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Abstract
Let M 3 be a closed Cauchy–Riemann (CR) 3-manifold. In this article, we derive
a Bochner formula for the Kohn Laplacian in which the pseudo-Hermitian torsion
does not play any role. By means of this formula we show that the nonzero eigenval-
ues of the Kohn Laplacian have a positive lower bound, provided that the CR Paneitz
operator is nonnegative and the Webster curvature is positive. This means that M 3

is embeddable when the CR Yamabe constant is positive and the CR Paneitz opera-
tor is nonnegative. Our lower bound estimate is sharp. In addition, we show that the
embedding is stable in the sense of Burns and Epstein.

1. Introduction, statements, and notation
The global embedding problem in CR geometry in dimension 3 has received a lot of
attention. In [5], Burns and Epstein consider perturbations of the standard CR struc-
ture on the 3-sphere S3. They showed that the generic perturbation is nonembeddable
and gave a sufficient condition for embeddability in terms of the Fourier coefficients
of the perturbation function. For small perturbations, Bland [2] showed that this con-
dition in some sense is necessary up to a contact diffeomorphism. Bland’s results in
[2] strongly depend on his earlier work [3] on moduli for pointed convex domains,
which is closely related to Lempert’s work (see [16], [17]) on constructing modular
data for pointed convex domains.

In [18], Lempert asked two fundamental questions about the embeddability prob-
lem. The first one is related to the closedness property of CR structures, and the sec-
ond one is related to the stability property. In this article, we introduce a CR invariant
condition involving the sign of two conformally covariant operators to provide some
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affirmative answers to Lempert’s questions. The first operator is the analogue of the
conformal Laplacian that occurs in the computation of Webster’s scalar curvature. The
second, a fourth-order operator, is closely connected with pluriharmonic functions. As
a consequence of our main result, after making further use of the sign conditions on
these operators, it is possible to derive a positive mass theorem in this dimension (see
[8]).

In [10, Definition (1.1)] and [11], Epstein introduced an invariant called the rel-
ative index of two Szego projectors. It quantifies the stability of the algebra of CR
functions under embeddable deformations. It is used to show that every embeddable
deformation of a CR structure on S3 is stable. Our hypotheses in Theorem 3.1 and
the result of Theorem 1.4 imply that the relative index is zero.

Throughout this paper, we will use the notation and terminology of [15] unless
otherwise specified. Let .M;J; �/ be a closed 3-dimensional pseudo-Hermitian man-
ifold, where � is a contact form and where J is a CR structure compatible with
the contact bundle � D ker� . The CR structure J decomposes C˝ � into the direct
sum of T1;0 and T0;1 which are eigenspaces of J with respect to i and �i , respec-
tively. The Levi form h ; iL� is the Hermitian form on T1;0 defined by hZ;W iL� D
�ihd�;Z ^W i. We can extend h ; iL� to T0;1 by defining hZ;W iL� D hZ;W iL�
for all Z;W 2 T1;0. The Levi form naturally induces a Hermitian form on the dual
bundle of T1;0, denoted by h ; iL�

�
, and hence on all the induced tensor bundles.

Integrating the Hermitian form (when acting on sections) over M with respect to the
volume form dV D � ^ d� , we get an inner product on the space of sections of each
tensor bundle. We denote the inner product by the notation h ; i; for example,

h'; i D

Z
M

' N dV (1.1)

for functions ' and  .
Let ¹T;Z1;ZN1º be a frame of TM ˝ C, where Z1 is any local frame of T1;0;

ZN1 D Z1 2 T0;1, and where T is the characteristic vector field, that is, the unique
vector field such that �.T /D 1;d�.T; �/D 0. Then ¹�; �1; � N1º, the coframe dual to
¹T;Z1;ZN1º, satisfies

d� D ih1 N1�
1 ^ �

N1 (1.2)

for some positive function h1 N1. We can always choose Z1 such that h1 N1 D 1; hence,
throughout this article, we will assume that h1 N1 D 1

The pseudo-Hermitian connection of .J; �/ (see [20], [21]) is the connection r
on TM ˝C (and extended to tensors) given in terms of a local frame Z1 2 T1;0 by

rZ1 D �1
1˝Z1; rZN1 D � N1

N1˝ZN1; rT D 0;

where �11 is the 1-form uniquely determined by the following equations:
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d�1 D �1 ^ �1
1C � ^ �1;

