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Asymptotically flat (Riemannian) manifolds

A manifold (M3, g) is said to be asymptotically flat if ∃ K ⊆⊆M
s.t. M \K is diffeo. to R3 \B1(0) and s.t., under this diffeo.

gij =
(

1 +
M

r

)4
δij + hij, ∂lhij = O(|x|−2−l), l = 0,1,2.

M

M \K

In general relativity these manifolds represent time-slices of static

spacetimes where gravity is present.



Einstein equation

The structure of spacetime according to general relativity is gov-
erned by Einstein’s equation

Eab := Rab −
1

2
Rggab = Tab.

Here Rab is the Ricci tensor, Rg the scalar curvature, and Tab the
stress-energy tensor, generated by matter.

In vacuum (Tab ≡ 0), this equation has variational structure, with
Euler-Lagrange functional given by

A(g) :=

ˆ
M
RgdVg Einstein-Hilbert functional.

In fact, one has

d

dg
(RgdVg) [h] = −

(
hijEij +∇∗ζ

)
dVg;

ζ = −
(
∇∗h+∇(trgh)

)
=
(
h

,k
jk − h

k
k,j

)
dxj.



The mass of an asymptotically flat manifold

If we consider variations which preserve asymptotic flatness, then

the divergence term has a role (flux at infinity), and

d

dg
(A(g) +m(g))[h] =

ˆ
M
hijEijdVg.

The quantity m(g), called ADM mass, is defined as

m(g) := lim
r→∞

˛
Sr

(
g

,k
jk − g

k
k,j

)
νjdσ.

Example: Schwartzschild metric. It describes a static black

hole of total mass m = mADM . The expression is(
1 +

m

2r

)4 (
dr2 + r2dξ2

)
.

At r = m
2 there is a minimal surface, representing a event horizon.



The positive mass theorem

Theorem ([Schoen-Yau, ’79]) If Rg ≥ 0 then m(g) ≥ 0. In case

m(g) = 0, then (M, g) is isometric to (R3, dx2).

Physically, this means that a positive local energy density implies

a positive global energy for the system.

A simplified model In Newtonian gravity, the gravitational poten-

tial is described by the Poisson equation. If

∆f = ρ ∈ Cc(R3) =⇒ f(y) '∞
A

|y|
; A =

ˆ
R3
ρ.

The issue is that Rg and m(g) are nonlinear in the metric.

• The above theorem has a fundamental role in the study of the

Yamabe problem (more details later).



Idea of the proof

The main argument relies on constructing an asymptotically pla-
nar minimal surface in M . This is done by solving Plateau prob-
lems on larger and larger circles CR of (asymptotic) radius R.

M

CR

- By contradiction, if m(g) < 0 there is a uniform control on the
height and it is possible to pass to the limit as R→ +∞ and find
a stable minimal surface.

- On the other hand Rg ≥ 0 implies instability by the second
variation formula for the area.

• The argument works for every dimension n ≤ 7: needs regularity
for minimal surfaces.



Witten’s approach

On spin manifolds E.Witten used Dirac’s equation to find an

alternative proof. He solved for

(∗) D̄ψ :=
∑
i

ei · ∇eiψ = 0; ψ → ψ0 as |x| → ∞.

The square of the D̄ operator satisfies Lichnerowitz’s formula

D̄2 = ∇∗∇+
1

4
Rg.

Integrating (∗) by parts, the mass appears in the boundary terms

m(g) = cn

ˆ
M

(
|∇ψ|2 +

1

4
Rg|ψ|2

)
dVg.

The last formula allows also to characterize Rn as the unique

asymptotically flat space with (Rg ≥ 0 and) zero mass



Some extensions

There are also quantitative lower bounds on the mass. One is

Penrose’s inequality, concerning outer minimizing surfaces

M outer minimizing

non outer minimizing

If A is the total area of the outer minimizing surfaces, Penrose’s

inequality asserts that m ≥
√

A
16π. The inequality was proved in

[Huisken-Ilmanen, ’97], [Bray, ’01] using geometric flows.

Energia positiva



Conformal blow-up of a compact manifold

Motivated by the study of Yamabe’s problem, one obtains asymp-

totically flat manifolds by conformal blow-up of compact ones.

Consider the conformal Laplacian

ϕ 7→ Lgϕ := −8∆ϕ+Rgϕ.

This operator rules the conformal transformation law of scalar

curvature, and behaves nicely under conformal changes of metric.

If the first eigenvalue of Lg is positive, its Green’s function G(x, y)

is also positive: choosing any p ∈M , consider the metric

g̃(x) = G(x, p)4g(x).

Since G(x, p) ' d(x, p)−1 near p, one can show that (M \ {p}, g̃) is

an asymptotically flat manifold.



