄u1u1̄ − u12̄u2u1̄ − u21̄u1u2̄

= −

∣∣∣∣∣∣
0 u1̄ u2̄

u1 u11̄ u12̄

u2 u21̄ u22̄

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
u u1̄ u2̄

u1 u11̄ u12̄

u2 u21̄ u22̄

∣∣∣∣∣∣ = −J(u), on M.

(3.7)

�

Let

(3.8) U = (Uab)3×3 =

⎡
⎣ u u1̄ u2̄

u1 u11̄ u12̄

u2 u21̄ u22̄

⎤
⎦ .

That is, Uba = Uab, and

U11 = u; U12 = u1̄; U13 = u2̄;

U(j+1)(k+1) = ujk̄, 1 ≤ j, k ≤ 2.
(3.9)

Note that h11̄ > 0, so the matrix U is invertible on a neighborhood of M . Let

U−1 = (Uab) be the inverse of U . Then it is easy to show that U ba = Uab and

U11 =
u12̄u21̄ − u11̄u22̄

h11̄

; U12 =
u22̄u1̄ − u21̄u2̄

h11̄

; U13 =
u11̄u2̄ − u12̄u1̄

h11̄

;

U22 =
−u2u2̄

h11̄

; U23 =
−u1u2̄

h11̄

; U33 =
u1u1̄

h11̄

.
(3.10)
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Proposition 3.2. On M ,

T =

2∑
j=1

iU1(j+1) ∂

∂zj
+ complex conjugate

θ1 = U13dz1 − U12dz2.

(3.11)

Proof. We just check that T satisfies

dθ(T ∧ ·) = 0, θ(T ) = 1.

We compute

dθ(T ∧ ·) = i(

2∑
j,k=1

ujk̄dzj ∧ dzk̄)(T ∧ ·)

= i
2∑

j,k=1

ujk̄(dzj(T )dzk̄ − dzk̄(T )dzj)

= −
2∑

j,k=1

(U(j+1)(k+1)U
1(j+1)dzk̄ + U(j+1)(k+1)U

(k+1)1dzj)

= −
2∑

k=1

(δk3 − U1(k+1)U
11)dzk̄ −

2∑
j=1

(δ3j − U11U(j+1)1)dzj

=
2∑

j=1

U1(j+1)U
11dzj̄ + U11U(j+1)1dzj

= U11(
2∑

j=1

ujdzj + uj̄dzj̄)

= U11du = 0, on M,

(3.12)

and

θ(T ) = −i(
2∑

j=1

ujdzj)(T )

=

2∑
j=1

ujU
1(j+1) =

2∑
j=1

U(j+1)1U
1(j+1)

=
3∑

b=1

Ub1U
1b, on M (U11 = 0, on M)

= 1

(3.13)

Similarly, after a direct computation, we get θ1(T ) = 0 and θ1(Z1) = 1. �
Proposition 3.3. With respect to the frame Z1, the connection form θ1

1 and
the torsion form τ1 are expressed by

θ1
1 = (h11̄Z1h11̄)θ

1 + ((u1Tc2 − u2Tc1) + i(c1Z1c2 − c2Z1c1))θ,

τ1 = −i(c1Z1̄c2 − c2Z1̄c1)θ
1̄,

(3.14)

where h11̄ = h−1
11̄

, c1 = U13 and c2 = −U12.
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Proof. First we point out that all equalities are only true on M . Now let
θ1 = c1dz1 + c2dz2, i.e., c1 = U13 and c2 = −U12. We have that 1 = θ1(Z1) =
c1u2 − c2u1. Therefore

u2θ
1 = u2c1dz1 + u2c2dz2

= dz1 + c2u1dz1 + u2c2dz2

= dz1 + c2(u1dz1 + u2dz2)

= dz1 + ic2θ,

(3.15)

or

(3.16) dz1 = u2θ
1 − ic2θ,

hence,

0 = d(dz1) = d(u2θ
1 − ic2θ)

= du2 ∧ θ1 + u2dθ
1 − idc2 ∧ θ − ic2dθ,

(3.17)

or

(3.18) u2dθ
1 = −du2 ∧ θ1 + idc2 ∧ θ + ic2dθ.

