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1. Vectors

A vector is a quantity with a magnitude and a direction. Linear algebra
uses vectors to study systems of linear equations. Let’s start with a simple
example that shows what linear algebra is about.

1.1. Pancakes and waffles. Consider the following recipes for pancakes
and waffles.

Recipe Flour (cups) Sugar (tablespoons)
Pancakes 2 1
Waffles 3/2 2

Suppose we have 10 tbsp sugar and 10 cups flour. How much of each can
be made without waste?

To solve the problem, let p denote the number of batches of pancakes,
and w the number of batches of waffles. To make p batches of pancakes,
we need 2p cups flour and p tbsps sugar. To make w batches of waffles, we
need (3/2)w cups flour and 2w tbsps sugar. To use up the flour we need

2p + (3/2)w = 10.

To use up the sugar we need

p + 2w = 10.

Subtracting one equation from the other gives (−5/2)w = −10, so w = 4.
Substituting w = 4 into the second equation gives p + 8 = 10, so p = 2.
What we have done is a simple case of elimination, a procedure for solving
systems of linear equations that will be covered in detail later.

The system of equations above can be represented geometrically by rep-
resenting each recipe as a vector. By a 2-vector we mean a pair of numbers,
called the components of the vector. Typically we write the vector verti-
cally, so that the first component appears above the first component. For
example,

[

2
1

]
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is the vector whose first component is 2 and second component is 1. The
pancake and waffle recipes are represented by the 2-vectors

vp =

[

2
1

]

, vw =

[

3/2
2

]

Geometrically a 2-vector v =

[

x
y

]

is drawn as arrow in the plane. Draw

horizontal and vertical axes on the plane, so that the origin is the intersec-
tion of the axes. The tail of the vector can be at any point. The head of
the vector is drawn x units to the right, and y units above the tail of the

vector. The vectors

[

2
1

]

and

[

3/2
2

]

, with tails at the origin, are shown

in Figure 1.
[

3/2
2

]

[

2
1

]

Figure 1. Examples of vectors

1.2. Vector operations.

1.2.1. Vector addition. We add 2-vectors by adding their components:
[

2
1

]

+

[

3/2
2

]

=

[

2 + 3/2
1 + 2

]

=

[

7/2
3

]

.

The sum of two vectors can be drawn by putting the vectors head to tail.
Let v and w be 2-vectors. Draw v with tail at 0, and w with tail at the
head of v. Now draw the vector from tail (0, 0) to the head of w. This is

the vector v + w. In Figure 2 the vector

[

2
1

]

is drawn head to tail with
[

3/2
2

]

.

[

2
1

]

[

3/2
2

]

Figure 2. Vector addition

1.2.2. Length. You can think of a vector as an object that has a direction

and a length (or magnitude). The vector v =

[

v1

v2

]

forms the hypotenuse

of a triangle with adjacent side v1 and opposite side v2. By the Pythagorean
theorem, the length or norm of v is the square root of the squares of the
adjacent and opposite sides of the right triangle formed by v:

‖v‖ =
√

v2
1 + v2

2 .

If the vector has magnitude 1, it is called a unit vector.
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1.2.3. Scalar multiplication. A scalar is another name for a number. We
multiply a scalar times a vector by multiplying each component. For ex-

ample, 2

[

2
1

]

=

[

2 · 2
2 · 1

]

=

[

4
2

]

. We do not use the notation × for this

sort of multiplication, which has a special meaning we will discuss later.

Figure 3 shows the vector

[

2
1

]

, and its scalar multiple

[

4
2

]

.

✟✟✟✟✟

✟✟✟✟✟✟✟✟✟✟

Figure 3. Scalar multiplication

Geometrically scalar multiplication by a positive scalar c leaves the di-
rection of the vector unchanged, but multiplies the length by c. If the scalar
c is negative, then cv points in the opposite direction from v.

For any non-zero vector v there is a unit vector in the direction of v,
given by the formula

u =
1

‖v‖v.

The unit vector in the direction of v =

[

2
1

]

is

1√
22 + 12

[

2
1

]

=
1√
5

[

2
1

]

=

[

2√
5

1√
5

]

.

1.2.4. Vector subtraction. Subtraction is similar to addition: We subtract
each component.

[

2
1

]

−
[

3/2
2

]

=

[

2 − 3/2
1 − 2

] [

1/2
−1.

]

Subtraction is a combination of vector addition and scalar multiplication:
[

2
1

]

−
[

3/2
2

]

=

[

2
1

]

+ (−1)

[

3/2
2

]

and so is not considered a separate operation.

