Remarks on Commutators of Pseudo-differential Operators

Sagun Chanillo

To F. Treves on his Sixty-fifth birthday

§1. Introduction

To state our theorem we recall a few definitions. We will denote by Q a cube in \mathbb{R}^n . Let b be a real-valued function in $L^1_{loc}(\mathbb{R}^n)$. We will say $b \in BMO$ if there exists a constant C > 0 such that

$$\sup_{Q} \frac{1}{|Q|} \int_{Q} |b - b_{Q}| \le C, \quad \text{where,} \quad b_{Q} \, = \, \frac{1}{|Q|} \int_{Q} b \, dx.$$

The norm in BMO of the function b is defined as,

(1.1)
$$||b||_{\star} = \sup_{Q} \frac{1}{|Q|} \int_{Q} |b - b_{Q}| \, dx.$$

We now consider a smooth function $p(x,\xi)$ where $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^n$, satisfying the assumption,

$$(1.2) |\partial_{\xi}^{\alpha} \partial_{x}^{\beta} p(x,\xi)| \leq C(\alpha,\beta,n) (1+|\xi|)^{m-\rho|\alpha|+\delta|\beta|}.$$

Let $f \in C_0^{\infty}(\mathbb{R}^n)$. We define the operator Tf(x) to be,

(1.3)
$$Tf(x) = \int_{\mathbb{R}^n} e^{i(x,\xi)} p(x,\xi) \hat{f}(\xi) d\xi,$$

where as usual $\hat{f}(\xi)$ is the Fourier transform of f. The operator T is said to be a pseudo-differential operator with symbol $p(x,\xi)$ in the class $S^m_{\rho,\delta}$. These classes were introduced by Hörmander [H]. See also Treves [T]. In this note we are interested in the L^2 boundedness properties of commutator operators of the type [b,T]f(x)=b(x)Tf(x)-T(bf)(x) where b is a BMO function. If b were smooth then it is a simple matter to deduce refined boundedness properties of [b,T] via the symbol calculus, see [T]. For "rough" functions b it is also not that difficult and our proof is based on one of the results of [CT]. We now state our result.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35L, 35R, 35S.

THEOREM. Let $b \in BMO$. Let $\epsilon > 0$. Let T be an operator defined as in (1.3) with symbol in the class $S_{\rho,\delta}^{-\epsilon}$ with $0 \le \delta < \rho < 1$. Then the commutator operator [b,T] is a bounded operator on $L^2(\mathbb{R}^n)$ with operator norm bounded by $C||b||_{\star}$.

We have nothing to add in the borderline case when $\delta=\rho=1/2$, except to refer to the article by Coifman and Meyer [CM] which considers among others the situation when $\delta=\rho=1/2$, $b\in L^\infty$ and $\epsilon=1/2$, see Theorem 36, page 169. We remark that following the proof given below one may take $\epsilon=0$ in the case $\delta=0$ and $\rho=1$. In the sequel, therefore, we will always reason under the hypothesis, $0\leq \delta<\rho<1$.

§2. Proof of the theorem

We now wish to recall a few facts that we will need in our proof of the theorem.

THEOREM (2.1). (C. FEFFERMAN [F]). Let $\kappa > 0$ and $\sigma(x,\xi) \in S_{\rho,\delta}^{-\kappa}$, $0 \le \delta < \rho < 1$. Then there exists $p_1 = p_1(\kappa,\rho)$, such that for $2 \le p \le p_1$, the operator,

$$Tf(x) = \int_{\mathbb{R}^n} e^{i(x,\xi)} \sigma(x,\xi) \hat{f}(\xi) d\xi,$$

is a bounded operator on $L^p(\mathbb{R}^n)$.

We now need to recall the concept of a weight function w(x) to be in the class A_p .

DEFINITION. Let w > 0 and $w \in L^1_{loc}(\mathbb{R}^n)$. We say $w \in A_p$ if and only if, for all cubes Q,

$$\sup_Q \Bigl(\frac{1}{|Q|} \int_Q w\Bigr) \Bigl(\frac{1}{|Q|} \int_Q w^{-1/(p-1)}\Bigr)^{(p-1)} \leq C \ < \ \infty.$$

We will also use the notation,

$$||f||_{p,w} = \left(\int_{\mathbb{R}^n} |f|^p w(x) dx\right)^{1/p}.$$

When, $w \equiv 1$ we simply write $||f||_p$.

We next recall a result from [CT].

THEOREM (2.2). Let $2 . Let <math>w \in A_{\frac{p}{2}}$. Then if T is a pseudo-differential operator with symbol in $S_{\rho,\delta}^{-n(1-\rho)/2}$, we have,

$$||Tf||_{p,w} \leq C ||f||_{p,w}.$$

REMARK (2.3). In both theorems (2.1) and (2.2) it is enough to hypothesize that (1.2) holds for $|\alpha| + |\beta| \le 10n$.

Lemma (2.4). Let $b \in BMO$, with $||b||_{\star} = 1$. Then for $2 , there exists <math>\tau_0 = \tau_0(p) > 0$ such that for all $\tau, -\tau_0 \le \tau \le \tau_0$, $e^{\tau b} \in A_{\frac{p}{2}}$.