Similarly, we have

(3.19) dz2 = −u1θ
1 + ic1θ,

and thus,

(3.20) u1dθ
1 = −du1 ∧ θ1 + idc1 ∧ θ + ic1dθ.

Taking together (3.18) and (3.20), one obtains that

dθ1 = (c1u2 − c2u1)dθ
1

= θ1 ∧ (c1du2 − c2du1) + θ ∧ i(c2dc1 − c1dc2)
(3.21)

On the other hand, we have

(3.22) dθ1 = θ1 ∧ θ1
1 + θ ∧ τ1.

From (3.21), (3.22) and by the Cartan lemma, there exists functions a, b and c such
that

θ1
1 = c1du2 − c2du1 + aθ1 + bθ

τ1 = i(c2dc1 − c1dc2) + bθ1 + cθ.
(3.23)

Since τ1 = A1
1̄θ

1̄, from (3.23), this means that

A1
1̄ = i(c2Z1̄c1 − c1Z1̄c2),

b = −i(c2Z1c1 − c1Z1c2),

c = −i(c2Tc1 − c1Tc2),

(3.24)

hence,

(3.25) θ1
1 = c1du2 − c2du1 + aθ1 − i(c2Z1c1 − c1Z1c2)θ.

Finally, from the structural equation h11̄dh11̄ = θ1
1 + θ1̄

1̄, we get

(3.26) a = c2Z1u1 − c1Z1u2 + h11̄Z1h11̄,
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hence,

θ1
1 = c1du2 − c2du1 + (c2Z1u1 − c1Z1u2 + h11̄Z1h11̄)θ

1 − i(c2Z1c1 − c1Z1c2)θ

= (h11̄Z1h11̄)θ
1 + ((u1Tc2 − u2Tc1) + i(c1Z1c2 − c2Z1c1))θ,

(3.27)

where in the last equality, we used the identities u1Z1̄c2 − u2Z1̄c1 = 0 and c1u2 −
c2u1 = 1. �

Proposition 3.4. The Webster curvature can be expressed as

(3.28) R = −h11̄(Z1̄Z1 log h11̄) + i
(
(u1Tc2 − u2Tc1) + i(c1Z1c2 − c2Z1c1)

)
.

Proof. Let E = (u1Tc2 − u2Tc1) + i(c1Z1c2 − c2Z1c1). Taking the exterior
differential of θ1

1

dθ1
1 = d(Z1 log h11̄) ∧ θ1 + (Z1 log h11̄)dθ

1 + dE ∧ θ + Edθ

= (−Z1̄Z1 log h11̄ + θ1
1(Z1̄)(Z1 log h11̄) + ih11̄E)θ1 ∧ θ1̄, mod θ

= (−Z1̄Z1 log h11̄ + ih11̄E)θ1 ∧ θ1̄, mod θ.

(3.29)

Comparing (3.29) with the structure equation dθ1
1 = h11̄Rθ1 ∧ θ1̄, mod θ, we

immediately get formula (3.28) for the Webster curvature. �

Finally combining (3.14) and (3.28), we get another representation for the con-
nection form

(3.30) θ1
1 = (Z1 log h11̄)θ

1 − i
(
R+ h11̄(Z1̄Z1 log h11̄)

)
θ.

Remark 3.5. There is another expression for the Webster curvature, which
was proved by S.-Y. Li and H.-S. Luk in [16]. It is

(3.31) R = −h11̄
2∑

j,k=1

∂2 log (−J(u))

∂zj∂zk̄
wjwk̄ + 2

detH(u)

h11̄

.

