Absence of self-similar blow-up and local well-posedness for the constant mean-curvature wave equation

Sagun Chanilloa, Po-Lam Yungb,*

a Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854, United States
b Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

ARTICLE INFO

Article history:
Received 12 January 2015
Accepted 30 January 2015
Available online xxxx
Communicated by H. Brezis

Keywords:
Wave constant mean curvature equation
Self-similar blow-up
Local well-posedness

ABSTRACT

In this note, we consider the constant-mean-curvature wave equation in \((1+2)\)-dimensions. We show that it does not admit any self-similar blow-up. We also remark that the equation is locally well-posed for initial data in \(H^{3/2}\).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The study of nonlinear wave equations has attracted a lot of interest in recent years. One equation of interest is called the wave map. Recall that a wave map from the

* Corresponding author.

E-mail addresses: chanillo@math.rutgers.edu (S. Chanillo), plyung@math.cuhk.edu.hk (P.-L. Yung).

http://dx.doi.org/10.1016/j.jfa.2015.01.021
0022-1236/© 2015 Elsevier Inc. All rights reserved.
Minkowski space $\mathbb{R}^n \times \mathbb{R}$ into an m-dimensional Riemannian manifold M is a map $u: \mathbb{R}^n \times \mathbb{R} \to M$, which in local coordinates satisfies

$(-\partial^2_t + \Delta)u^a = -\Gamma_{bc}^a(u)(\partial^a u^b)(\partial_c u^c). \tag{1}$

Here $\{u^a\}_{a=1}^m$ are the local coordinates of the point $u(x,t)$ in M, Γ_{bc}^a are the Christoffel symbols of M in the corresponding local coordinates, and we use Einstein’s summation notation, so that repeated indices on the right hand side are summed (the sum of α is over all $\alpha = 0, 1, \ldots, n$; we point out that the indices α are raised using the Minkowski metric on $\mathbb{R}^n \times \mathbb{R}$). Thus wave maps are just wave analogs of harmonic maps, which have been intensely studied for their connections to geometry and physics.

Eq. (1) is critical for initial data in $\dot{H}^{\frac{2}{n}} \times \dot{H}^{\frac{2}{n}-1}$. Well-posedness for initial data slightly above, or at critical regularity, has been studied by many authors; we recall some of these shortly. One important aspect that arises in the analysis of wave maps is the null structure of the nonlinearity of the wave map equations. This has long been recognized, since the pioneering work of Klainerman and Machedon [9]. The simplest prototypes of null forms can be displayed as follows:

$$Q_{00}(u,v) = -((\partial_t u)(\partial_t v) + \nabla_x u \cdot \nabla_x v$$

$$Q_{ij}(u,v) = (\partial_{x_i} u)(\partial_{x_j} v) - (\partial_{x_j} u)(\partial_{x_i} v), \quad i,j \in \{1, \ldots, n\}$$

$$Q_{0j}(u,v) = (\partial_t u)(\partial_{x_j} v) - (\partial_{x_j} u)(\partial_t v), \quad i \in \{1, \ldots, n\}. \tag{2}$$

Null forms of type Q_{00} arise in the study of wave maps. Using this null structure and the wave Sobolev $X^{s,b}$ spaces, Klainerman and Machedon [10,11] and Klainerman and Selberg [12,13] established subcritical local well-posedness for initial data in $H^s \times H^{s-1}$, $s > n/2$. At the critical regularity, one needs to bring in more geometric structures of the wave map equations, and write the equation in appropriate gauges. Tataru [30] proved that if the target M is uniformly isometrically embedded into some Euclidean space, then one has global existence for smooth initial data that has small $\dot{H}^{n/2} \times \dot{H}^{n/2-1}$ norm, with control of the $L^\infty_t H_x^{n/2}$ norm of the solution. The case where the target M is a sphere was obtained earlier in Tao [26,27] by introducing what is called a microlocal gauge (which follows an earlier result of Tataru [28,29] for a scale invariant Besov norm instead of a Sobolev norm), and the case where $n = 2$ and M is the hyperbolic plane was also in Klainerman [15] (see also Krieger [14] for the case $n = 3$). Krieger and Schlag [16] later extended the result in [15] to the case of large initial data. Furthermore, Sterbenz and Tataru [21,22] proved that one has global existence and regularity for wave maps from $\mathbb{R}^n \times \mathbb{R}$ into M if the energy of initial data is smaller than the energy of any nontrivial harmonic map $\mathbb{R}^n \to M$.

On the other hand, Krieger, Schlag and Tataru [17] proved the existence of equivariant finite time blow-up solutions for the wave map problem from \mathbb{R}^{1+2} to S^2. Later, Rodnianski and Sterbenz [19] and Raphael and Rodnianski [18] considered corotational wave maps from 2 space dimensions into the sphere S^2 with initial data in $\dot{H}^1 \times L^2$. Please cite this article in press as: S. Chanillo, P.-L. Yung, Absence of self-similar blow-up and local well-posedness for the constant mean-curvature wave equation, J. Funct. Anal. (2015), http://dx.doi.org/10.1016/j.jfa.2015.01.021
and exhibited an open subset of initial data in any given homotopy class that leads to finite time blow-up. In fact they have also obtained a rather precise blow-up rate of the blow-ups they constructed.

In this paper, we study another system of wave equations, with a different null-structure. It is the wave analog of the equation that prescribes constant mean curvature. We call it the wave constant-mean-curvature equation (or wave CMC for short). The equation will be for maps u which are defined on a domain in the $(2 + 1)$-dimensional Minkowski space \mathbb{R}^{1+2}, on which we use coordinates (t, x, y), and which maps into \mathbb{R}^3. In fact, a map $u: [0, T] \times \mathbb{R}^2 \to \mathbb{R}^3$ is said to be a solution of the wave CMC, if on $[0, T] \times \mathbb{R}^2$ we have

$$(-\partial_t^2 + \Delta)u = 2u_x \wedge u_y$$

where Δ is the Laplacian on \mathbb{R}^2 acting componentwise on the three components of u, and $u_x \wedge u_y$ is the cross product of the two vectors u_x and u_y in \mathbb{R}^3 (hence the null form Q_{12} arises here). The stationary (elliptic) analog of this equation is

$$\Delta u = 2u_x \wedge u_y.$$

This is an interesting equation because if u solves $\Delta u = 2Hu_x \wedge u_y$ for some function H on \mathbb{R}^2 and satisfies the conformal conditions $|u_x| = |u_y| = 1$ and $u_x \cdot u_y = 0$ everywhere, then the image of u is a surface with mean curvature H in \mathbb{R}^3. (4) is the special case of the equation $\Delta u = 2Hu_x \wedge u_y$ when $H \equiv 1$; hence the name wave CMC for (3). We recall that (4) has been studied by many authors in connection to semi-linear elliptic systems of partial differential equations; see e.g. Hildebrandt [7], Wente [31,32], Brezis and Coron [1,2], Struwe [23–25], Chanillo and Malchiodi [4] and Caldiroli and Musina [3]. In particular, bubbling phenomenon for (4) was first studied by Brezis and Coron [2], and a more refined bubbling analysis was done in Chanillo and Malchiodi [4].

We also remind the reader that in Chanillo and Yung [5, Theorem 7], it is shown that (3) blows up in finite time if the initial energy exceeds that of the primary bubble of [2], the Riemann sphere with winding number one. Thus we are naturally led to understanding possible natures of the blow-up in [5].