�1 � 0 mod � N1;

0D �1
1C � N1

N1; (1.3)

where �11 and �1 are called the connection form and the pseudo-Hermitian torsion,
respectively. Put �1 D A1 N1�

N1. The structure equation for the pseudo-Hermitian con-
nection is

d�1
1 DR�1 ^ �

N1C 2i Im.A N11; N1�
1 ^ �/;

where R is the Tanaka–Webster curvature.
We denote components of covariant derivatives with indices preceded by a

comma; thus we write A N11; N1�
1 ^ � . The indices ¹0; 1; N1º indicate derivatives with

respect to ¹T;Z1;ZN1º. For derivatives of a scalar function, we will often omit the
comma; for instance, we write '1 DZ1';'1 N1 DZN1Z1'� �

1
1 .ZN1/Z1';'0 D T ' for

a (smooth) function.
Next we recall several natural differential operators occurring in this paper (for a

detailed description, see [15]). For a smooth function ', the Cauchy–Riemann opera-
tor @b can be defined locally by

@b' D '1�
1;

and we write N@b for the conjugate of @b . A function ' is called CR holomorphic if
N@b' D 0. The divergence operator ıb takes .1; 0/-forms to functions by ıb.�1�1/D
�1
1, and similarly, Nıb.� N1�

N1/D � N1
N1.

If � D �1�1 is compactly supported, then Stokes’s theorem applied to the 2-form
� ^ � implies the divergence formulaZ

M

ıb�� ^ d� D 0:

It follows that the formal adjoint of @b on functions with respect to the Levi form and
the volume element �^d� is @�

b
D�ıb . The Kohn Laplacian on functions determined

by � is

�b D 2N@�b N@b:

Define P' D .' N1
N1
1C iA11'

1/�1 (see [15]), which is an operator that character-
izes CR pluriharmonic functions, and define P' D .'11 N1� iA N1 N1'

N1/�
N1, the conjugate

of P . The CR Paneitz operator P0 is defined by

P0' D ıb.P'/:
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More explicitly, define Q by Q' D 2i.A11'1/;1; then

P0' D
1

4
.�b�b � 2Q/'

D
1

4

�
�b�b' � 4i.A11'1/1

�
D
1

8

�
.�b�b C�b�b/' C 8Im.A11'1/1

�
:

By the commutation relation Œ�b;�b�D 4i ImQ, we see that 4P0 D�b�b � 2QD
�b�b � 2Q. It follows that P0 is a real and symmetric operator (see [9] for the
details).

Definition 1.1
The Paneitz operator P0 is said to be nonnegative if (denoted by P0 � 0)Z

M

.P0'/ N'� ^ d� � 0

for all smooth functions '.

Note that the nonnegativity of P0 is a CR invariant in the sense that it is indepen-
dent of the choice of the contact form � . This follows by observing that if e� D e2f �
is another contact form, we have the following transformation laws for the volume
form and the CR Paneitz operator, respectively (see [13, Lemma 7.4]):

e� ^ de� D e4f � ^ d�; fP0 D e�4f P0:
We also observe that when the Webster torsionA11 � 0, then the Paneitz operator

P0 is given by

P0 D
1

4
�b�b:

When the torsion vanishes, the two operators �b and �b commute, and hence are
simultaneously diagonalizable. It follows that P0 � 0. We also recall that the van-
ishing of torsion is equivalent to LT J D 0, where L is the Lie derivative. As a con-
sequence, the CR structures with a transverse symmetry admit a contact form with
vanishing torsion.

In the higher-dimensional case, there exists an analogue of P0. In this case, Gra-
ham and Lee [12] have shown the nonnegativity of P0.

Definition 1.2
Suppose that e� D e2f � . The CR Yamabe constant is defined by
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infe�
°Z
M

eRe� ^ de� W Z e� ^ de� D 1±:
The CR Yamabe constant is a CR invariant. We also remind the reader of the

following result of Kohn.

Remark 1.3
The fact that �b having closed range is equivalent to global embedding is a result of
Kohn [14, Theorem 5.2].

We are now in a position to state our main theorems. In this article, we show the
following.