1.3. Vector form of a linear system. Two vectors are equal if they
have the same components, in order. This means that any system of linear
equations can be written as a single vector equation. For instance, the
pancake/waffle system

2p + 3/2w = 10
p + 2w = 10

can be written as the single vector equation

p

[

2
1

]

+ w

[

3/2
2

]

=

[

10
10

]

.

A sum of scalar multiples of vectors is called a linear combination. To solve
the system, we have to write the total vector

vt =

[

10
10

]

as a linear combination of the pancake and waffle vectors

vp =

[

2
1

]

, vw =

[

3/2
2

]

.

Figure 4 shows that two of

[

2
1

]

and four of

[

3/2
2

]

give

[

10
10

]

. This is

what we mean by solving the system geometrically.

1.4. Vectors in three-dimensions. A 3-vector v is a triple of numbers,

called the components of v. For example v =





4
2
6



 is a 3-vector whose

components are 4, 2 and 6. Geometrically a 3-vector v =





x
y
z



 is drawn

as an arrow on a plane with three axes. The head of the arrow is drawn x
units along the first axis, y units along the second axis, and z units along
the third axis from the tail.
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s

Figure 4. Total as a linear combination

Figure 5. A 3-vector

The vector





4
2
6



 with tail at (0, 0, 0) is drawn in Figure 5 in purple. In

the other colors it is shown how to arrive at the head: by starting at the
origin, moving one unit along the first axis, two units along the second, and
three units along the third.

Operations on 3-vectors are defined in the same way as for 2-vectors.
Scalar multiplication multiplies a number times each component, for exam-
ple,

2





2
1
2



 =





4
2
4



 , 4





3/2
2
2



 =





6
8
8



 .

Add vectors by adding their components:




4
2
4



+





6
8
8



 =





4 + 6
2 + 8
4 + 8



 =





10
10
12



 .

An unavoidable problem with representing three-vectors on the page is
that different vectors look the same when drawn. For instance,





−1/2
0
3
2



 ,





1
2
3





are drawn the same on our representation of three-space. In particular, the
length of a three-vector is not the length of the vector as it is drawn on the
page.

Three-vectors naturally appear in systems of three equations. For in-
stance, in the pancake/waffle problem suppose we also consider how many
eggs are needed for each type, so that the table of ingredients becomes

Flour Sugar Eggs
Pancakes 2 1 2
Waffles 3/2 2 2

Suppose we have 10 cups flour, 10 tbsps sugar, and 10 eggs.

(1)
2p + 3/2w = 10
p + 2w = 10
2p + 2w = 10 1

4 .

From the first two equations, we found a ove that p = 2 and w = 4.
Plugging these into the third equation we get

2p + 2w = 12 6= 10

so there is no solution, that is, no way to use the ingredients without waste.
In vector form, the pancake/waffle system is now

p





2
1
2



+ w





3/2
2
2



 =





10
10
10



 .
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We denote the vectors for each recipe

vp =





2
1
2



 , vw =





3/2
2
2



 , vt =





10
10
10





To solve the system geometrically, we need to find some number of blue
arrows vp and the number of red arrows vw which together give the green
arrow vt. It’s not hard to see that the set of combinations of vp and vw

form a plane.

What do we see geometrically that we didn’t see before algebraically?
The set of all linear combinations of the ingredient vectors forms a plane
inside three-dimensional space. The pancake/waffle system is not solvabbe

because the total vector of available ingredients





10
10
10



 does not lie in the

plane given by all combinations of vp and vw. However, if we have 12 eggs
instead of 10 then there is a solution.

Definition 1.1. The set of all linear combinations of a set of vectors is
called the span of the vectors.

A linear system has a solution if, in its vector form, the vector on the
right hand side lies in the span of the vectors on the left-hand-side.

Example 1.2. The span of the vectors





1
0
0



 ,





0
1
0



 is all the vectors of

the form a





1
0
0



+ b





0
1
0



 =





a
b
0



, that is, the xy-plane.

Example 1.3. The span of the vectors [1 − 1 0] and [0 − 1 1] is the set
of all combinations

a[1 − 1 0] + b[0 − 1 1] = [a − a − b b].

Any vector of this form has x + y + z = 0. Conversely, any vector with
x + y + z = 0 can be written as

[x − x − y z] = a[1 − 1 0] + b[0 1 − 1]

where a = x and b = y. So the span is the plan x + y + z = 0.

1.5. Vectors in any dimension. An n-vector is an n-tuple of numbers

v =











v1

v2

...
vn











called the components of v. We say that v has size (or length or dimension)
n. Add two n-vectors by adding their components:











v1

v2

...
vn











+











w1

w2

...
wn











=











v1 + w1

v2 + w2

...
vn + wn











.