Another motivation for us in studying (3) comes from the study of the energy-critical focusing semi-linear wave equation. It is an equation for a scalar-valued function u on \mathbb{R}^{1+n}, $n \geq 3$, given by

$$(\partial_t^2 - \Delta)u = |u|^{4/(n-2)}u,$$

and it is also sometimes called the wave Yamabe equation, since it is the wave analog of the Yamabe equation

$$-\Delta u = |u|^{4/(n-2)}u.$$

Please cite this article in press as: S. Chanillo, P.-L. Yung, Absence of self-similar blow-up and local well-posedness for the constant mean-curvature wave equation, J. Funct. Anal. (2015), http://dx.doi.org/10.1016/j.jfa.2015.01.021
in conformal geometry. Kenig and Merle have developed in [8] a concentration compactness-rigidity approach to establish global well-posedness of (5) under a suitable class of initial data. A fundamental step in their work is the following result:

Theorem 1. (See Kenig and Merle [8].) Suppose $3 \leq n \leq 5$, and $(u_0, u_1) \in \dot{H}^1 \times L^2$ on \mathbb{R}^n is such that

$$
\int_{\mathbb{R}^n} \nabla u_0 u_1 = 0, \quad \|\nabla u_0\|_{L^2} < \|\nabla W\|_{L^2}, \quad \text{and} \quad E(u_0, u_1) < E(W, 0),
$$

where $W(x) = \left(1 + \frac{|x|^2}{n(n-2)}\right)^{-\frac{n-2}{2}}$ is the ‘groundstate’ stationary solution to (5), and

$$
E(u_0, u_1) := \int_{\mathbb{R}^n} \frac{1}{2}(|\nabla u_0|^2 + |u_1|^2) - \frac{n-2}{2n}|u_1|^{\frac{2n}{n-2}}
$$

is the conserved energy of (5). Suppose also that $u: [-1, 0) \times \mathbb{R}^n \rightarrow \mathbb{R}$ is a solution to (5), with initial data $u|_{t=-1} = u_0, \partial_t u|_{t=-1} = u_1$. For $t \in [-1, 0)$, let

$$
U_t(x) = (-t)^{n/2}(-\nabla u)(t, -tx), \quad V_t(x) = (-t)^{n/2}(\partial_t u)(t, -tx).
$$

If the solution $u(t, x)$ does not extend beyond $t = 0$, then the set

$$
\{(U_t, V_t): t \in [-1, 0]\}
$$

cannot have compact closure in $\dot{H}^1 \times L^2$.

Theorem 1 occupies a substantial portion of Section 6 of [8], leading to a unique continuation problem for a degenerate elliptic equation, Proposition 6.12 in [8]. In particular, this rules out the existence of self-similar solutions to (5).

Our future goal is to also apply concentration compactness-rigidity method to study Eq. (3). As a first step, we show in this paper that the wave CMC (3) does not admit self-similar blow-ups. More precisely, we prove in Section 2 the following result:

Theorem 2. Suppose $v \in C^2(\mathbb{R}^2, \mathbb{R}^3)$ is such that

$$
u(x, y, t) = v\left(x, y, \frac{t}{t}\right)
$$

is a solution to the wave CMC

$$
(-\partial_t^2 + \Delta) u = 2u_x \wedge u_y \quad \text{on} \{t > 0\}.
$$

Then v is constant on \mathbb{D}, where \mathbb{D} is the unit disc on \mathbb{R}^2.

Please cite this article in press as: S. Chanillo, P.-L. Yung, Absence of self-similar blow-up and local well-posedness for the constant mean-curvature wave equation, J. Funct. Anal. (2015), http://dx.doi.org/10.1016/j.jfa.2015.01.021
Note that by scaling and dimensional considerations, the self-similar blow-up can only be of the type (6).

The analogs of this statement for wave maps have been long known; see e.g. Chapter 7.5 of the monograph of Shatah and Struwe [20].

Our approach to Theorem 2 is inspired by that in [20]. Using a Pohozhaev type identity from [4], we are also led to a unique continuation problem for a degenerate elliptic equation in self-similar coordinates. But since we are in dimension two, we may apply the uniformization theorem like in [20], and reduce matters to a unique continuation theorem of Hartman and Wintner [4,6].

We are making the qualitative assumption \(v \in C^2 \) in the theorem, only to justify various integration by parts arguments in our proof.

We now turn our attention to local well-posedness of the initial value problem for the wave CMC (3). An easy scaling argument reveals that the wave CMC (3) is critical for initial data in \(\dot{H}^{3/2} \times \dot{H}^{1/2} \). Well-posedness at such sharp regularity seems way out of reach at this point, because of the lack of sufficiently powerful Strichartz estimates in \((2 + 1)\) dimensions. On the other hand, we take this chance to point out that the wave CMC (3) is locally well-posed, for initial data in \(\dot{H}^{3/2} \times \dot{H}^{1/2} \); this is basically an observation that dates back to Klainerman and Machedon [9] (see Remark 3 in [9]).

Theorem 3. Given any \(K > 0 \), there exists a small \(T > 0 \), and a constant \(A > 0 \) (both depending only on \(K \)) such that for any initial data \((u_0, u_1) \in \dot{H}^{3/2} \times \dot{H}^{1/2} \) with

\[
\|u_0\|_{\dot{H}^{3/2}} + \|u_1\|_{\dot{H}^{1/2}} \leq K,
\]

the Cauchy problem

\[
(-\partial_t^2 + \Delta)u = 2u_x \wedge u_y, \quad u|_{t=0} = u_0, \quad \partial_t u|_{t=0} = u_1
\]

has a unique solution \(u \) on \([0, T]\) with

\[
u \in C_{[0, T]}^0 \dot{H}^{3/2}, \quad \partial_t u \in C_{[0, T]}^0 \dot{H}^{1/2}, \quad \|u_x \wedge u_y\|_{L^2_{[0, T]} \dot{H}^{1/2}} \leq A,
\]

in the sense that \(u \) solves the following integral equation for \(t \in [0, T] \):

\[
u(t) = \cos(t \sqrt{-\Delta}) u_0 + \frac{\sin(t \sqrt{-\Delta})}{\sqrt{-\Delta}} u_1 + \int_0^t \frac{\sin((t-s) \sqrt{-\Delta})}{\sqrt{-\Delta}} 2u_x \wedge u_y(s)ds.
\]

Furthermore, the map

\[
(u_0, u_1) \mapsto (u, \partial_t u)
\]

\(\dot{H}^{3/2} \times \dot{H}^{1/2} \to C_{[0, T]}^0 \dot{H}^{3/2} \times C_{[0, T]}^0 \dot{H}^{1/2} \)

is continuous on the set \(\{(u_0, u_1) : \|u_0\|_{\dot{H}^{3/2}} + \|u_1\|_{\dot{H}^{1/2}} \leq K \} \).
Here $C^{0}_{[0,T]} \dot{H}^s$ is the set of maps $u: [0, T] \times \mathbb{R}^2 \to \mathbb{R}^3$ with
\[
\|u\|_{C^0_{[0,T]} \dot{H}^s} := \sup_{t \in [0,T]} \left(\int_{\mathbb{R}^2} \left| (-\Delta_{x,y})^{s/2} u(t, x, y) \right|^2 dx dy \right)^{1/2} < \infty,
\]
and similarly one defines $L^p_{[0,T]} \dot{H}^s$. We provide a proof of Theorem 3 in Section 3, for the convenience of the reader.

2. Non-existence of self-similar blow-ups

Proof of Theorem 2. By finite speed of propagation, we may assume that v is defined only on \overline{D}, and consider the solution u only in the light cone
\[
\Gamma := \{ (x, y, t): \sqrt{x^2 + y^2} \leq t \}.
\]
We will also forget about the values of v outside \overline{D}.