Next an ellipsoid is given by

(3.32) A1x1
2 +B1y1

2 +A2x2
2 +B2y2

2 − 1 = 0,

where A1, A2, B1, B2 > 0. Set z1 = x1 + iy1 and z2 = x2 + iy2. Then our defining
function becomes

(3.33) u = b1|z1|2 + b2|z2|2 + a1z1
2 + a1z̄1

2 + a2z2
2 + a2z̄2

2 − 1 = 0,

where aj = 1
4 (Aj − Bj), bj = 1

2 (Aj + Bj) > 0, j = 1, 2. We want to make use of
the formula for Webster curvature (3.28)

R = −h11̄Z1̄Z1(log h11̄) + i
[
(u1Tc2 − u2Tc1) + i(c1Z1c2 − c2Z1c1)

]
,

where we recall Z1 = u2
∂

∂z1
− u1

∂
∂z2

and θ = 1
2i (∂u − ∂̄u). The functions c1, c2

satisfy the identities:

(3.34) Z1̄u1 = h11̄c1, and Z1̄u2 = h11̄c2.

So,

Z1Z1̄u1 = Z1(h11̄)c1 + h11̄Z1c1

Z1Z1̄u2 = Z1(h11̄)c2 + h11̄Z1c2.
(3.35)
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Multiplying the first equation in (3.35) by c2 and the second by c1 and subtracting,
we get

(3.36) h11̄(c2Z1c1 − c1Z1c2) = c2Z1Z1̄u1 − c1Z1Z1̄u2.

So,

c2Z1c1 − c1Z1c2 =
c2Z1Z1̄u1 − c1Z1Z1̄u2

h11̄

=
c2([Z1, Z1̄]u1)− c1([Z1, Z1̄]u2)

h11̄

+
c2Z1̄Z1u1 − c1Z1̄Z1u2

h11̄

=
−ih11̄(c2Tu1 − c1Tu2)

+

c2Z1̄Z1u1 − c1Z1̄Z1u2

h11̄

= i(c1Tu2 − c2Tu1) +
c2Z1̄Z1u1 − c1Z1̄Z1u2

h11̄

.

(3.37)

Next note θ1(Z1) = c1u2 − u1c2 = 1. Thus, T (c1u2 − u1c2) = 0. So we have,

(3.38) u2Tc1 − u1Tc2 = c2Tu1 − c1Tu2.

From (3.37) and (3.38) we get,

(u1Tc2 − u2Tc1) + i(c1Z1c2 − c2Z1c1)

= (c1Tu2 − c2Tu1) + i(−i)(c1Tu2 − c2Tu1)− i

(
c2Z1̄Z1u1 − c1Z1̄Z1u2

h11̄

)

= 2(c1Tu2 − c2Tu1)− i

(
c2Z1̄Z1u1 − c1Z1̄Z1u2

h11̄

)
.

(3.39)

Substituting (3.39) into the Webster curvature formula (3.28), we get

R = −h11̄Z1̄Z1(log h11̄) + i
[
(u1Tc2 − u2Tc1) + i(c1Z1c2 − c2Z1c1)

]
= −h11̄Z1̄Z1(log h11̄) + 2i(c1Tu2 − c2Tu1) +

(
c2Z1̄Z1u1 − c1Z1̄Z1u2

h11̄

)
.

(3.40)

We next compute an expression for the Levi form. We have,

J(u) =

∣∣∣∣∣∣
u u1̄ u2̄

u1 u11̄ u12̄

u2 u1̄2 u22̄

∣∣∣∣∣∣ =
∣∣∣∣∣∣

u u1̄ u2̄

u1 b1 0
u2 0 b2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
u 2a1z̄1 + b1z1 2a2z̄2 + b2z2

2a1z1 + b1z̄1 b1 0
2a2z2 + b2z̄2 0 b2

∣∣∣∣∣∣
= b1b2u− b1u2u2̄ − b2u1u1̄.

(3.41)

Thus when u = 0, one has

(3.42) h11̄ = b1u2u2̄ + b2u1u1̄.
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Next we compute the first term in the Webster curvature formula (3.40):

−h11̄Z1̄Z1(log h11̄) = −h11̄Z1̄

(
Z1h11̄

h11̄

)

=
|Z1h11̄|2
(h11̄)3

− Z1̄Z1h11̄

(h11̄)2
, using h11̄ =

1

h11̄

.