THEOREM 1.4
Let M 3 be a closed CR manifold.
(a) If P0 � 0 and R > 0, then the nonzero eigenvalues � of �b satisfy

��minR:

It follows that the range of �b is closed. Coupled with the result of Kohn
stated above, under the conditions P0 � 0 and R > 0, M globally embeds
into some Cn.

(b) A consequence of part (a) is that if P0 � 0 and the CR Yamabe constant is
positive, then M 3 can be globally embedded into C

n for some n.

Lempert’s embedding result (see [16, Theorem 2.1]) states that CR structures
with transverse symmetry are embeddable. It follows from Lempert’s assumption that
there is a contact form with vanishing torsion; hence P0 � 0. Therefore, in the special
case that the CR structure has positive Yamabe invariant, the embeddability follows
from our main result.

In Section 3, we also prove a stability theorem for our embedding.

Remark 1.5
IfM is embeddable, then the Paneitz operator P0 has closed range (see [6]). In partic-
ular, a consequence of the Paneitz operator being closed for embeddable structures is
that the Paneitz operator has at most finitely many negative eigenvalues for an embed-
dable CR structure. It appears highly likely that the boundary of strictly pseudoconvex
domains in C

2 have the property that P0 � 0. We hope to return to this question in a
future publication.
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2. The embedding criterion
In this section, we derive the Bochner formula for the Kohn Laplacian. We need some
commutation relations, for which we refer the reader to Lee [15]. This formula con-
tains no term related to pseudo-Hermitian torsion. In this sense it seems to be more
natural than the one for the sublaplacian. We have the following Bochner formula.

PROPOSITION 2.1
For any complex-valued function ', we have

�
1

2
�bjN@b'j2 D .' N1N1 N'11C ' N11 N'1 N1/

�
1

2
hN@b'; N@b�b'i � hN@b�b'; N@b'i

� h NP'; N@b'i CRjN@b'j
2: (2.1)

Proof
We calculate

�
1

2
�bjN@b'j2 D �

1

2
�bh' N1�

N1; ' N1�
N1i

D .' N1 N'1/ N11

D .' N1N1 N'1C ' N1 N'1 N1/1

D ' N1N11 N'1C ' N1 N1 N'11C ' N11 N'1 N1C ' N1 N'1 N11;

D ' N1N1 N'11C ' N11 N'1 N1 �
1

2
hN@b'; N@b�b'i C ' N1N11 N'1; (2.2)

here; for the last equality, we use the identity

�
1

2
hN@b'; N@b�b'i D ' N1 N'1 N11:

Therefore, the Bochner formula is completed if we show that

' N1N11 N'1 D�h
N@b�b'; N@b'i � h NP'; N@b'i CRjN@b'j2: (2.3)

By the commutation relations, we have

' N1N11 N'1 D .' N11 N1 � i' N10CR' N1/ N'1

D .'1 N1N1 � i'0 N1 � i' N10CR' N1/ N'1

D . NP1' C iA N1 N1'1 � i'0 N1 � i' N10CR' N1/ N'1

D . NP1'/ N'1CR' N1 N'1C .iA N1N1'1 � i'0 N1 � i' N10/ N'1
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D h NP'; N@b'i CRjN@b'j
2C .iA N1N1'1 � i'0 N1 � i' N10/ N'1;

D h NP'; N@b'i CRjN@b'j
2C 2.iA N1N1'1 � i'0 N1/ N'1; (2.4)

and

�
1

2
hN@b�b'; N@b'i

D h' N11 N1�
N1; ' N1�

N1i

D ' N11 N1 N'1

D .'1 N1N1 � i'0 N1/ N'1

D . NP1' C iA N1 N1'1 � i'0 N1/ N'1

D h NP'; N@b'i C .iA N1N1'1 � i'0 N1/ N'1: (2.5)

Combining (2.4) and (2.5), we obtain (2.3). This completes the proposition.

We now prove Theorem 1.3.