Now we introduce self-similar variables
\[
\tau = \sqrt{t^2 - x^2 - y^2}, \quad \rho = \frac{\sqrt{x^2 + y^2}}{t}, \quad \rho e^{i\theta} = \frac{x + iy}{t}
\]
which is a re-parametrization of Γ. (τ is well-defined since we are now in the light cone Γ.) We also write $v = v(\rho, \theta)$ for $\rho \in [0,1]$, $\theta \in [0,2\pi]$. Then the Minkowski metric
\[
ds^2 = -dt^2 + dx^2 + dy^2
\]
on Γ becomes
\[
ds^2 = -d\tau^2 + \frac{\tau^2 d\rho^2}{(1 - \rho^2)^2} + \frac{\tau^2 \rho^2 d\theta^2}{1 - \rho^2}
\]
in the new (τ, ρ, θ) coordinate system, i.e.
\[
g_{\tau\tau} = -1, \quad g_{\rho\rho} = \frac{\tau^2}{(1 - \rho^2)^2}, \quad \text{and} \quad g_{\theta\theta} = \frac{\tau^2 \rho^2}{1 - \rho^2}.
\]
In fact,
\[
\tau^2 = t^2 - (x^2 + y^2) = t^2 - \rho^2 t^2 = (1 - \rho^2) t^2,
\]
so
\[
t = \frac{\tau}{\sqrt{1 - \rho^2}}.
\]
Also, \(x = \rho t \cos \theta \), \(y = \rho t \sin \theta \), so

\[
x = \frac{\tau \rho}{\sqrt{1 - \rho^2}} \cos \theta, \quad y = \frac{\tau \rho}{\sqrt{1 - \rho^2}} \sin \theta.
\]

It follows that

\[
dt = \frac{1}{\sqrt{1 - \rho^2}} d\tau + \frac{\tau \rho}{(1 - \rho^2)^{3/2}} d\rho
\]

\[
dx = \frac{\rho}{\sqrt{1 - \rho^2}} \cos \theta d\tau + \frac{\tau}{(1 - \rho^2)^{3/2}} \cos \theta d\rho - \frac{\tau \rho}{\sqrt{1 - \rho^2}} \sin \theta d\theta
\]

\[
dy = \frac{\rho}{\sqrt{1 - \rho^2}} \sin \theta d\tau + \frac{\tau}{(1 - \rho^2)^{3/2}} \sin \theta d\rho + \frac{\tau \rho}{\sqrt{1 - \rho^2}} \cos \theta d\theta,
\]

and (7) follows. From (7), we have

\[
\sqrt{\det(g_{ij})} = \frac{\tau^2 \rho}{(1 - \rho^2)^{3/2}},
\]

\[
g^{\tau\tau} = -1, \quad g^{\rho\rho} = \frac{(1 - \rho^2)^2}{\tau^2}, \quad \text{and} \quad g^{\theta\theta} = \frac{1 - \rho^2}{\tau^2 \rho^2}.
\]

It follows that the wave operator \(-\partial_t^2 + \Delta_{x,y}\) becomes

\[
\frac{(1 - \rho^2)^{3/2}}{\tau^2 \rho} \left[\partial_\tau \left(-\frac{\tau^2 \rho}{(1 - \rho^2)^{3/2}} \partial_\tau \right) + \partial_\rho \left(\frac{\tau^2 \rho}{(1 - \rho^2)^{3/2}} \frac{(1 - \rho^2)^2}{\tau^2} \partial_\rho \right) \right.
\]

\[
+ \partial_\theta \left(\frac{\tau^2 \rho}{(1 - \rho^2)^{3/2}} \frac{1 - \rho^2}{\tau^2 \rho^2} \partial_\theta \right) \left. \right] = -\frac{(1 - \rho^2)^{3/2}}{\tau^2 \rho} \left[\partial_\tau \left(\frac{\tau^2 \rho}{(1 - \rho^2)^{3/2}} \partial_\tau \right) - \partial_\rho \left(\rho \sqrt{1 - \rho^2} \partial_\rho \right) - \left(\frac{1}{\rho \sqrt{1 - \rho^2}} \partial_\theta^2 \right) \right].
\]

Furthermore,

\[
\partial_x = \frac{\partial_\tau}{\partial x} \partial_\tau + \frac{\partial_\rho}{\partial x} \partial_\rho + \frac{\partial_\theta}{\partial x} \partial_\theta
\]

\[
= -\frac{x}{\sqrt{l^2 - x^2 - y^2}} \partial_\tau + \frac{x}{l \sqrt{x^2 + y^2}} \partial_\rho - \frac{y}{x^2 + y^2} \partial_\theta
\]

\[
= -\frac{\rho \cos \theta}{\sqrt{1 - \rho^2}} \partial_\tau + \frac{\sqrt{1 - \rho^2} \cos \theta}{\tau} \partial_\rho - \sqrt{1 - \rho^2} \sin \theta \partial_\theta
\]

and similarly
\[
\partial_y = \frac{\partial \tau}{\partial y} \partial_y + \frac{\partial \rho}{\partial y} \partial_y + \frac{\partial \theta}{\partial y} \partial_y \\
= -\frac{y}{\sqrt{t^2 - y^2}} \partial_y + \frac{y}{t \sqrt{x^2 + y^2}} \partial_y + \frac{x}{x^2 + y^2} \partial \theta \\
= -\frac{\rho \sin \theta}{\sqrt{1 - \rho^2}} \partial_y + \frac{\sqrt{1 - \rho^2} \sin \theta}{\tau} \partial \rho + \frac{1 - \rho^2 \cos \theta}{\tau \rho} \partial \theta.
\]

Applying these to \(v(\rho, \theta) \), and noting that it is independent of \(\tau \), we see that the wave CMC for \(u \) becomes
\[
\frac{(1 - \rho^2)^{3/2}}{\tau^2 \rho} \left[\partial_\rho \left(\rho \sqrt{1 - \rho^2} \partial_\rho v \right) + \frac{1}{\rho} \sqrt{1 - \rho^2} \partial_\rho^2 v \right] = 2 \frac{1 - \rho^2}{\tau^2 \rho} v_\rho \wedge v_\theta,
\]
i.e.
\[
\rho \sqrt{1 - \rho^2} \partial_\rho \left(\rho \sqrt{1 - \rho^2} \partial_\rho v \right) + \partial_\rho^2 v = 2 \rho v_\rho \wedge v_\theta. \tag{8}
\]

Now take the dot product of both sides with \(v_\rho \). Then the right hand side vanishes, and we get
\[
\frac{1}{2} \partial_\rho \left| \rho \sqrt{1 - \rho^2} v_\rho \right|^2 + v_\rho \cdot \partial_\rho^2 v = 0.
\]

Integrating this in \(\theta \), and integrating by parts in the last term, we get
\[
\frac{d}{d\rho} \int_0^{2\pi} \left[\rho^2 (1 - \rho^2) |v_\rho|^2 - |v_\theta|^2 \right] d\theta = 0,
\]
i.e.
\[
\int_0^{2\pi} \left[\rho^2 (1 - \rho^2) |v_\rho|^2 - |v_\theta|^2 \right] d\theta \tag{9}
\]
is a constant independent of \(\rho \). Letting \(\rho \to 0 \), we see that this constant is zero (note that \(v_\theta = O(\rho) \) as \(\rho \to 0 \), if \(v \) is differentiable at 0). So when \(\rho = 1 \), the integral (9) is equal to 0. It follows that
\[
\int_0^{2\pi} |v_\theta|^2 d\theta = 0 \quad \text{when } \rho = 1,
\]
i.e. \(v \) is a constant on \(\partial D \). Note that the wave CMC has no zeroth order term. Hence we may subtract a constant from \(v \), to make
\(v = 0 \) on \(\partial \mathbb{D} \),

and we will do so from now on.

Now introduce a new variable

\[
\sigma = \exp \left(-\frac{1}{\rho} \int_{s}^{1} \frac{ds}{s\sqrt{1-s^2}} \right) = \frac{\rho}{1 + \sqrt{1-\rho^2}}
\]

such that

\[
\sigma \frac{\partial}{\partial \sigma} = \rho \sqrt{1-\rho^2} \frac{\partial}{\partial \rho}.
\]

(Note that as \(\rho \) varies between \([0, 1]\), \(\sigma \) also varies between \([0, 1]\).) Then Eq. (8) for \(v \) becomes

\[
\sigma \partial_{\sigma}(\sigma \partial_{\sigma} v) + \partial_{\theta}^2 v = 2 \frac{\sigma}{\sqrt{1-\rho^2}} v_{\sigma} \wedge v_{\theta},
\]

i.e.

\[
v_{\sigma\sigma} + \frac{1}{\sigma} v_{\sigma} + \frac{1}{\sigma^2} v_{\theta\theta} = 2 \frac{1}{\sigma \sqrt{1-\rho^2}} v_{\sigma} \wedge v_{\theta}.
\]