CR manifolds: notation

Consider a three dimensional CR manifold endowed with a con-

tact structure ξ and a CR structure J : ξ → ξ such that J2 = −1.

We assume that there exists a global choice of contact form θ

which annihilates ξ and for which θ ∧ dθ is always nonzero. The

Reeb vector field is the unique vector field T for which

θ(T ) ≡ 1; Ty dθ = 0.

Given J as above, we have locally a vector field Z1 such that

(1) JZ1 = iZ1; JZ1 = −iZ1 where Z1 = (Z1).

We also define (θ, θ1, θ1) as the dual triple to (T, Z1, Z1), so that

dθ = ih11θ
1 ∧ θ1 for some h11 > 0 (w.l.o.g. h11 ≡ 1).



The connection 1-form ω1
1 and the torsion A1

1
are uniquely deter-

mined by the equations dθ1 = θ1 ∧ ω1
1 +A1

1
θ ∧ θ1;

ω1
1 + ω1

1
= 0.

The Webster curvature is then defined by the formula

dω1
1 = W θ1 ∧ θ1 (mod θ).

Example: the Heisenberg group H1 = {(z, t) ∈ C× R}

◦
θ= dt+ izdz − izdz;
◦
θ1=

√
2dz;

◦
θ1=

√
2dz,



◦
T= ∂

∂t;◦
Z1= 1√

2

(
∂
∂z + iz ∂∂t

)
;

◦
Z1= 1√

2

(
∂
∂z − iz

∂
∂t

)
.

ξ0 on H1 is spanned by real and imaginary parts of
◦
Z1. The

standard CR structure verifies J0 : ξ0 → ξ0 by J0
◦
Z1= i

◦
Z1.



Blow-up of a CR manifold

We will consider manifolds of positive Webster class, namely for

which there exists a conformal θ̂ = u2θ with Wθ̂ > 0.

This class can be characterized via the conformal sublaplacian

u 7→ Lu := −4∆bu+Wu = −4(u1,1 + u11) +W u.

Positivity of the class is equivalent to positivity of λ1(L).

If M(ξ, J) has positive Webster class, then as before the Green’s

function G(x, y) of L is positive, and for p ∈ M we can consider

the form θ̂ = G(p, ·)2θ. Correspondingly, θ̂1 = u(θ1 + 2i(logu)1).

This means that we are solving for

−4∆bG(p, ·) +WG(p, ·) = δp,

namely we get zero curvature outside p.



In CR normal coordinates (z(x), t(x)) at p ([Jerison-Lee, ’111])

one has the following asymptotics for G

G(p, x) =
1

32π
ρ(x)−2 +A+ ox(1); ρ4(x) = |z|4 + t2,

for some A ∈ R, where ox(1)→ 0 as (z, t)→ 0.



CR inversion

If (z, t) are CR normal coordinates in a neighborhood U of p, we

define inverted CR normal coordinates (z∗, t∗) as

(2) z∗ =
z

v
; t∗ = −

t

|v|2
; on U \ {p},

where v = t+ i|z|2. Notice that ρ∗(z∗, t∗) = ρ(z, t)−1.

In these coordinates the new forms become

θ̂ =
(
1 + 4πAρ−2

∗ +O(ρ−3
∗ )

)
(θ0)∗+O(ρ−3

∗ )dz∗+O(ρ−3
∗ )dz∗;

θ̂1 =

(
−2
√

2πA
z∗v∗
ρ6∗

+O(ρ−5
∗ )

)
(θ0)∗+O(ρ−4

∗ )dz∗

+
(
1 + 2πAρ−2

∗ +O(ρ−3
∗ )

)√
2dz∗.

converging to the standard
◦
θ and

◦
θ1 as ρ∗ → +∞.



Asymptotically flat pseudohermitian manifolds

Motivated by the above computations we introduce the

Definition A three dimensional pseudohermitian manifold (N, J, θ)

is said to be asymptotically flat pseudohermitian if N = N0∪N∞,

with N0 compact and N∞ diffeomorphic to H1\Bρ0 in which (J, θ)

is close to (J0, θ0) in the sense that

θ =
(
1 + 4πAρ−2 +O(ρ−3)

)
θ0 +O(ρ−3)dz +O(ρ−3)dz;

θ1 = O(ρ−3)θ0 +O(ρ−4)dz +
(
1 + 2πAρ−2 +O(ρ−3)

)√
2dz,

for some A ∈ R and a unitary coframe θ1 in some system of co-

ordinates (asymptotic coordinates). We also require W ∈ L1(N).



A notion of CR-mass

Given a one-parameter family of CR structures J(s), we have

J̇ = 2E = 2E11θ
1 ⊗ Z1 + 2E11θ

1 ⊗ Z1.