The product of a scalar c and an n-vector is defined by

c











v1

v2

...
vn











=











cv1

cv2

...
cvn











.

The length of an n-vector is

‖v‖ =
√

v2
1 + v2

2 + . . . + v2
n.

This is the distance from the head to tail. The formula can be justified by
repeatedly applying the Pythagorean theorem. For example, for n = 3 we
have





v1

v2

v2



 =





v1

v2

0



+





0
0

v3





which form a right angle, hence
∥

∥

∥

∥

∥

∥





v1

v2

v3





∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥





v1

v2

0





∥

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∥





0
0

v3





∥

∥

∥

∥

∥

∥

2

= (v2
1 + v2

2) + v2
3 .

In particular this is a formula for the distance between two points in n-
dimensional space: To find the distance between any two points, take the
length of the vector connecting them.

Example 1.4. To find the distance between the points (3, 1, 2, 4) and
(−1, 2, 1, 2) in R4, we take the length of the vector

v = [−1 2 1 2] − [3 1 2 4] = [−4 1 − 1 − 2]
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which is
‖v‖ =

√

(−4)2 + 12 + (−1)2 + (−2)2 =
√

22.

Here are some of the properties of vector operations. Later we will define
new operations which do not satisfy some of these axioms.

(1) u + v = v + u (Vector Addition is Commutative)
(2) u + (v + w) = (u + v) + w (Vector Addition is Associative)
(3) c(u + v) = cu + cv (Scalar Mult. is Distributive)
(8) ‖cv‖ = |c|‖v‖ (Scalar Mult multiplies the Length)

Proofs involving vectors usually involve writing out the general form,
using the corresponding properties for numbers.

Example 1.5. Prove that u + v = v + u for any n-vectors u,v. Answer:
Let

u =











u1

u2

...
un











, v =











v1

v2

...
vn











.

Then

u + v =











u1 + v1

u2 + v2

...
un + vn











=











v1 + u1

v2 + u2

...
vn + un











= v + u.

To save space, we often write vectors horizontally, so that v = [1/2] is

the same vector as v =

[

1
2

]

.

1.6. Problems.

(1) Find the sums and differences of the following vectors:
(a) [1 0] and [0 1]
(b) [1 0] and [−1 − 1]
(c) [2 2 1] and [2 − 1 2] and
(d) [1 0 1] and [1 1 0].

(2) Find the second component of the following vectors
(a) [1 0] and [0 1]
(b) [1 0] and [−1 − 1]
(c) [2 2 1] and [2 − 1 2] and
(d) [1 0 1] and [1 1 0].

(3) Write the vector whose components are
(a) −1, 3
(b) 3,−1
(c) 2, 4, 6.

(4) Draw the following vectors:

(a)

[

1
1

]

,

(b)

[

1
2

]

, ,

(c)

[

1
−2

]

,

(d)

[

0
0

]

.

(5) Find the distance between the points
(a) (0, 0), (3, 2)
(b) (1, 1), (3, 2)
(c) (1,−1), (3, 2)
(d) (1, 1, 0), (0, 1, 1), (1, 0, 1).

(6) Draw the following vectors:





1
1
1



 ,





1
2
3



 ,





1
−2

3



.

(7) Find the 2v + 3w for the vectors
(a) v = [5 4] ,w = [−1 − 2].
(b) v = [1 0] ,w = [0 1].
(c) v = [5 4 1] , w [−1 − 2 − 3].

(8) Write the following systems of equations as a single vector equality,
using scalar multiplication to simplify if possible:
(a) a = 2, b = 3
(b) 2a + b = 1, 3a + 2b = 2
(c) x + y = 0, y = 3
(d) a + b = 5, b − a = 6

(9) In the pancake-waffle system, find another combination of ingredi-
ents (that is, not 10 flour, 10 sugar, 12 eggs) that can be used up
without waste.

(10) Show that if ‖v‖ = 0, then v is the zero vector. Hint: Write down
what it means to have ‖v‖ = 0, and what it means to be the zero
vector in English. Then write it down in equations. Then show
why the equation for ‖v‖ = 0 implies that v = 0.
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2. Matrices

A matrix is a table of numbers. Matrices can be used to simplify linear
equations even further.

2.1. Types of matrices. A matrix is a table of numbers, called the entries
of the matrix. If a matrix has m rows and n columns, it is called an m× n
matrix. The entry in the i-th row and j-th column is called the ij-th entry.

Example 2.1. In the last section, we wrote the pancake/waffle system in
vector form

p





2
1
2



+ w





3/2
2
2



 =





10
10
12



 .

The matrix for the pancake-waffle system is the 2 × 3 matrix

A =





2 3/2
1 2
2 2



 .