Let \(z = \sigma e^{i\theta} \). On the left hand side we have then the flat Laplacian on the \(z \)-plane. On the right hand side we have something normal to the surface parametrized by \(v \). So we can apply the strategy of Chanillo and Malchiodi [4, Lemma 3.1]. More precisely, we take the dot product of both sides of the equation with \(\sigma v_{\sigma} \). Then

\[
\sigma v_{\sigma} \cdot [v_{\sigma\sigma} + \frac{1}{\sigma} v_{\sigma} + \frac{1}{\sigma^2} v_{\theta\theta}] = 0
\]

on the unit disc \(\mathbb{D} \) in the \(z \)-plane. We integrate over \(\mathbb{D} \) using polar coordinates:

\[
0 = \int_{0}^{2\pi} \int_{0}^{1} \sigma v_{\sigma} \cdot [v_{\sigma\sigma} + \frac{1}{\sigma} v_{\sigma} + \frac{1}{\sigma^2} v_{\theta\theta}] \sigma d\theta d\sigma
\]

\[
= \int_{0}^{2\pi} \int_{0}^{1} \frac{\partial}{\partial \sigma} \left(\frac{1}{2} \sigma^2 |v_{\sigma}|^2 - \frac{1}{2} |v_{\theta}|^2 \right) + \frac{\partial}{\partial \theta} (v_{\sigma} \cdot v_{\theta}) d\theta d\sigma
\]

\[
= \int_{0}^{1} \left[\frac{1}{2} \sigma^2 |v_{\sigma}|^2 - \frac{1}{2} |v_{\theta}|^2 \right]_{\sigma=1}^{\sigma=0} d\theta
\]

\[
= \int_{0}^{2\pi} \left[\frac{1}{2} |v_{\sigma}|^2 \right]_{\sigma=1} d\theta
\]
(the last equality following from $v_\theta = 0$ when $\sigma = 1$ (note $\sigma = 1$ if and only if $\rho = 1$), and that

$$v_\theta = \rho(v_y \cos \theta - v_x \sin \theta) = O(\sigma |\nabla_{x,y} v|) \to 0$$

as $\sigma \to 0$). Hence

$$v_\sigma = 0 \quad \text{on} \quad \{\sigma = 1\}.$$

Now we extend v so that $v = 0$ when $\sigma > 1$. Then from the above, $v(z) \in C^1(\mathbb{C} \setminus \{0\})$. We can then apply the unique continuation technique of Hartman and Wintner. More precisely, from Theorem 2 of [6], we have:

Theorem 4. (See Hartman and Wintner [6].) Suppose $r \in \mathbb{N}$, U is an open set in \mathbb{C}, and $v \in C^1(U, \mathbb{R}^r)$, and there exist continuous (matrix-valued) functions d, e, f on U such that

$$\int_{\partial \Omega} g(z) \frac{\partial v}{\partial z} dz = \int_{\Omega} g(z) \left[d(z) \frac{\partial v}{\partial z} + e(z) \frac{\partial v}{\partial \overline{z}} + f(z) v(z) \right] dz \wedge d\overline{z} \quad (11)$$

for all piecewise smooth relatively compact domains Ω of U and all holomorphic functions g on $\overline{\Omega}$. If there exists a point $z_0 \in U$ such that

$$\lim_{z \to z_0} \frac{v(z)}{(z - z_0)^n} = 0 \quad \text{for all} \quad n \in \mathbb{N}, \quad (12)$$

then

$$v \equiv 0 \quad \text{on} \quad U.$$

We verify that the conditions of the above theorem are met, when $r = 3$ and $U = \mathbb{C} \setminus \{0\}$: First, since $v \in C^1(\mathbb{C} \setminus \{0\})$, and is supported in \overline{D}, we have, for any piecewise smooth relatively compact domain $\Omega \subset \mathbb{C} \setminus \{0\}$, that

$$\int_{\partial \Omega} g(z) \frac{\partial v}{\partial z} dz = \int_{\partial (\Omega \cap D)} g(z) \frac{\partial v}{\partial z} dz = \int_{\Omega \cap D} \frac{\partial}{\partial \overline{z}} \left(g(z) \frac{\partial v}{\partial z} \right) d\overline{z} \wedge dz = \int_{\Omega \cap D} g(z) \frac{\partial^2 v}{\partial z \partial \overline{z}} d\overline{z} \wedge dz.$$
But by (10), on \(\mathbb{D} \) we have
\[
\frac{1}{4} \frac{\partial^2 v}{\partial z \partial \bar{z}} = v_{\sigma \sigma} + \frac{1}{\sigma} v_{\sigma} + \frac{1}{\sigma^2} v_{\theta \theta} = 2 \frac{1}{\sqrt{1 - \rho^2}} v_{\sigma} \wedge \frac{1}{\sigma} v_{\theta},
\]
and
\[
\frac{1}{\sqrt{1 - \rho^2}} v_{\sigma} = \frac{1}{\sqrt{1 - \rho^2}} \rho \frac{\sqrt{1 - \rho^2}}{\sigma} v_{\rho} = \frac{\rho}{\sigma} v_{\rho} = \frac{1}{1 + \sqrt{1 - \rho^2}} v_{\rho}
\]
is continuous up to \(\{ \sigma = 1 \} \). Also, \(\frac{1}{\sigma} v_{\theta} \) is a linear combination of \(\frac{\partial}{\partial z} \) and \(\frac{\partial}{\partial \bar{z}} \) on \(\mathbb{C} \setminus \{0\} \). Hence one can find continuous (matrix-valued) functions \(d \) and \(e \) on \(\mathbb{D} \setminus \{0\} \), such that
\[
\frac{\partial^2 v}{\partial z \partial \bar{z}} = d(z) \frac{\partial v}{\partial z} + e(z) \frac{\partial v}{\partial \bar{z}}
\]
on \(\mathbb{D} \setminus \{0\} \). Extending \(d \) and \(e \) continuously to \(\mathbb{C} \), and using that \(v \) vanishes outside \(\mathbb{D} \), we see that (11) is satisfied with \(f = 0 \). Also, (12) is satisfied at any \(z_0 \in \mathbb{C} \setminus \mathbb{D} \). Hence Theorem 4 implies that \(v \equiv 0 \) on \(\mathbb{C} \setminus \{0\} \), which also implies \(v(0) = 0 \) by continuity. In particular, we have \(v(z) = 0 \) for all \(|z| < 1 \), i.e. \(v(\rho, \theta) = 0 \) whenever \(\rho < 1 \), as desired. \(\square \)

3. Local well-posedness in \(\dot{H}^{3/2} \)

Proof of Theorem 3. Let \(\Box = (-\partial_t^2 + \Delta) \) be the D’Alembertian on \(\mathbb{R}^{1+2} \). Recall the null form \(Q_{12} \) from (2). Note that the wave CMC (3) is a system of equations, that can be written in the components \((u_1, u_2, u_3) \) of \(u \) as
\[
\Box u_1 = 2Q_{12}(u_2, u_3) \\
\Box u_2 = 2Q_{12}(u_3, u_1) \\
\Box u_3 = 2Q_{12}(u_1, u_2).
\]
Also, as was observed in Klainerman and Machedon [9], we have the following estimates for the null form \(Q_{12} \) on \(\mathbb{R}^{1+2} \): if \(f, g \in \dot{H}^{1/2}(\mathbb{R}^2) \), and
\[
\phi_\pm := \frac{e^{it \sqrt{-\Delta}}}{\sqrt{-\Delta}} f, \quad \psi_\pm := \frac{e^{it \sqrt{-\Delta}}}{\sqrt{-\Delta}} g,
\]
then
\[
\|(-\Delta)^{1/4} Q_{12}(\phi_+, \psi_+)\|_{L^2(\mathbb{R}^{1+2})} \leq C \|f\|_{\dot{H}^{1/2}} \|g\|_{\dot{H}^{1/2}}.
\]
(We briefly recall the proof of this at the end of the section, for the convenience of the reader.) The same continues to hold, if the signs \((+, +)\) on the left hand side are replaced by any of the choices \((-,-), (+,-) \) and \((-,-) \). Thus if \(u, v : [0, T] \times \mathbb{R}^2 \to \mathbb{R}^3 \), with
\[\square u = F, \quad u|_{t=0} = u_0, \quad \partial_t u|_{t=0} = u_1, \]
\[\square v = G, \quad v|_{t=0} = v_0, \quad \partial_t v|_{t=0} = v_1, \]

then
\[
\|u_x \wedge v_y\|_{L^0_{[0,T]}H^{3/2}} \leq C(\|u_0\|_{\dot{H}^{3/2}} + \|u_1\|_{\dot{H}^{3/2}} + \|F\|_{L^0_{[0,T]}H^{3/2}}) \\
\cdot (\|v_0\|_{\dot{H}^{3/2}} + \|v_1\|_{\dot{H}^{3/2}} + \|G\|_{L^0_{[0,T]}H^{3/2}}). \tag{14} \]