Proof of Theorem 1.3
Let ' be an eigenfunction with respect to a nonzero eigenvalue �; that is, ' is not a
CR function. Taking the integral of both sides of the Bochner formula (2.1), we have

0D

Z
' N1N1 N'11C

Z
' N11 N'1 N1 �

3

2
�

Z
jN@b'j

2

C

Z
hP0';'i C

Z
RjN@b'j

2: (2.6)

On the other hand, Z
' N11 N'1 N1 D

1

4

Z
h�b';�b'i D

�

2

Z
jN@b'j

2:

Taking together the above two formulas, we obtain

�

Z
jN@b'j

2 D

Z
j' N1N1j

2C

Z
hP0';'i C

Z
RjN@b'j

2

�

Z
hP0';'i C

Z
RjN@b'j

2: (2.7)

Therefore, if P0 is nonnegative and R > 0, then we immediately have that ��minR.
Since the spectrum spec.�b/ of the Kohn Laplacian in .0;1/ consists only of point
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eigenvalues (see [5, Theorem 1.3]), it follows that the range of �b is closed. Applying
the result of Kohn [14], we conclude that M is embeddable.

To prove the second part of Theorem 1.4 note that if the CR Yamabe constant is
greater than zero, then we can choose a contact form such that the Webster curvature
with respect to this contact form is positive, and so we conclude by the first part of
Theorem 1.4.

Remark 2.2
The estimate for the nonzero eigenvalues is sharp. For example, �b on the standard
sphere S3 as a pseudo-Hermitian 3-manifold has the smallest nonzero eigenvalue
�D 2DR (for details, see [9]).

Remark 2.3
In general, let M 2nC1 be a pseudo-Hermitian manifold. The Bochner formula for the
Kohn Laplacian is as follows:

�
1

2
�bjN@b'j2 D

X
˛;ˇ

.' N̨ Ň N'˛ˇ C ' N̨ˇ N'˛ Ň/

�
1

2n
hN@b'; N@b�b'i �

.nC 1/

2n
hN@b�b'; N@b'i

�
1

n
h NP'; N@b'i C

.n� 1/

n
hP N'; @b N'i

CRic.rb'C;rb'C/; (2.8)

where rb'C is the corresponding complex .1; 0/-vector of rb'. The proof of (2.8)
is the same as (2.1). Again, in the case when n D 2, using this formula we also
obtain that the sharp lower bound of nonzero eigenvalues of the Kohn Laplacian �b
is .4=3/k0, provided that the Ricci curvature has the lower bound

Ric.X;X/� k0jX j
2

for some k0 and for all complex .1; 0/-vectors X. Unfortunately, in the higher-
dimensional cases n� 3, the coefficient .n� 1/=n of the term hP N'; @b N'i is too large
to get the lower bound of nonzero eigenvalues of the Kohn Laplacian �b immediately.

Example 2.4
In this example, we compute the Webster curvature of Rossi’s global nonembed-
dability example (see [1], [19], [7, Theorem 12.4.1]) together with a suitable contact
structure and show that the associated CR Paneitz operators are not nonnegative. Let
S3 D ¹.z1; z2/ 2 C

2 j jz1j
2 C jz2j

2 � 1D 0º be the boundary of the unit ball in C
2

with the induced CR structure given by the complex vector field
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Z1 D Nz2
@

@z1
� Nz1

@

@z2

and contact form

� D
i.N@u� @u/

2

ˇ̌̌
S3
;

where uD jz1j2C jz2j2 � 1. Taking the admissible coframe

�1 D z2 dz1 � z1 dz2;

we have d� D i�1^� N1. Rossi’s example is the CR manifold S3 together with the CR
structure given by

Lt DZ1C t NZ1;

for all t 2R and t ¤ 1;�1. Now, for jt j< 1, taking the contact form

�.t/D �

and the admissible coframe

�1.t/D
1

p
1� t2

.�1 � t�
N1/;

we have d�.t/D i�1.t/^ � N1.t/ and the following proposition.

PROPOSITION 2.5
For jt j< 1, with respect to the coframe ¹�.t/; �1.t/; � N1.t/º, the connection form and
pseudo-Hermitian torsion are as follows:

�1
1.t/D �1

1 �
4t2i

1� t2
� D
�2.1C t2/

1� t2
i� (2.9)

and

�1.t/D
4ti

1� t2
�
N1.t/;

where

�1
1 D�Nz1 dz1 � Nz2 dz2C z1 d Nz1C z2 d Nz2 D�2i�:

In addition, the Webster curvature is R.t/D 2.1Ct2/

1�t2
.
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Proof
We just check that the forms �11.t/; �1.t/ satisfy the equations (1.3). Finally, after a

direct computation, we see that d�11.t/ D
2.1Ct2/

1�t2
�1 ^ �

N1, and so R.t/ D 2.1Ct2/

1�t2
.