One can think of a matrix as a collection of row vectors, or as a collection
of column vectors. The row vectors for the matrix A are

[2 3/2] , [1 2] , [2 2] .

The column vectors are




2
1
2



 ,





3/2
2
2



 .

Here are a few of the many special kinds of special matrices.

(1) The m×n zero matrix 0mn, whose entries are all zero. For example,

032 =





0 0
0 0
0 0



 .

If there is no confusion about the size, we drop the subscripts and
write 0 for the zero matrix.

(2) A matrix is square if it has the same number of rows as columns.
For instance,

[

1 0
0 1

]

is a square matrix, more precisely 2 × 2.

(3) A square matrix is diagonal if the only non-zero entries are on the
northwest-southeast diagonal, for instance,





1 0 0
0 2 0
0 0 3





is diagonal.
(4) A square matrix A is upper triangular if all of the entries below the

diagonal are zero. For instance,




1 2 3
0 4 5
0 0 6





is upper triangular. A is lower triangular if all of the entries above
the diagonal are zero. A is strictly upper (or lower) triangular if it
is upper ( or lower )triangular and all of the diagonal entries are
zero. For instance,





0 0 0
1 0 0
2 3 0





is strictly lower triangular.
(5) The transpose of an m×n matrix A is the n×m matrix AT whose

columns are the rows of A, and whose rows are the columns of A.
For example,

[

1 2 3
4 5 6

]T

=





1 4
2 5
3 6



 .

If a matrix A is equal to its own transpose AT , it is called symmet-
ric. For instance,





2 −1 0
−1 2 −1
0 −1 2





is a 3 × 3 symmetric matrix.
(6) A matrix is a permutation matrix if there is exactly one 1 in each row

and each column, and otherwise the matrix is zero. For example,

P =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









is a permutation matrix.
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2.2. Matrix addition and scalar multiplication. Matrices are added
or subtracted in the same way as vectors, by adding or subtracting entries.
For example,





0 1
2 3
4 5



+





0 3
1 4
2 5



 =





0 4
3 7
6 10









0 1
2 3
4 5



−





0 3
1 4
2 5



 =





0 −2
1 −1
2 0



 .

Multiply a scalar times a matrix by multiplying each entry by the scalar.

2





0 1
2 3
4 5



 =





0 2
4 6
8 10



 .

2.3. Matrix products. Suppose A is a 3× 2 matrix with column vectors
v1,v2. Suppose x is the column vector

x =

[

5
2

]

.

Then the product Ax is the sum

5v1 + 2v2.

That is, the product of a matrix times a vector is a sum of the column
vectors of the matrix, with coefficients given by the components of the
vector. For example





2 3/2
1 2
2 2





[

4
2

]

= 4





2
1
2



+ 2





3/2
2
2



 =





10
10
12



 .

Here is an example with a 2 × 2-matrix:
[

0 1
1 0

] [

3
4

]

= 3

[

0
1

]

+ 4

[

1
0

]

=

[

4
3

]

.

Multplying this matrix times a vector has the effect of switching the first
and second components!

We can re-write the pancake/waffle equations a second time using this
product. The equations (1) are written in matrix form





2 3/2
1 2
2 2





[

p
w

]

=





10
10
12



 .

There is another way of looking at the product of a matrix A times a
vector x, using products of rows with columns. The components of the
product are the products of the rows of A with the vector x. For instance,





2 3/2
1 2
2 2





[

4
2

]

=





4(2) + 2(3/2)
4(1) + 2(2)
4(2) + 2(2)



 .

The first component is the product of

[

4
2

]

with [2 3/2], the second com-

ponent is the product with [1 2] and so on.

More generally, suppose A has column vectors v1, . . . ,vn and

x =









x1

x2

xn









,

Define

Ax = x1v1 + . . . + xnvn.

If A has row-vectors w1, . . . ,wm then

Ax =













w1 · x
w2 · x

wm · x













is the vector of products of rows with x.

For each square size, there is a special matrix, called the identity matrix
I which has 1’s along the diagonal and 0′ everywhere else. For instance,
the 3 × 3 identity is

I =





1 0 0
0 1 0
0 0 1



 .

The identity matrix has the property that I times any vector v is itself:

Iv = v

For instance, using the definition we get




1 0 0
0 1 0
0 0 1









5
4
3



 = 5





1
0
0



+ 4





0
1
0



+ 3





0
0
1



 =





5
4
3



 .