PROOF. Fix a cube Q and consider,

(2.1)
$$\left(\frac{1}{|Q|} \int_{Q} e^{\tau b}\right) \left(\frac{1}{|Q|} \int_{Q} e^{-2\tau b/(p-2)}\right)^{(p-2)/2}.$$

Clearly (2.1) can be re-written as,

$$\left(\frac{1}{|Q|} \int_{Q} e^{\tau(b-b_{Q})}\right) \left(\frac{1}{|Q|} \int_{Q} e^{-2\tau(b-b_{Q})/(p-2)}\right)^{(p-2)/2}.$$

The above expression can be dominated by,

(2.2)
$$\left(\frac{1}{|Q|} \int_{Q} e^{|\tau||b-b_{Q}|}\right) \left(\frac{1}{|Q|} \int_{Q} e^{2|\tau||b-b_{Q}|/(p-2)}\right)^{(p-2)/2}.$$

Since $||b||_{\star} = 1$, by the basic result of John and Nirenberg [JN], regarding the exponential integrability of BMO functions, we see right away that (2.2) for $|\tau| \leq \tau_0$ is bounded by a constant $C = C(n, \tau_0)$. This finishes the proof.

It is clear that we may without loss of generality assume, $||b||_{\star} = 1$, and prove our theorem under this normalization. In the rest of the proof we will reason under this normalization.

Lemma (2.5). Let $\epsilon > 0$. There exists $p, 2 , and <math>\theta_0, 0 < \theta_0 < 1$, such that for any $w \in A_{\frac{p}{2}}$, and any pseudo-differential operator T with symbol in $S_{\rho,\delta}^{-\epsilon}$, one has for all θ , $0 \le \theta \le \theta_0$ and with a constant C independent of f the inequality,

$$\int_{\mathbb{R}^n} |Tf|^p w^\theta dx \le C \int_{\mathbb{R}^n} |f|^p w^\theta dx.$$

PROOF. Fix $\kappa > 0$ and $0 < \kappa < \epsilon$. Let $p(x,\xi)$ be the symbol for T. Now consider the symbol $\sigma_z(x,\xi) = (1+|\xi|^2)^{z/2} p(x,\xi)$. We shall confine the complex variable z to lie in the strip \mathcal{S} , whose boundaries are the two vertical lines $-\kappa + \epsilon + i\tau$, $\tau \in \mathbb{R}$ and $-\frac{n}{2}(1-\rho) + \epsilon + i\tau$, $\tau \in \mathbb{R}$. It is easily verified that there exists a constant C_1 such that for $|\alpha| + |\beta| \leq 100n$, we have,

$$(2.3) |\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \sigma_{z}(x,\xi)| \leq C(1 + |\text{Im } z|)^{C_{1}n} (1 + |\xi|)^{\mu},$$

where $\mu = \text{Re } z - \epsilon + \delta |\beta| - \rho |\alpha|$.

We shall denote by T_z the pseudo-differential operator with symbol σ_z . We shall also use the notation $\nu_0 = -\kappa + \epsilon$ and $\nu_1 = -\frac{n}{2}(1-\rho) + \epsilon$. For our choice of $\kappa > 0$ we can select a p such that p < 3 and 2 , for which the conclusion of Theorem (2.1) holds. We will establish Lemma (2.5) for this choice of <math>p. For $f \in C_0^{\infty}(\mathbb{R}^n)$ we define the operator,

$$(2.4) G_z f(x) = w^{(z-\nu_0)/p(\nu_1-\nu_0)} T_z \left(f w^{-(z-\nu_0)/p(\nu_1-\nu_0)} \right).$$

Note that $w \in A_{\frac{p}{2}}$, and since p < 3, $w \in A_2$ and hence $w^{-1} \in L^1_{loc}(\mathbb{R}^n)$. Thus $w^{-1/p}$ and $w^{1/p}$ are both in $L^p_{loc}(\mathbb{R}^n)$. Keeping this in mind it is routine to establish that for $z \in \mathcal{S}$, G_z is an analytic family of operators in the sense of Stein, [SW].

In view of the bounds (2.3), Remark (2.3) and Theorem (2.1) we have for Re $z_0 = \nu_0$,

(2.5)
$$\int_{\mathbb{R}^n} |G_{z_0} f|^p dx \leq C (1 + |\operatorname{Im} z_0|)^{C_1 n} \int_{\mathbb{R}^n} |f|^p dx.$$

On the other hand for Re $z_1 = \nu_1$, the bounds (2.3), Remark (2.3) and Theorem (2.2) gives,

(2.6)
$$\int_{\mathbb{R}^n} |G_{z_1} f|^p dx \leq C (1 + |\operatorname{Im} z_1|)^{C_1 n} \int_{\mathbb{R}^n} |f|^p dx.$$

We then apply Stein's theorem on complex interpolation of operators [SW], to deduce that, by interpolating the estimates (2.5) and (2.6) we have for z=0 and $\theta_0 = \nu_0/(\nu_0 - \nu_1)$, the estimate,

(2.7)
$$\int_{\mathbb{R}^n} |Tf|^p \, w^{\theta_0} \, dx \, \leq \, C \, \int_{\mathbb{R}^n} |f|^p \, w^{\theta_0} \, dx.$$

Since $\kappa < \epsilon$, theorem (2.1) also gives,

(2.8)
$$\int_{\mathbb{R}^n} |Tf|^p dx \leq C \int_{\mathbb{R}^n} |f|^p dx.$$

Using the main result of [SW] once again and interpolating between the estimates (2.7) and (2.8) we get our lemma.