If W (s) is the corresponding Webster curvature, then

d

ds|s=0

ˆ
N
R(s) θ ∧ dθ =

ˆ
N
Ṙ θ ∧ dθ

= −
ˆ
N
d
(
E11,1 θ ∧ θ1

)
+ conj.−

ˆ
N

(
A11E11 + conj.

)
θ ∧ dθ

=

˛
∞
iω̇1

1 ∧ θ −
ˆ
N

(
A11E11 + conj.

)
θ ∧ dθ.

This formula leads us to the following

Definition Let N be an asymptotically flat manifold. We define

m(J, θ) := i

˛
∞
ω1

1 ∧ θ := lim
Λ→+∞

i

˛
SΛ

ω1
1 ∧ θ,

where SΛ = {ρ = Λ}.



The Paneitz operator

The CR Paneitz operator P is defined by

Pϕ := 4(ϕ1̄
1̄

1 + iA11ϕ
1)1 + conj..

Let P̃3ϕ := ϕ1̄
1̄

1 + iA11ϕ
1. The CR pluriharmonic functions are

characterized by P̃3ϕ = 0 ([?]) compatibility (see [?]). Moreover,
for the contact form change θ = e2f θ̂ one has

Pθ̂ϕ = e4fPθϕ

•We call P nonnegative if 〈ϕ, Pϕ〉L2 ≥ 0 for all ϕ.

The Paneitz operator enters in the assumptions of the following
embeddability theorem. Recall that �bu := −2u,11

Theorem ([Chanillo-Chiu-Yang, ’10]) Let M be a compact 3D
CR manifold. If P ≥ 0 and W > 0, then every eigenvalue λ 6= 0
of �b is greater or equal to minMW . In particular range(�b) is
closed. Moreover, M can be embedded into CN for some N ∈ N.



An integral formula for the mass

Proposition Let (N, J, θ) be an asymptotically flat pseudohermi-

tian manifold. Let β : N → C be such that

β = z + β−1 +O(ρ−2+ε) and �bβ = O(ρ−4) near ∞,

where β−1 is a term with the homogeneity of ρ−1 satisfying

(β−1),1 = −2
√

2πA
1

ρ2
−
√

2A

|z|2 + it
,

and where ε ∈ (0,1). Then one has

2

3
m(J, θ) = −

ˆ
N
|�bβ|2θ ∧ dθ + 2

ˆ
N
|β,11|

2θ ∧ dθ

+ 2

ˆ
N
W |β,1|

2θ ∧ dθ +
1

2

ˆ
N
βPβ θ ∧ dθ.

The proof uses integration by parts. The asymptotics on β−1

arises from trying to annihilate �bβ



On the asymptotics of β

Proposition Let



Solvability of �bβ = 0

Proposition Let



Positive mass theorem

Massa = Green

Proposition Let



The zero mass case

Suppose that m(J, θ) = 0. From the integral formula we get

β,11 ≡ 0; β,11 ≡ 0; Pβ ≡ 0.

The first two relations imply |β,1|
2 ≡ const.= 1

2, from the behavior
of β at infinity. We also have then W ≡ 0.

Pβ = 0 also implies A11,1 ≡ 0. Let us show that indeed A11 ≡ 0.

Consider the flow ϕs generated by the Reeb v.f. T of N , and let

J(s) = ϕ∗sJ (J̇ = LTJ = 2AJ,θ).

For s small, it is possible to solve for

−4∆bus +RJ(s),θ
us = 0 on N,

so we get m(J, u2
sθ) ≥ 0. Differentiating the mass in s one finds

d

ds
|s=0m(J, u2

sθ) =
3

2

ˆ
N
|A11|2θ ∧ dθ =⇒ A11 ≡ 0.



Congruence to the Heisenberg group

To show that N coincides with H1, first we define a map from a
(simply connected) nb. of infinity U in N to a neighborhood of
infinity V in H1. From the above equations one finds

d(β,1θ
1) = β,11θ

1 ∧ θ1 + β,10θ ∧ θ
1 = 0,

which implies that dβ = β,1θ
1. Taking z = β we have

d(θ − izdz + izdz) = iθ1 ∧ θ1 − 2idz ∧ dz = 0.

Hence there exists a function t̃ such that

dt̃ = θ − izdz + izdz.

So we get a pseudohermitian isomorphism between U and its
image in H1, V, if we send q ∈ N into

q 7→ (z(q), t(q)) =

(
β(q),

ˆ q

q0

dt̃

)
.



where we are taking curves connecting q0 to q inside U.