Matrix-vector products satisfy the properties:
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(1) A(v + w) = Av + Aw (Distributivity over vect. addition)
(2) A(cv) = c(v) (Commutes with Scalars)
(3) (A + B)v = Av + Bv (Distrib. over matrix addition)
(4) Iv = v (Multiplication by Identity Matrix)
(5) 0v = 0 (Multiplication by Zero Matrix)

These can be proved by writing out the definitions of equality of vectors,
that is, by showing that the components of the vectors on both sides are
equal. For example, the first component of A(v + w) is the product of the
first row of A, call it a1, with v + w. Then a1 · (v + w) = a1 · v + a1 · w
which is the first component of Av + Aw.

Now we define the product of two matrices. The product AB of two
matrices A and B is the matrix whose columns are the products of the
matrix A with the columns of B. The matrix product is the matrix of
products of rows of A with columns of B. For example,





1 2
2 3
3 4





[

−1 1
1 −1

]

=

















[1 2]

[

−1
1

]

[1 2]

[

1
−1

]

[2 3]

[

−1
1

]

[2 3]

[

1
−1

]

[3 4]

[

−1
1

]

[3 4]

[

1
−1

]

















=





−1 + 2 1 + −2
−2 + 3 2 + −3
−3 + 4 3 + −4





=





1 −1
1 −1
1 −1



 .

Notice that the matrix product only makes sense if the dot products of the
rows of A with the columns of B make sense. In other words, the rows of
A have to be the same size as the columns of B. To put it one more way,
if A is an m × n matrix and B is a p × q matrix, the product AB makes
sense only if n = p. The result is an m × q matrix.

In general notation let w1, . . . ,wm be the row-vectors of A, and v1, . . . ,vq

the column vectors of B. The matrix product AB is the matrix whose ij-th
entry is the dot product vi · vj .

Matrix multiplication is counter-intuitive in a number of different ways.

(1) Matrix multiplication is not commutative, that is AB is not nec-
essarily the same matrix as BA, even if both are defined. For AB

to be defined A must have the same number of columns as B has
rows. For BA to be defined, B has the same number of columns as
A has rows. Here is an example:

[

0 1
0 0

] [

1 2
3 4

]

=

[

3 4
0 0

]

,

which is not equal to
[

1 2
3 4

] [

0 1
0 0

]

=

[

0 1
0 3

]

.

(2) Just because AB = 0 doesn’t mean that A = 0 or B = 0. For
instance,

[

0 1
0 0

] [

0 1
0 0

]

= 0

but neither of the matrices (which are equal) are zero. In fact, this
property isn’t true for vectors either. Suppose that v and w are
vectors of the same size, and v · w = 0. As we said before, this
means that v is perpendicular to w, not that either v or w is zero.

(3) If AB = AC and A is non-zero, then it is not necessarily true that
B = C. We can’t just divide A from both sides, since the expression
1/A doesn’t make sense - yet.

(4) If A is a square matrix we can define it’s matrix powers

A2 = AA, A3 = AAA,

et cetera. If A2 = 0, this doesn’t mean that A is zero. For example,

A =

[

0 1
0 0

]

has A2 = 0, but A is not zero.

Matrix products naturally arise when we have two systems of linear
equations, in which one set of variables is the input for one system and the
output for the other. For example, in the pancake/waffle example suppose
the cost and weight of the ingredients are

ingredient cost (cents) weight (grams)

flour 18 125
sugar 30 200
eggs 10 50

Let B be the matrix

B =

[

18 30 10
125 200 50

]

.
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The matrix B transforms the ingredient vector into the cost/weight vector:

B





f
s
e



 =

[

c
w

]

where c is the number of cents that the ingredients cost and w is their
weight. Since

B





10
10
12



 =

[

600
3805

]

the 12 eggs, 10 cups flour and 10 sugar costs 600 cents (6 dollars) and 3850
gram (that is, 3.85 kg).

Naturally one would like a matrix that computes the cost and weight
from the number of batches of pancakes and waffles. This is the role of the
matrix product:

BA

[

p
w

]

= B





e
c
s



 =

[

c
w

]

.

Given the number of pints of regular and light we want to make, multiplying
by BA tells us how much it will cost and weigh. In our case, the matrix-
matrix product is

BA =

[

18 30 10
125 200 50

]





2 3/2
1 2
2 2





=

[

18(2) + 30(1) + 10(2) 18(3/2) + 30(2) + 10(2)
125(2) + 200(1) + 50(2) 125(3/2) + 200(2) + 50(2)

]

=

[

86 107
550 687.5

]

.

Matrix-vector products satisfy an associativity property similar for that of
numbers. First, if A and B are matrices, and v is a vector, then

B(Av) = (BA)v.

In our example, this just means that

[

18 30 10
125 200 50

]





2 3/2
1 2
2 2





[

4
2

]

==

[

86 107
550 687.5

] [

4
2

]

.