Remark (2.6). We emphasize that the interpolation between (2.7) and (2.8) produces a constant C in Lemma(2.5), that in the parameter θ only depends on θ_0 .

PROOF OF THE THEOREM. Let $f,h\in C_0^\infty(\mathbb{R}^n)$ with $\|f\|_p=\|h\|_q=1$, where, $p^{-1}+q^{-1}=1$ and where p has the same value as in Lemma (2.5).

Given the BMO function b we define the function F(z) by,

(2.9)
$$F(z) = \int_{\mathbb{R}^n} e^{zb} T(e^{-zb} f)(x) h(x) dx.$$

The function F(z) is seen to be holomorphic in the disk |z| < 1. Next we denote by γ the circle centered at (0,0) and having radius, $\theta_0 \tau_0/4$ (see Lemma (2.4) for the choice of τ_0 , and Lemma (2.5) for the choice of θ_0 .). We claim that for $z \in \gamma$, we have a uniform bound,

$$(2.10) |F(z)| \le C,$$

with C independent of f, h and b.

Applying Hölder's inequality to (2.9) we see that,

$$(2.11) |F(z)|^p \le \int_{\mathbb{R}^n} |e^{pzb}| |T(e^{-zb}f)|^p dx.$$

But, $|e^{pzb}| = e^{\tau b}$, with $-\frac{\theta_0 \tau_0 p}{4} \le \tau \le \frac{\theta_0 \tau_0 p}{4}$. We write $e^{\tau b} = w^{\theta}$, $0 \le \theta \le \theta_0$, with $w = e^{\tau_0 pb/4}$ if $\tau \ge 0$ and $w = e^{-\tau_0 pb/4}$, if $\tau \le 0$. By lemma (2.4), since p < 4, we have $w \in A_{\underline{p}}$. We may apply Lemma (2.5) to (2.11), to get,

$$|F(z)|^p \le C \int_{\mathbb{R}^n} |f|^p |e^{pzb}| |e^{-pzb}| dx \le C.$$

This proves (2.10). The uniformity of the estimate above and hence that of (2.10) follows from Remark (2.6).

From the fact that F is holomorphic in the disk bounded by γ and the estimate (2.10), it follows from the Cauchy integral formula that,

$$(2.12) |F'(0)| \le C.$$

From (2.9) it is a simple matter to see that,

(2.13)
$$F'(0) = \int_{\mathbb{R}^n} [b, T] f(x) h(x) dx.$$

We shall now use the notation $||[b,T]||_p$ for the operator norm of [b,T] on $L^p(\mathbb{R}^n)$. It is now a simple matter to observe that by combining (2.12) and (2.13) we easily have,

$$||[b,T]||_p \le C.$$

Since the adjoint operator T^* is also a pseudo-differential operator with symbol in the class $S_{\rho,\delta}^{-\epsilon}$, see Treves [T], we also have,

$$||[b, T^*]||_p \le C.$$

By duality from (2.15), we have that for $p^{-1} + q^{-1} = 1$,

$$(2.16) ||[b,T]||_q \le C.$$

Interpolation between the estimates (2.14) and (2.16) easily gives us the boundedness on $L^2(\mathbb{R}^n)$ of [b, T].

Acknowledgement. Supported in part by NSF grant DMS-9623079. I wish to thank the organizing committee for their invitation to speak at the conference in honor of F.Treves, and also my Brazilian counterparts for their hospitality.

References

[CT] S. Chanillo and A. Torchinsky, Sharp functions and weighted L^p estimates for a class of pseudo-differential operators, Arkiv för Matematik, **24**, No. 1 (1986), 1-25.

[CM] R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-differentiels, Asterisque, 57, (1978).

[F] C. Fefferman, L^p bounds for pseudo-differential operators, Israel J. Math., 14, (1973), 413-417.

[H] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Sympos. in Pure Math., 10, (1967), 138-183.

[JN] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. in Pure and Appl. Math., 14, (1961), 415-426.

[RW] R. Rochberg and G. Weiss, Derivatives of analytic families of Banach spaces, Annals of Math., 118, (1983), 315-347.

[SW] E. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87, (1958), 159-172.

[T] F. Treves, Introduction to pseudo-differential and Fourier Integral operators, Vol. 1, Plenum Press, (1980).

DEPT. OF MATH., RUTGERS UNIV., NEW BRUNSWICK, N.J. 08903