Also, the standard energy estimate shows that
\[
\|u\|_{C^0_{[0,T]}H^{3/2}} + \|\partial_t u\|_{C^0_{[0,T]}H^{1/2}} \leq 2(\|u_0\|_{\dot{H}^{3/2}} + \|u_1\|_{\dot{H}^{3/2}} + \|F\|_{L^0_{[0,T]}H^{3/2}}). \tag{15} \]

Now to prove the theorem, let \(K \) be given, and set
\[A = \max\{2K, 4CK^2\} \]

where from now on \(C \) is the constant in (14). Let \(T > 0 \) be sufficiently small, so that
\[
4T^{1/2} \leq \frac{1}{2}, \tag{16} \]
\[
2T^{1/2}A \leq K, \tag{17} \]

and
\[
2CT^{1/2}(K + 2T^{1/2}A) \leq \frac{1}{4}. \tag{18} \]

To prove existence, we fix initial data \((u_0, u_1) \in \dot{H}^{3/2} \times \dot{H}^1\) with
\[
\|u_0\|_{\dot{H}^{3/2}} + \|u_1\|_{\dot{H}^{1/2}} \leq K. \]

Let
\[u^{(0)} := 0, \]

and for \(k \geq 0 \), let \(u^{(k+1)} \) solve
\[\square u^{(k+1)} = 2u_x^{(k)} \wedge u_y^{(k)}, \quad u^{(k+1)}|_{t=0} = u_0, \quad \partial_t u^{(k+1)}|_{t=0} = u_1. \]

We will prove, by induction, that for all \(k \geq 0 \),
\[
\|u^{(k+1)} - u^{(k)}\|_{C^0_{[0,T]}H^{3/2}} + \|\partial_t u^{(k+1)} - \partial_t u^{(k)}\|_{C^0_{[0,T]}H^{1/2}} \leq \frac{A}{2^k} \tag{19} \]
\[
\|u_x^{(k+1)} \wedge u_y^{(k+1)}\|_{L^0_{[0,T]}H^{1/2}} \leq A \tag{20} \]
\[
\|u_x^{(k+1)} \wedge u_y^{(k+1)} - u_x^{(k)} \wedge u_y^{(k)}\|_{L^2_{[0,T]}H^{1/2}} \leq \frac{A}{2^k}. \tag{21} \]
In fact, first consider the case $k = 0$. Then from (15), we have
\[\|u^{(1)}\|_{\dot{H}^{3/2}} + \|\partial_t u^{(1)}\|_{\dot{H}^{1/2}} \leq 2(\|u_0\|_{\dot{H}^{3/2}} + \|u_1\|_{\dot{H}^{1/2}}) \leq 2K; \]
from (14), we have
\[\|u^{(1)}_x \wedge u^{(1)}_y\|_{L^2_{[0,T]}H^{1/2}} \leq C(\|u_0\|_{\dot{H}^{3/2}} + \|u_1\|_{\dot{H}^{1/2}})^2 \leq CK^2. \]
By our choice of A, this proves (19), (20) and (21) when $k = 0$.
Now suppose $k \geq 1$. Then by (15),
\[
\begin{align*}
\|u^{(k+1)} - u^{(k)}\|_{C^0_{[0,T]}H^{3/2}} + \|\partial_t u^{(k+1)} - \partial_t u^{(k)}\|_{C^0_{[0,T]}H^{1/2}} &
\leq 2\|2u_x^{(k)} \wedge u_y^{(k)} - 2u_x^{(k-1)} \wedge u_y^{(k-1)}\|_{L^1_{[0,T]}H^{1/2}} \\
&\leq 4T^{1/2} \frac{A}{2^{k-1}} \\
&\leq \frac{A}{2^k}.
\end{align*}
\]
(The second-to-last inequality follows from (21) for $k-1$ in place of k, and the last inequality from (16).) Also, by (14),
\[
\begin{align*}
\|u^{(k+1)}_x \wedge u^{(k+1)}_y\|_{L^2_{[0,T]}H^{1/2}} &
\leq C(\|u_0\|_{H^{3/2}} + \|u_1\|_{H^{1/2}} + \|2u_x^{(k)} \wedge u_y^{(k)}\|_{L^1_{[0,T]}H^{1/2}})^2 \\
&\leq C(K + 2T^{1/2} \|u_x^{(k)} \wedge u_y^{(k)}\|_{L^2_{[0,T]}H^{1/2}})^2 \\
&\leq C(K + 2T^{1/2}A)^2 \leq C(2K)^2 \leq A.
\end{align*}
\]
(The second inequality follows from (20) with k replaced by $k-1$, and the third inequality from (17).) Finally, note that
\[
u_x^{(k+1)} \wedge u_y^{(k+1)} - u_x^{(k)} \wedge u_y^{(k)} = u_x^{(k+1)} + (u^{(k+1)} - u^{(k)}) \wedge u_y^{(k+1)}.
\]
But by (14),
\[
\begin{align*}
\|u^{(k+1)}_x \wedge (u^{(k+1)} - u^{(k)})_y\|_{L^2_{[0,T]}H^{1/2}} &
\leq C(\|u_0\|_{H^{3/2}} + \|u_1\|_{H^{1/2}} \\
&+ \|2u_x^{(k)} \wedge u_y^{(k)}\|_{L^1_{[0,T]}H^{1/2}}) \|2u_x^{(k)} \wedge u_y^{(k)} - 2u_x^{(k-1)} \wedge u_y^{(k-1)}\|_{L^1_{[0,T]}H^{1/2}} \\
&\leq 2CT^{1/2}(K + 2T^{1/2}A) \cdot \frac{A}{2^{k-1}} \\
&\leq \frac{A}{2^{k+1}}.
\end{align*}
\]
(The second-to-last inequality follows from (20) and (21) with \(k\) replaced by \(k - 1\), and the last inequality from (18).) Similarly, one can show that

\[
\| (u^{(k+1)} - u^{(k)})_x \Cap u^{(k)}_y \|_{L^2_{[0,T]} \dot{H}^{1/2}} \leq \frac{A}{2^{k+1}}.
\]

Together they prove (21). This completes our proof of (19), (20) and (21).

Let \(X\) be the Banach space

\[
\{ u: u \in C_{[0,T]}^0 \dot{H}^{3/2}, \partial_t u \in C_{[0,T]}^0 \dot{H}^{1/2} \}
\]

with the natural norm. Then by (19), \(u^{(k)}\) is Cauchy in \(X\). We write \(u\) for the limit of \(u^{(k)}\) in \(X\). Also, the sequence \(u^{(k)}_x \Cap u^{(k)}_y\) is Cauchy in \(L^2_{[0,T]} \dot{H}^{1/2}\), by (21). We write \(F\) for the limit of \(u^{(k)}_x \Cap u^{(k)}_y\) in \(L^2_{[0,T]} \dot{H}^{1/2}\). In particular,

\[
\| F \|_{L^2_{[0,T]} \dot{H}^{1/2}} \leq A,
\]

and \(u^{(k)}_x \Cap u^{(k)}_y\) also converges to \(F\) in \(L^1_{[0,T]} \dot{H}^{1/2}\). Now for \(t \in [0, T]\),

\[
u^{(k+1)}(t) = \cos(t \sqrt{-\Delta}) u_0 + \frac{\sin(t \sqrt{-\Delta})}{\sqrt{-\Delta}} u_1 + \int_0^t \frac{\sin((t - s) \sqrt{-\Delta})}{\sqrt{-\Delta}} 2u^{(k)}_x \Cap u^{(k)}_y(s)ds.
\]