In other words, knowing the matrix product gives a “short-cut” towards
computing the cost and weight. To prove A(Bv) = (AB)v in general, let

v =











v1

v2

...
vn











be an n-vector, let A be a matrix with n columns w1, . . . ,wn.

The product Av is

Av = v1w1 + . . . vnwn.

So

B(Av) = B(v1w1 + . . . vnwn) = v1(Bw1) + . . . + vn(Bwn)

by distributivity of matrix multiplication over addition. On the other hand,
BA is the matrix with columns

Bw1, . . . , Bwn.

So

(BA)v = v1(Bw1) + . . . (Bwn)

which equals B(Av).

If we have three matrices A, B, C then associativity says that (AB)C =
A(BC). This follows from the version for ABv, applied to the columns
of C. If u1, . . . ,up are the columns of C, then A(BC) is the matrix with
columns

A(Bu1), . . . , A(Bun)

and (AB)C is the matrix with columns

(AB)u1, . . . , (AB)un.

By associativity of matrix-vector products, these are equal.

The following summarizes properties of matrix addition and multiplica-
tion:

(1) A + B = B + A (Commutativity of Addition)
(2) A + (B + C) = (A + B) + C (Assoc. of Addition)
(3) A(BC) = (AB)C (Assoc. of Matrix Product)
(4) A(B + C) = AB + AC (Distrib. of Left Matrix Product)
(5) (A + B)C = AC + BC (Distrib. of Right Matrix Product)
(6) (AT )T = A (Transpose is an Involution)
(7) (AB)T = BT AT (Tranpose of a Product Changes Order)

These properties can be justified by writing out the entries of the matri-
ces on both sides. For example, property (1) is justfied by
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ij-th entry of A + B = ij-th entry of A plus ij-th entry of B
= ij-th entry of B plus ij-th entry of A
= ij-th entry of B + A

Property (7) is justified as follows:

ij-th entry of (AB)T = ji-th entry of AB
= (row j of A)· (column i of B)
= (column j of AT ) · (row i of BT )
= (row i of BT )· (column j of AT )
= ij-th entry of BT AT .

A matrix A is block diagonal if it is of the form

A =

[

B 0
0 C

]

for some matrices B, C. For example,

A =









1 2 3 0
2 3 4 0
3 4 5 0
0 0 0 6









is block diagonal with blocks of size 3, 1. Matrix multiplication of block
diagonal matrices is again block diagonal, if the matrix blocks are of the
same size. That is, if

A1 =

[

B1 0
0 C1

]

, A2 =

[

B2 0
0 C2

]

the

A1A2 =

[

B1B2 0
0 C1C2

]

, .

2.4. Matrix form of a linear system. Using matrix-vector products
we can express any linear system in the matrix form Ax = b, where x =










x1

x2

...
xn











is the vector of unknowns and b =











b1

b2

...
bn











is the vector of constants

on the right-hand-side of the system. As we already mentioned, the matrix
form of the pancake-waffle system

2p + 3/2w = 10
p + 2w = 10

is
[

2 3/2
1 2

] [

p
w

]

=

[

10
10

]

.

or

Ax = b, A =





2 3/2
1 2
2 2



 , b =

[

10
10

]

.

2.5. Problems.

(1) Let A =

[

1 2 3
2 3 4

]

and B =

[

1 0 −1
−1 1 0

]

. (a) What is the

23 component of A? (b) What is the 13 component of B? (c) What
is A + B? (d) What is A − B? (e) What is 2A − B?

(2) Give an example of an (a) 3 × 2 matrix (b) 2 × 3 matrix (c) 1 × 3
matrix (d) 3 × 1 matrix.

(3) Let A =

[

1 2 3
2 3 4

]

and B =

[

1 0 −1
−1 1 0

]

. In each case, if

defined find the products of A and B with the given vectors, or

explain why the product is not defined. (a)

[

1
0

]

(b)

[

0
1

]

(c)




1
0
0





(4) Let A =

[

1 2 3
2 3 4

]

, B =





1 0
−1 −1

1 0



, and C =

[

1 0
−1 −1

]

.

In each case, find the matrix-matrix product if defined, or explain
why the product is not defined. (a) AB (b) BA (c) AA (d) AC (e)
CC.

(5) Let A =

[

1 2 3
2 3 4

]

, B =

[

−1 −1
1 0

]

, and C =

[

1 0
−1 −1

]

.

Compute the expressions (a) AB (b) AC, (c) B+C , (d) A(B+C).
(e) Verify that AB + AC = A(B + C). (f) Does AB + BB also
equal (A + B)B? Why or why not?