We call Ψ : V → U (sets which we can assume to be connected by

arcs) the inverse of this map: next, we want to extend Ψ globally

on H1. Taking q0 ∈ V and q ∈ H1 arbitrary, we can find a curve

Γ : [0,1]→ H1, Γ(0) = q0, Γ(1) = q.

We show that this procedure defines a map Ψ̃ : H1 → N , showing

that Γ̃(1) is independent of the choice of Γ, by patching local

pseudohermitian isometries.



The CR Yamabe problem

Yamabe’s problem consists in finding conformal metrics with con-

stant scalar curvature. Solved in [Aubin, ’76] and [Schoen, ’84]

in complementary cases.

In the CR case one looks for constant Webster curvature under

a conformal change of contact form. If θ̂ = u2θ, then

−4∆bu+Wu = Ŵu3.

If one wants to solve for constant Ŵ , it is possible to do it looking

for solutions of the following extremization problem

Y(M,J) := inf
θ̂

´
MWJ,θ̂ θ̂ ∧ dθ̂(´
M θ̂ ∧ dθ̂

)1
2

= inf
u6≡0

´
M

(
2|∇bu|2 + 1

2WJ,θ u
2
)
θ ∧ dθ(´

M u4θ ∧ dθ
)1

2

.

The cases Y(M,J) < 0 and Y(M,J) = 0 are easy, while the

positive case is difficult since the embedding S1,2 ↪→ L4 is critical.



The positive case

In the positive case, one has always Y(M,J) ≤ Y(S3, J0) To see

this, one can exploit the conformality of the map $ : S3 \p→ H1,

p = (0,1) ∈ C2, defined as

$(z1, z2) =

(
z1

1 + z2
,Re

(
i
1− z2

1 + z2

))
,

where (z1, z2) are standard coordinates in C2. Composing with a

dilation, the conformal factor of the inverse map is given by

ωλ(z, t) =
1

λ

(
t2 + |z|4 +

2

λ2
|z|2 +

1

λ4

)−1
2

; λ > 0, (z, t) ∈ H1.

In [Jerison-Lee, ’77] these functions were classified as extremals

for the Sobolev-type ratio in H1, equal to Y(S3, J0).

Localizing these functions on any manifold with λ large, in the

quotient one can get arbitrarily close to Y(S3, J0).



Compactness recovery

Compactness of minimizing sequences indeed holds provided one

has the strict inequality Y(M,J) < Y(S3, J0) (there would not be

enough energy for blow-up).

This condition was proved in [Jerison-Lee, ’84] in dimension

greater or equal to 7 and non locally spherical manifolds using

local expansions of the energy.

In low dimension the decay of extremals is slower, so a global

argument is needed. Here the positive mass enters.

Following the argument in [Schoen, ’84], one can glue a highly

peaked ωλ at p ∈M to a scaled Green’s function.



More precisely, we set

u(z, t) '
{
ωλ(z, t) in {ρ ≤ ρ0}; ε0G̃p(z, t)
in M \ {ρ ≤ ρ0},

where

ε0 =
1

λ(1 + 2πAρ2
0)
.

Then one finds´
M

(
2|∇bu|2 + 1

2WJ,θ u
2
)
θ ∧ dθ(´

M u4θ ∧ dθ
)1

2

≤ Y(S3, J0)−
c0A

λ2ρ2
0
,

which implies strict inequality and compactness.



An example with positive W and negative mass

Let J(s) be a perturbation of the standard structure on H1, fast
decaying at infinity. As noticed before, one can solve for

−4∆bus +WJ(s),θus = 0 on H1.

Using some asymptotic analysis one finds

us = 1−
1

32πρ2

ˆ
N
WJ(s),θ

usθ ∧ dθ +O(ρ−3) at infinity,

Recalling that m(J, θ) = 48π2A (2nd order term in G), we get

m(J(s), u
2
sθ) = −

3

4

ˆ
N
WJ(s),θusθ ∧ dθ.

We choose a deformation J(s) so that E11 is a CR function, i.e.
E11,1 = 0. We can take for example

E11(z, z, t) =
(
t+ i(|z|2 + 1)

)−k
,

with k large (to have decay).



For this choice of E11 one has

Ẇ = i
(
E11,11 − E11,11

)
−
(
A11E11 +A11E11

)
= 0,

and moreover

Ẅ = −2|E11,1|2 − 2E11E11,11 − 2E11E11,11.

Since W0 ≡ 0 and u0 ≡ 1 we have that

m̈(J(s), u
2
sθ)|s=0 = −

3

4

ˆ
N
Ẅθ ∧ dθ.

so integrating by parts we get negative mass since

m̈(J, θ) = −
3

2

ˆ
H1
|E11,1|2

◦
θ ∧d

◦
θ < 0.

We can transport the latter example on S3 using



Open problems

On spin manifolds



Thanks for your attention