Similarly, for jt j> 1, take the contact form �.t/ and the admissible coframe �1.t/
as follows:

�.t/D��; �1.t/D
1

p
t2 � 1

.�1C t�
N1/:

Then we have

�1.t/D
4ti

1� t2
�
N1.t/ and R.t/D

2.1C t2/

t2 � 1
:

From Theorem 1.4 and Proposition 2.5, we immediately obtain that the CR Paneitz
operators of Rossi’s nonembeddable manifolds are not nonnegative.

3. Stability of embeddability
We now consider stability issues (see [5], [18] for earlier work). We have a fixed
CR structure on a compact manifold .M 3; �; J /. Let us denote by NL the CR vector
field on M 3. We now perturb NL by a smooth family of functions '.�; t / D 't .�/,
where .�/ represents a point on M and t 2 .�"; "/. On a local chart of M we denote
local coordinates by .z; s/, where z is the holomorphic variable and s is the variable
corresponding to the real vector field T D @

@s
. We assume always that

D˛
z;s'.z; s; t/jtD0 D 0; j˛j � l0; l0 � 4; .z; s/ 2M: (3.1)

We define

NLt D NLC '.�; t /L: (3.2)

Associated to NLt we form the associated N@.t/
b

-Laplacian operator

�.t/
b
D N@

.t/�

b
N@
.t/

b
: (3.3)

We now use our main result to guarantee embedding of our CR structure in C
N .

Thus we assume that, along the deformation path in t ,

the associated Paneitz operator P .t/0 � 0; (3.4)

the CR Yamabe constant � c > 0: (3.5)
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By our main result (Theorem 1.4), using (3.4) and (3.5) it follows that

�1.�.t/b /� � > 0; (3.6)

with � independent of t . Thus by using the construction of Boutet de Monvel in [4]
or the exposition of Chen and Shaw in [7], we can embed for " > 0 small enough the
CR structures via a map ‰t into the same C

N , that is,

‰t W .M;�;Jt /�!C
N : (3.7)

The question arises if the maps ‰t are close in, say, the sup-norm in t . We have the
following stability theorem.

THEOREM 3.1
Under (3.1), (3.4), and (3.5), for any ı > 0 there exists " > 0, so that

sup
t2Œ�";"�

k‰t �‰0kCk.M/ < ı; k D k.l0/:

Proof
The proof of this theorem is abstract and relies on an identity in [5]. We use [5,
Proposition 5.55]. We denote the projection into the zero eigenspace of �.t/

b
by ='t ,

which is the Szego projector. By the spectral theorem and (3.6), if j�j D �=2, then the
resolvent .�.t/

b
� �/�1 is well defined, and so

='t D

Z
j�jD�=2

.�.t/
b
� �/�1 d�;

and it is immediate that ='t is a bounded operator on L2.M/. As observed in [5], as
a consequence of the above fact and their identity (5.58), Burns and Epstein obtain
the inequality (5.60) which we restate:

k='t �='0kL2.M/ � C�Ak't � '0kL1.M/; (3.8)

where A is the sup-norm of some high enough derivative of 't � '0. But by our
hypothesis (3.1) the right-hand side of (3.8) is smaller than ı > 0, for " > 0 sufficiently
small.

Now recall the construction of Boutet de Monvel. Using the notation in
[7, p. 318], the embedding for each coordinate chart is given by a CR function ht
(we are in CR dimension 1), where

ht D=
't . e��'p /; �!1: (3.9)

Now note that ht � h0 also satisfy an equation, that is,
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�.t/
b
.ht � h0/D .�.0/b ��.t/

b
/.h0/: (3.10)

From (3.8) and (3.9), kht � h0kL2.M/ < ı. From (3.1) and (3.10), the right-hand side
of (3.10) is small in the C k-norm. Since we have (3.6), it now implies by subelliptic
regularity that, for ı > 0, there exists "0,

sup
t2.�"0;"0/

kht � h0kCk.M/ � ı: (3.11)

In fact by differentiation of (3.10) in t , we may also obtain higher stability in t , pro-
vided that we replace (3.1) by the stronger hypothesis that D˛

z;sD
ˇ
t '.z; s; 0/D 0 for

large enough j˛j; jˇj. This proves our theorem since on coordinate charts of M , the
map ‰t is given by ht .
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