(6) True or False? If true, explain; If false, give a counterexample.
(a) If A and B are symmetric, then A + B is symmetric.
(b) If A and B are symmetric matrices, then AB is also sym-

metric.
(c) If A is square and A2 = 0, then A = 0.
(d) If AAT = 0, then A = 0.
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(7) Let A =

[

1 0 1
1 1 0

]

and B =





2 1 −1 2
1 2 0 1
2 1 0 3



.

(a) Compute AB. (b) Compute AT and BT .
(8) Compute the matrix product A2 (A times A) for

A =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









(9) A matrix A is symmetric iff AT = A. Write the condition for
the following matrices to be symmetric: (a) B (c) B + C (d) B2.
(Answer to (a): B = BT . )

(10) Construct a permutation matrix A not equal to I, whose square A2

is I.
(11) Find the matrix form for the extended pancake-waffle system

(2)
2p + 3/2w = 10
p + 2w = 10
2p + 2w = 10 1

4 .

(12) Show that if P is a permutation matrix, then so is PT .
(13) Prove that (AT )T = A. Hint: Two matrices are equal iff all their

entries are equal. What is the ij-the entry of (AT )T ?

3. Elimination

Elimination is the procedure by which we try to solve a system of linear
equations by subtracting multiples of the equations from each other to
eliminate the unknowns. When we do these operations in matrix form,
they are called row operations.

3.1. Row operations. To explain row operations, we recall the following
example.

Example 3.1. To solve the pancake/waffle system we performed the fol-
lowing steps. Subtract twice the second equation from the first in

2p + (3/2)w = 10
1p + 2w = 10
2p + 2w = 12.

.

to get

−5/2w = −10
p + 2w = 10
2p + 2w = 12 .

.

Multiply the first equation by −2/5 to get

w = 4
p + 2w = 10
2p + 2w = 12 .

Now substitute w = 4 into the first and third, and solve for p to obtain
p = 2.

We can do the same steps in matrix form, using a little less ink. The
augmented matrix for the ice-cream system (1) is





2 3/2 10
1 2 10
2 2 12 .



 .

Subtract twice row two from row one to get




0 −5/2 −10
1 2 10
2 2 12 .



 .

Multiply the first equation by −2/5 to get




0 1 4
1 2 10
2 2 12 .



 .

The first line means that 0p + 1w = 4, hence w = 4. Substituting into the
second and third equations gives p = 2, as before.

Example 3.2. Suppose we want to solve the system of three equations
with three unknowns





x − y = 1
y − z = 2

−x + z = 3



 .

The matrix form of the system is




1 −1 0 1
0 1 −1 2

−1 0 1 3




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In the first step we add equation to equation 1 to equation 3 to get (also
written in matrix form on the right)





x − y = 1
y − z = 2

− y + z = 4









1 −1 0 1
0 1 −1 2
0 −1 1 4



 .

Then we add equations 2 and 3 to get




x − y = 1
y − z = 2

0 = 6









1 −1 0 1
0 1 −1 2
0 0 0 6



 .

The last equation 0 = 6 is a contradiction (obviously wrong). This means
that the system has no solutions.

Definition 3.3. The three row operations used in elimination:

(1) Add a multiple of one row (equation) to another.
(2) Multiply a row (equation) by a non-zero number.
(3) Switch two rows (equations).

Each of these operations does not change the solution set. The goal of
elimination is to use these operations repeatedly until the system is solved.

Example 3.4. Let’s solve the system corresponding to the augmented
matrix





1 2 3 1
2 4 6 2
3 6 8 1



 .

We subtract 2 times row 1 from row 2, and 3 times row 1 from row 3 to get




1 2 3 1
0 0 0 0
0 0 −1 −2



 .

Now we switch rows 2 and 3 and multiply by −1 to get




1 2 3 1
0 0 1 2
0 0 0 0



 .

The equations are

x + 2y + 3z = 1
z = 2
0 = 0

.

Substituting z = 2 into the first equation gives x+2y = −5 or x = −5−2y.
The solution set to this system is therefore











x
y
z



 , z = 2 and x = −5 − 2y







.

In other words, the solution set is










−5 − 2y
y
2











.

Instead of back substitution, we can do further row operations to get the
matrix into reduced row echelon form. For instance, subtracting three times
the second row from the first in





1 2 3 1
0 0 1 2
0 0 0 0



 .

gives




1 2 0 −5
0 0 1 2
0 0 0 0



 .

The equations are

x + 2y = −5 z = 2

so the solution set is










−5 − 2y
y
2











.

as before.

It will be helpful to introduce short-hand for the row operations. Here
are some examples:

©2 7→ ©2 − 2 ©1 subtract 2 times row 1 from row 2.