(3.43)

A straightforward computation using the defining function yields,

Z1̄u2 = −b2u1̄, Z1̄u1 = b1u2̄

Z1̄u1̄ = 2a1u2̄, Z1̄u2̄ = −2a2u1̄.
(3.44)

So,

Z1̄Z1h11̄ = 2a1b2Z1̄(u2u1̄)− 2a2b1Z1̄(u1u2̄)

= 2a1b2[(Z1̄u2)u1̄ + u2(Z1̄u1̄)]− 2a2b1[(Z1̄u1)u2̄ + u1(Z1̄u2̄)]

= 4a1
2b2|u2|2 + 4a2

2b1|u1|2 − 2a1b2
2(u1̄)

2 − 2a2b1
2(u2̄)

2.

(3.45)

Next we claim that

(3.46) 2i(c1Tu2− c2Tu1) =
2

h2
11̄

(
b1b

2
2|u1|2 + b2b

2
1|u2|2 − 2a1b

2
2|u1̄|2 − 2a2b

2
1|u1̄|2

)
;

and

(3.47)
c2Z1̄Z1u1 − c1Z1̄Z1u2

h11̄

=
2a1b

2
2|u1̄|2 + 2a2b

2
1|u1̄|2

(h11̄)2

These follow because,

(3.48) Z1̄Z1u1 = Z1̄(2a1u2) = −2a1b2u1̄.

So,

(3.49) c2Z1̄Z1u1 =
−b2u1̄

h11̄

(−2a1b2u1̄) =
2a1b

2
2(u1̄)

2

h11̄

.

Similarly,

(3.50) c1Z1̄Z1u2 =
b1u2̄

h11̄

(−2a2b1u2̄) =
−2a2b

2
1(u2̄)

2

h11̄

.

Taking the two expressions above together, we get the second claim (3.47). To
prove the first claim (3.46), we use

(3.51) T =
i

h11̄

(
b2u1̄

∂

∂z1
+ b1u2̄

∂

∂z2

)
+ complex conjugate.

So

Tu1 =
2ia1b2u1̄

h11̄

− ib1b2u1

h11̄

Tu2 =
2ia2b1u2̄

h11̄

− ib1b2u2

h11̄

,

(3.52)

In conjunction with c1 = b1u2̄

h11̄
, c2 = −b2u1̄

h11̄
, we get the first claim (3.46). Now we

substitute (3.45) into (3.43) and substitute (3.43), (3.46) and (3.47) into formula
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(3.40), to obtain

R =
|Z1h11̄|2
(h11̄)3

+
2b1(b

2
2 − 2a22)|u1|2 + 2b2(b

2
1 − 2a21)|u2|2

(h11̄)2

> 0,

(3.53)

The last inequality is a consequence of b2i − 2a2i > 0, i = 1, 2. This follows because,

b2i =
1

4
(Ai +Bi)

2

2a2i =
2

16
(Ai −Bi)

2,

(3.54)

hence b2i − 2a2i = 1
8 (A

2
i +B2

i + 6AiBi) > 0, (note that Ai, Bi > 0).

4. Further Remarks

It remains an interesting problem to determine the precise geometrical condi-
tion when the notion of being in the kernel of P4 coincides with CR-pluriharmonicity
for a general CR structure. One problem of immediate interest is to determine if for
embedded structures, the CR-pluriharmonic functions coincide with the functions
in the kernel of the Paneitz operator. It is unclear if such an equivalence is true
even for CR structures close to the standard structure on S3. Under the assump-
tion that the CR pluriharmonic functions coincide with the kernel of the Paneitz
operator, C. R. Graham, K. Hirachi and J. M. Lee proved the theorem stated be-
low. Thus our question has further geometric consequences beyond a possible link
with embedding of CR structures.