Passing to limit in \(X\), we then see that

\[
u(t) = \cos(t \sqrt{-\Delta}) u_0 + \frac{\sin(t \sqrt{-\Delta})}{\sqrt{-\Delta}} u_1 + \int_0^t \frac{\sin((t - s) \sqrt{-\Delta})}{\sqrt{-\Delta}} 2F(s)ds.
\]

(The convergence of the right hand side in \(X\) is guaranteed by the energy estimate (15), and the convergence of \(u^{(k)}_x \Cap u^{(k)}_y\) to \(F\) in \(L^1_{[0,T]} \dot{H}^{1/2}\).) On the other hand, we claim that \(u^{(k)}_x \Cap u^{(k)}_y\) converges to \(u_x \Cap u_y\) in \(L^p_{[0,T]} \dot{H}^{1/2}\). Assuming the claim for the moment, we then see that \(u_x \Cap u_y = F\) on \([0, T] \times \mathbb{R}^3\), so (24) becomes

\[
u(t) = \cos(t \sqrt{-\Delta}) u_0 + \frac{\sin(t \sqrt{-\Delta})}{\sqrt{-\Delta}} u_1 + \int_0^t \frac{\sin((t - s) \sqrt{-\Delta})}{\sqrt{-\Delta}} 2u_x \Cap u_y(s)ds,
\]

and (22) implies

\[
\| u_x \Cap u_y \|_{L^2_{[0,T]} \dot{H}^{1/2}} \leq A,
\]
as desired. So we now move on to prove the claim.
To do so, note that
\[u^{(k)}_x \wedge u^{(k)}_y - u_x \wedge u_y = u^{(k)}_x \wedge (u^{(k)} - u)_y + (u^{(k)} - u)_x \wedge u_y, \]
so by (14) and (24),
\begin{align*}
\|u^{(k)}_x \wedge u^{(k)}_y - u_x \wedge u_y\|_{L^{2}_0,T} &
\leq C(\|u_0\|_{\dot{H}^{3/2}} + \|u_1\|_{\dot{H}^{1/2}} \\
&+ \|2u^{(k-1)}_x \wedge u^{(k-1)}_y\|_{L_{0,T}^{1/2}} \|2u^{(k-1)}_x \wedge u^{(k-1)}_y - 2F\|_{L_{0,T}^1} \\
&+ C\|2u^{(k-1)}_x \wedge u^{(k-1)}_y - 2F\|_{L_{0,T}^{1/2}} \|u_0\|_{\dot{H}^{3/2}} + \|u_1\|_{\dot{H}^{1/2}} + \|2F\|_{L_{0,T}^{1/2}} \\
&\leq 2C(K + 2T^{1/2}A)T^{1/2}\|2u^{(k-1)}_x \wedge u^{(k-1)}_y - 2F\|_{L_{0,T}^{3/2}} \\
&\rightarrow 0
\end{align*}
as \(k \rightarrow \infty \). (The second inequality follows from (20) and (22), and the last convergence follows from our definition of \(F \).) This proves our claim, and hence our existence result.

Next, for uniqueness, assume that \(u, v: [0,T] \times \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) solves
\begin{align*}
\Box u &= 2u_x \wedge u_y, \quad u|_{t=0} = u_0, \quad \partial_t u|_{t=0} = u_1 \\
\Box v &= 2v_x \wedge v_y, \quad v|_{t=0} = u_0, \quad \partial_t v|_{t=0} = u_1
\end{align*}
with
\[u, v \in C_{[0,T]}^{0,3/2} \dot{H}^{3/2}, \quad \partial_t u, \partial_t v \in C_{[0,T]}^{0,1/2} \dot{H}^{1/2}, \]
and
\[\|u_x \wedge u_y\|_{L_{0,T}^{1/2}} \leq A, \quad \|v_x \wedge v_y\|_{L_{0,T}^{1/2}} \leq A. \]
We will show
\[u = v \quad \text{on} \quad [0,T]. \]

To do so, note that
\begin{align*}
\Box(u - v) &= 2u_x \wedge u_y - 2v_x \wedge v_y, \quad (u - v)|_{t=0} = 0, \quad \partial_t(u - v)|_{t=0} = 0.
\end{align*}
So by the energy estimate (15),
\[\|u - v\|_{C_{[0,T]}^{0,3/2}} + \|\partial_t(u - v)\|_{C_{[0,T]}^{0,1/2}} \leq C T^{1/2}\|2u_x \wedge u_y - 2v_x \wedge v_y\|_{L_{0,T}^{1/2}}. \]
Now by (14),
\[
\|2u_x \wedge u_y - 2v_x \wedge v_y\|_{L^2_{[0,T]} \dot{H}^{1/2}} \\
\leq 2(\|(u - v)_x\|_{L^2_{[0,T]} H^{1/2}} + \|(u - v)_y\|_{L^2_{[0,T]} H^{1/2}}) \\
\leq 2C(\|u_0\|_{H^{3/2}} + \|u_1\|_{H^{1/2}} + \|2u_x \wedge u_y\|_{L^2_{[0,T]} H^{1/2}})\|2u_x \wedge u_y - 2v_x \wedge v_y\|_{L^2_{[0,T]} H^{1/2}} \\
+ 2C\|2u_x \wedge u_y - 2v_x \wedge v_y\|_{L^2_{[0,T]} H^{1/2}}(\|u_0\|_{H^{3/2}} + \|u_1\|_{H^{1/2}} + \|2v_x \wedge v_y\|_{L^2_{[0,T]} H^{1/2}}) \\
\leq 4CT^{1/2}(K + 2T^{1/2}A)\|2u_x \wedge u_y - 2v_x \wedge v_y\|_{L^2_{[0,T]} H^{1/2}} \\
\leq \frac{1}{2}\|2u_x \wedge u_y - 2v_x \wedge v_y\|_{L^2_{[0,T]} H^{1/2}}
\]
by (18). Thus
\[
\|2u_x \wedge u_y - 2v_x \wedge v_y\|_{L^2_{[0,T]} H^{1/2}} = 0,
\]
which implies
\[
\|u - v\|_{C^0_{[0,T]} \dot{H}^{3/2}} + \|\partial_t(u - v)\|_{C^0_{[0,T]} \dot{H}^{1/2}} = 0.
\]
So \(u = v\) on \([0,T]\), as desired.

Finally, we prove the continuous dependence of the solution on initial data. Suppose \((u_0, u_1)\) and \((v_0, v_1)\) are initial data, so that
\[
\|u_0\|_{\dot{H}^{3/2}} + \|u_1\|_{\dot{H}^{1/2}} \leq K, \quad \|v_0\|_{\dot{H}^{3/2}} + \|v_1\|_{\dot{H}^{1/2}} \leq K,
\]
and
\[
\|u_0 - v_0\|_{\dot{H}^{3/2}} + \|u_1 - v_1\|_{\dot{H}^{1/2}} \leq \varepsilon.
\]
Let \(u, v\) be the unique solution to
\[
\square u = 2u_x \wedge u_y, \quad u|_{t=0} = u_0, \quad \partial_t u|_{t=0} = u_1 \quad \square v = 2v_x \wedge v_y, \quad v|_{t=0} = v_0, \quad \partial_t v|_{t=0} = v_1
\]
with
\[
u, v \in C^0_{[0,T]} \dot{H}^{3/2}, \quad \partial_t u, \partial_t v \in C^0_{[0,T]} \dot{H}^{1/2},
\]
and
\[
\|u_x \wedge u_y\|_{L^2_{[0,T]} H^{1/2}} \leq A, \quad \|v_x \wedge v_y\|_{L^2_{[0,T]} H^{1/2}} \leq A.
\]
We claim
\[\| u - v \|_{C^0_{[0,T],H^{3/2}}} + \| \partial_t u - \partial_t v \|_{C^0_{[0,T],H^{1/2}}} \leq B\varepsilon \] (25)
where
\[B = \max\{4, 4C(K + 2T^{1/2}A)\}. \]
This will prove continuous dependence on initial data.