Theorem 4.1. Let Ω ⊂ C
2 be a strictly pseudoconvex domain with a defining

function u. Suppose M = ∂Ω. Then the following are equivalent:

(1) Q = 0.
(2) u satisfies Fefferman’s Monge-Ampere equation −J(u) ≡ 1 along M up to

multiplication by a CR pluriharmonic function.
(3) θ∧ dθ is the invariant volume element up to multiplication by a CR pluri-

harmonic function.

We recall that J(u) is Fefferman’s Monge-Ampere equation, which is defined
by

J(u) = det

⎛
⎝ u11̄ u12̄ u1

u21̄ u22̄ u2

u1̄ u2̄ u

⎞
⎠

In section 3, we showed that the Webster curvature for ellipsoids are positive. It
is interesting to know if the Webster curvature is also positive for a strictly convex
domain? If so, then from our earlier result in [6], there is an uniform positive lower
bound for the first nonzero eigenvalues λt of the Kohn Laplacian �t

b for the family
of strictly convex domains Ωt, which is smoothly dependent on t.
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[15] László Lempert, Embeddings of three-dimensional Cauchy-Riemann manifolds, Math. Ann.
300 (1994), no. 1, 1–15, DOI 10.1007/BF01450472. MR1289827 (95j:32029)

[16] Song-Ying Li and Hing-Sun Luk, An explicit formula for the Webster pseudo-Ricci curvature
on real hypersurfaces and its application for characterizing balls in Cn, Comm. Anal. Geom.
14 (2006), no. 4, 673–701. MR2273290 (2007k:32046)

[17] H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary,
Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, pp. 242–256.
MR0176106 (31 #381)

[18] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13
(1978), no. 1, 25–41. MR520599 (80e:32015)

Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscat-

away, New Jersey 08854

E-mail address: chanillo@math.rutgers.edu

Department of Mathematics, National Central University, Chung Li, 32054, Tai-

wan, R.O.C.

E-mail address: hlchiu@math.ncu.edu.tw

Department of Mathematics, Princeton University, Princeton, New Jersey 08544

E-mail address: Yang@math.princeton.edu

http://www.ams.org/mathscinet-getitem?mr=1071115
http://www.ams.org/mathscinet-getitem?mr=1071115
http://www.ams.org/mathscinet-getitem?mr=2249615
http://www.ams.org/mathscinet-getitem?mr=2249615
http://www.ams.org/mathscinet-getitem?mr=2375704
http://www.ams.org/mathscinet-getitem?mr=2375704
http://www.ams.org/mathscinet-getitem?mr=1800297
http://www.ams.org/mathscinet-getitem?mr=1800297
http://www.ams.org/mathscinet-getitem?mr=1172695
http://www.ams.org/mathscinet-getitem?mr=1172695
http://www.ams.org/mathscinet-getitem?mr=0112161
http://www.ams.org/mathscinet-getitem?mr=0112161
http://www.ams.org/mathscinet-getitem?mr=975118
http://www.ams.org/mathscinet-getitem?mr=975118
http://www.ams.org/mathscinet-getitem?mr=1201602
http://www.ams.org/mathscinet-getitem?mr=1201602
http://www.ams.org/mathscinet-getitem?mr=850548
http://www.ams.org/mathscinet-getitem?mr=850548
http://www.ams.org/mathscinet-getitem?mr=926742
http://www.ams.org/mathscinet-getitem?mr=926742
http://www.ams.org/mathscinet-getitem?mr=1289827
http://www.ams.org/mathscinet-getitem?mr=1289827
http://www.ams.org/mathscinet-getitem?mr=2273290
http://www.ams.org/mathscinet-getitem?mr=2273290
http://www.ams.org/mathscinet-getitem?mr=0176106
http://www.ams.org/mathscinet-getitem?mr=0176106
http://www.ams.org/mathscinet-getitem?mr=520599
http://www.ams.org/mathscinet-getitem?mr=520599

	Embedded three-dimensional CR manifolds and the non-negativity of Paneitz operators
	1. Introduction
	Acknowledgment
	2. Small deformations of a CR structure
	3. The Webster curvature for Ellipsoids
	4. Further Remarks
	References