To see this, recall that \(u, v \) are the limits in our space \(X \) of a sequence \(u^{(k)}, v^{(k)} \) respectively, where \(u^{(0)} = v^{(0)} = 0 \), and
\[
\square u^{(k+1)} = 2u_x^{(k)} \wedge u_y^{(k)}, \quad u^{(k+1)}|_{t=0} = u_0, \quad \partial_t u^{(k+1)}|_{t=0} = u_1,
\]
\[
\square v^{(k+1)} = 2v_x^{(k)} \wedge v_y^{(k)}, \quad v^{(k+1)}|_{t=0} = v_0, \quad \partial_t v^{(k+1)}|_{t=0} = v_1,
\]
for all \(k \geq 0 \). We will prove, by induction, that
\[
\| u^{(k)}_x \wedge u^{(k)}_y - v^{(k)}_x \wedge v^{(k)}_y \|_{L^2_{[0,T],H^{1/2}}} \leq B\varepsilon \] (26)
for all \(k \geq 0 \). Assuming this for the moment, then the energy estimate (15) shows that for all \(k \geq 0 \),
\[
\begin{align*}
\| u^{(k+1)} - v^{(k+1)} \|_{C^0_{[0,T],H^{3/2}}} &+ \| \partial_t u^{(k+1)} - \partial_t v^{(k+1)} \|_{C^0_{[0,T],H^{1/2}}} \\
&\leq 2(\| u_0 - v_0 \|_{H^{3/2}} + \| u_1 - v_1 \|_{H^{1/2}} + \| 2u_x^{(k)} \wedge u_y^{(k)} - 2v_x^{(k)} \wedge v_y^{(k)} \|_{L^1_{[0,T],H^{1/2}}}) \\
&\leq 2(\varepsilon + 2T^{1/2}B\varepsilon) \\
&\leq 2\varepsilon + \frac{B}{2}\varepsilon \\
&\leq B\varepsilon.
\end{align*}
\]
(The third-to-last inequality follows from (26), and the second-to-last follows from (16). The last inequality follows from our choice of \(B \) that \(B \geq 4 \).) Letting \(k \to \infty \), (25) follows.

Thus it remains to prove (26). It clearly holds when \(k = 0 \). Now suppose \(k \geq 1 \). By (14),
\[
\begin{align*}
\| u^{(k)}_x \wedge u^{(k)}_y - v^{(k)}_x \wedge v^{(k)}_y \|_{L^2_{[0,T],H^{1/2}}} &\leq \| u^{(k)}_x \wedge (u^{(k)} - v^{(k)})_y \|_{L^2_{[0,T],H^{1/2}}} + \| (u^{(k)} - v^{(k)})_x \wedge u_y^{(k)} \|_{L^2_{[0,T],H^{1/2}}} \\
&\leq C(\| u_0 \|_{H^{3/2}} + \| u_1 \|_{H^{1/2}} + \| 2u_x^{(k-1)} \wedge u_y^{(k-1)} \|_{L^1_{[0,T],H^{1/2}}}) \\
&\quad \cdot (\| u_0 - v_0 \|_{H^{3/2}} + \| u_1 - v_1 \|_{H^{1/2}} + \| 2u_x^{(k-1)} \wedge u_y^{(k-1)} - 2v_x^{(k-1)} \wedge v_y^{(k-1)} \|_{L^1_{[0,T],H^{1/2}}}).
\end{align*}
\]
+ C(\| u_0 - v_0 \|_{\dot{H}^{3/2}} + \| u_1 - v_1 \|_{\dot{H}^{1/2}}
+ \| 2u_{x(k-1)} \wedge u_{y(k-1)} - 2v_{x(k-1)} \wedge v_{y(k-1)} \|_{L_{[0,\tau]}_{[0,\tau]}\dot{H}^{1/2}})
\cdot (\| v_0 \|_{\dot{H}^{3/2}} + \| v_1 \|_{\dot{H}^{1/2}} + 2\| v_x(k-1) \wedge v_y(k-1) \|_{L_{[0,\tau]}_{[0,\tau]}\dot{H}^{1/2}}).

By our choice of initial data \((u_0, u_1)\) and \((v_0, v_1)\), and using (20) with our induction hypothesis (26) with \(k\) replaced by \(k - 1\), this is bounded by

\[2C(K + 2T^{1/2}A)(\varepsilon + 2T^{1/2}B\varepsilon), \]

which by choice of \(B\) (so that \(2C(K + 2T^{1/2}A) \leq \frac{B}{2}\)) and (18) is bounded by

\[\frac{B}{2} \varepsilon + \frac{B}{2} \varepsilon = B\varepsilon. \]

This completes our induction, and hence the proof of our theorem. \(\square\)

We briefly outline the proof of (13). The space–time Fourier transform of \(\tilde{\phi}_+ \cdot \tilde{\psi}_+\) is the convolution of \(\tilde{\phi}_+\) with \(\tilde{\psi}_+\). We compute this convolution by testing it against a test function \(\varphi(\xi, \tau)\):

\[
\int_{\mathbb{R}} \int_{\mathbb{R}^2} (\tilde{\phi}_+ \ast \tilde{\psi}_+)(\xi, \tau) \varphi(\xi, \tau) \, d\xi \, d\tau
= \int_{\mathbb{R}} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \tilde{\phi}_+(\xi, \tau) \tilde{\psi}_+(\xi', \tau') \varphi(\xi + \xi', \tau + \tau') \, d\xi \, d\xi' \, d\tau \, d\tau'
= \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{\hat{f}(\xi)}{|\xi|} \frac{\hat{g}(\xi')}{|\xi'|} \varphi(\xi + \xi', |\xi| + |\xi'|) \, d\xi \, d\xi'
= \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{\hat{f}(\xi - \xi')}{|\xi - \xi'|} \frac{\hat{g}(\xi')}{|\xi'|} \varphi(\xi, |\xi - \xi'| + |\xi'|) \, d\xi \, d\xi'.
\]

Now write \(\xi'\) in polar coordinates: \(\xi' = \rho \omega\) where \(\rho > 0\) and \(\omega \in \mathbb{S}^1\). Then the above integral becomes

\[
\int_{\mathbb{R}^2} \int_{\mathbb{S}^1} \int_0^\infty \frac{\hat{f}(\xi - \rho \omega)}{|\xi - \rho \omega|} \hat{g}(\rho \omega) \varphi(\xi, |\xi - \rho \omega| + \rho) \, d\rho \, d\omega \, d\xi. \tag{27}
\]

We change variables from \(\rho\) to \(\tau\), where \(\tau\) is a new variable defined as

\[\tau = |\xi - \rho \omega| + \rho; \]

then
\[
\tau^2 = |\xi - \rho \omega|^2 + \rho^2 + 2\rho|\xi - \rho \omega|
= |\xi|^2 - 2\rho \xi \cdot \omega + \rho^2 + \rho^2 + 2\rho(\tau - \rho)
= |\xi|^2 + 2\rho(\tau - \xi \cdot \omega),
\]

which implies
\[
\rho = \rho(\xi, \tau, \omega) = \frac{\tau^2 - |\xi|^2}{2(\tau - \xi \cdot \omega)}.
\] (28)

(Incidentally, this shows the change of variables is legitimate; it is a (smooth) bijection of \(\rho \in [0, \infty)\), to \(\tau \in [\|\xi\|, \infty)\).) Hence (27) becomes
\[
\int \int \int \mathbb{R}^2 \mathbb{R} \mathbb{S}^1 \chi_{\tau > |\xi|} \frac{\tilde{f}(\xi - \rho \omega)}{|\xi - \rho \omega|} \tilde{g}(\rho \omega) \frac{\partial \rho}{\partial \tau} \varphi(\xi, \tau) d\omega d\tau d\xi
\]
(henceforth \(\rho\) will be defined by \(\xi, \tau, \omega\) as in (28)). This shows the convolution \(\tilde{\phi}_+ \ast \tilde{\psi}_+\) is given by
\[
\tilde{\phi}_+ \ast \tilde{\psi}_+(\xi, \tau) = \chi_{\tau > |\xi|} \int \frac{\tilde{f}(\xi - \rho \omega)}{|\xi - \rho \omega|} \tilde{g}(\rho \omega) \frac{\partial \rho}{\partial \tau} d\omega.
\] (29)

We further simplify this formula:
\[
|\xi - \rho \omega| = \tau - \rho = \tau - \frac{\tau^2 - |\xi|^2}{2(\tau - \xi \cdot \omega)} = \frac{\tau^2 - 2\tau \xi \cdot \omega + |\xi|^2}{2(\tau - \xi \cdot \omega)}.
\]

Also,
\[
\frac{\partial \rho}{\partial \tau} = \frac{(\tau - \xi \cdot \omega)(2\tau) - (\tau^2 - |\xi|^2)}{2(\tau - \xi \cdot \omega)^2} = \frac{\tau^2 - 2\tau \xi \cdot \omega + |\xi|^2}{2(\tau - \xi \cdot \omega)^2}.
\] (30)

Hence
\[
\frac{1}{|\xi - \rho \omega|} \frac{\partial \rho}{\partial \tau} = \frac{1}{\tau - \xi \cdot \omega} = \frac{2\rho}{\tau^2 - |\xi|^2},
\]

and (29) becomes
\[
\tilde{\phi}_+ \ast \tilde{\psi}_+(\xi, \tau) = \frac{2\chi_{\tau > |\xi|}}{\tau^2 - |\xi|^2} \int \frac{\tilde{f}(\xi - \rho \omega)}{|\xi - \rho \omega|} \tilde{g}(\rho \omega) \rho d\omega.
\] (31)

Now to prove (13), note that
\[
|\mathcal{F}((-\Delta)^{1/4}Q_{12}(\phi_+, \psi_+))(\xi, \tau)| = |\xi|^{1/2}|\mathcal{F}(Q_{12}(\phi_+, \psi_+))(\xi, \tau)|
\]
and (at least formally)

\[\mathcal{F}(Q_{12}(\phi_+, \psi_+))(\xi, \tau) = \int_{\mathbb{R}} \int_{\mathbb{R}^2} (\xi_1 \xi_2 - \xi_2 \xi_1) \phi_+ (\xi - \xi', \tau - \tau') \psi_+ (\xi', \tau') d\xi' d\tau'. \]

So putting absolute values inside the integral, and using

\[|\xi|^{1/2} \leq |\xi - \xi'|^{1/2} + |\xi'|^{1/2}, \]

we see that one has

\[|\mathcal{F}((-\Delta)^{1/4} Q_{12}(\phi_+, \psi_+))(\xi, \tau)| \]

\[\leq \int_{\mathbb{R}} \int_{\mathbb{R}^2} |\xi_1 \xi_2 - \xi_2 \xi_1||\xi - \xi'|^{1/2} |\phi_+ (\xi - \xi', \tau - \tau')| |\psi_+ (\xi', \tau')| d\xi' d\tau' \]

\[+ \int_{\mathbb{R}} \int_{\mathbb{R}^2} |\xi_1 \xi_2 - \xi_2 \xi_1||\phi_+ (\xi - \xi', \tau - \tau')| |\xi'|^{1/2} |\psi_+ (\xi', \tau')| d\xi' d\tau' \]

\[= I + II. \]

The integral II can be brought, via a change of variables \(\xi' \mapsto \xi - \xi', \, \tau' \mapsto \tau - \tau' \), into

\[\int_{\mathbb{R}} \int_{\mathbb{R}^2} |\xi_1 \xi_2 - \xi_2 \xi_1||\xi - \xi'|^{1/2} |\phi_+ (\xi - \xi', \tau - \tau')| |\psi_+ (\xi', \tau')| d\xi' d\tau' \]

which is the same as integral I, except now the roles of \(\phi_+ \) and \(\psi_+ \) (hence the roles of \(f \) and \(g \)) are reversed. Since the right hand side of our desired estimate (13) is symmetric in \(f \) and \(g \), it suffices now to bound the integral I. But I can be computed by testing against a test function as above. We then get, in a similar manner that we derived (31), that

\[I(\xi, \tau) = \frac{2\chi_{|\tau| > |\xi|}}{\tau^2 - |\xi|^2} \int_{\mathbb{S}^1} \rho |\xi_1 \omega_2 - \xi_2 \omega_1| |\hat{F}(\xi - \rho \omega)| |\hat{g}(\rho \omega)| d\omega \]

where

\[F := (-\Delta)^{1/4} f. \]

It follows that

\[|I(\xi, \tau)|^2 \lesssim \frac{\chi_{|\tau| > |\xi|}}{(\tau^2 - |\xi|^2)^{3/2}} \int_{\mathbb{S}^1} \rho^2 |\xi_1 \omega_2 - \xi_2 \omega_1|^2 |\hat{F}(\xi - \rho \omega)|^2 |\hat{g}(\rho \omega)|^2 \rho^2 d\omega. \]
We now integrate with respect to ξ and τ, use Fubini’s theorem, and change variables $\tau \mapsto \rho$. Then

$$\int_{\mathbb{R}^2} \int_{\mathbb{R}} |I(\xi, \tau)|^2 d\tau d\xi \leq \int_{\mathbb{R}^2} \int_{S^1} \int_{\rho=0}^{\rho=\infty} \frac{\rho^2 |\xi_1 \omega_2 - \xi_2 \omega_1|^2}{(\tau^2 - |\xi|^2)^2} \frac{\partial \tau}{\partial \rho} |\hat{F}(\xi - \rho \omega)|^2 |\hat{g}(\rho \omega)|^2 \rho^2 d\rho d\omega d\xi. \quad (32)$$

But we claim

$$\frac{\rho^2 (\xi_1 \omega_2 - \xi_2 \omega_1)^2}{(\tau^2 - |\xi|^2)^2} \frac{\partial \tau}{\partial \rho} \leq \frac{1}{2}. \quad (33)$$

In fact, remembering $\frac{\partial \tau}{\partial \rho}$ is the reciprocal of $\frac{\partial \rho}{\partial \tau}$, which we computed in (30), we have

$$\frac{\rho^2 (\xi_1 \omega_2 - \xi_2 \omega_1)^2}{(\tau^2 - |\xi|^2)^2} \frac{\partial \tau}{\partial \rho} = \frac{\rho^2 (\xi_1 \omega_2 - \xi_2 \omega_1)^2 [2(\tau - \xi \cdot \omega)]}{(\tau^2 - |\xi|^2)^2 (\tau^2 - 2\tau \xi \cdot \omega + |\xi|^2)} = \frac{(\xi_1 \omega_2 - \xi_2 \omega_1)^2}{2(\tau^2 - 2\tau \xi \cdot \omega + |\xi|^2)}.$$

But the denominator can be simplified, by writing

$$\tau^2 - 2\tau \xi \cdot \omega + |\xi|^2 = (\tau - \xi \cdot \omega)^2 + |\xi|^2 - (\xi \cdot \omega)^2 = (\tau - \xi \cdot \omega)^2 + (\xi_1 \omega_2 - \xi_2 \omega_1)^2$$

(the last equality holds since we are in 2-dimensions). Thus we see that the above quotient is bounded by $1/2$, as was claimed in (33).

Now by (32) and (33), we see that

$$\int_{\mathbb{R}^2} \int_{\mathbb{R}} |I(\xi, \tau)|^2 d\tau d\xi \leq C \int_{\mathbb{R}^2} \int_{S^1} \int_{\rho=0}^{\rho=\infty} |\hat{F}(\xi - \rho \omega)|^2 |\hat{g}(\rho \omega)|^2 \rho^2 d\rho d\omega d\xi$$

$$= C \|F\|_{L^2}^2 \|g\|_{H^{1/2}}^2$$

$$= C \|f\|_{H^{1/2}}^2 \|g\|_{H^{1/2}}^2.$$

This completes the proof of (13).

Acknowledgments

S.C. and P.-L.Y. were supported by National Science Foundation grant DMS-1201474. P.-L.Y. was also supported by a Titchmarsh Fellowship at the University Of Oxford,
a junior research fellowship at St. Hilda’s College, and a direct grant for research from the Chinese University of Hong Kong (4053120). S.C. wishes to thank Carlos Kenig for several enlightening conversations related to the contents of this paper.

References