©3 7→ ©3 − 3 ©1 subtract 3 times row 1 from row 3.

©2 ↔ ©3 switch rows 2 and 3

©2 7→ −1 ©2 multiply row 2 by −1.

Note that the row numbers are always circled.
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3.2. Row-echelon form and the general solution to a linear system.
Elimination can stop when the matrix is in row-echelon form:

Definition 3.5. A matrix is in row-echelon form (or ref for short) iff

(1) all rows of zeroes are at the bottom.
(2) The first non-zero entry in any row is a 1, called a leading 1 or

pivot.
(3) The leading 1 in any row is to the right of the leading 1’s above it.

If, in addition, the entries above any leading 1 are zero, the matrix is said
to be in reduced row-echelon form (or rref for short).

For instance, the matrix




1 2 3 1
0 0 1 2
0 0 0 0



 .

is in row echelon form. The matrix




1 2 0 −5
0 0 1 2
0 0 0 0





is in reduced row-echelon form. Since the equations are

x + 2y = −5 z = 2

This system has an infinite number of solutions, one for each value of y.
The variables x, z that correspond to columns containing leading 1’s are
called the bound variables; the other variables are called free variables. The
bound variables can be expressed in terms of the free variables, using the
equations corresponding to the rows of the row-echelon form system and
back substitution.

The three examples we have done so far show the three possible outcomes
of elimination:

Theorem 3.6. (Number of solutions to a system of linear equations)

(1) There is a unique solution if the system is consistent and there is
a leading 1 in every column (to the left of the bar) in the rref.

(2) There are infinitely many solutions if the system is consistent and
there are some columns without leading 1’s in the rref.

(3) The system is inconsistent if there is a row of zeroes, and a non-
zero number to the right of the bar in the rref. In this case there
are no solutions.

Let’s do another example with an infinite number of solutions.

Example 3.7. We solve the system

2x + 6y − z + 2w = 6
x + 3y + z + 10w = 15

.

The augmented matrix for this system is
[

2 6 −1 2 6
1 3 1 10 15

]

.

Switch the first and second rows to get a leading one in the first column:

©1 ↔ ©2
[

1 3 1 10 15
2 6 −1 2 6

]

.

Subtract twice the first row from the second to get

©2 − 2©1

[

1 3 1 10 15
0 0 −3 −18 −24

]

.

Multiply the second row by −1/3 to create a leading one in the second row.

−(1/3)©2

[

1 3 1 10 15
0 0 1 6 8

]

.

The matrix is in row-echelon form. At this point we could write out the
equations and do back-substitution to find the answer. Instead, we keep
going to reduced row-echelon form. Subtract the second row from the first
to get

©1 −©2
[

1 3 0 4 7
0 0 1 6 8

]

.

Now this is reduced row-echelon form. The equations are

x + 3y + 4w = 7
z + 6w = 8

.

The leading 1’s are in the first and third rows. So the bound variables are
x and z; the free variables are y and w. Write the bound variables in terms
of the free variables

x = 7 − 3y − 4w, z = 8 − 6w.

The solution set to the system is all vectors satisfying these equations. Since
y and w can be anything, the solution set can be written























7 − 3y − 4w
y

8 − 6w
w























.
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Here we have substituted the formulas for the bound variables. Since there
are free variables, there are an infinite number of solutions.

The fact that there are always 0, 1 or infinitely many solutions is a special
feature of linear systems of equations. Non-linear equations, can have other
numbers of solutions, for example. For example x2 = 1, has two solutions
x = ±1.

Note 3.8. (1) It’s not possible to read off the number of solutions from
the number of unknowns and the number of equations, without
doing the elimination.

(2) If the number of unknowns is greater than the number of equations,
some of the unknowns must be free. So there are always infinite or
no solutions.

(3) The system is called homogeneous if the numbers to the right of
the equals signs/bar are all zero. Since these systems are always
consistent, the number of solutions is infinity or one.

3.3. Geometric interpretation of consistency. Using what we said
about matrix vector products, the following is the geometric interpreta-
tion for consistency:

Theorem: A linear system Ax = b is consistent iff b is a linear combi-
nation of the columns of A iff b is in the span of the columns of A iff the
system [A|b] has reduced row echelon form which has no row of the form
[0|1].

Example 3.9. Determine whether





1 0 1
−1 1 0
0 −1 1



 is consistent. Answer:

the span of the columns of the matrix on the left is the plane x+ y + z = 0.

The vector





1
0
1



 is not in this plane, so the system is inconsistent. It’s

easy to check this by elimination: the row echelon form has a row of the
form [0 0 2] so the system is inconsistent.

Example 3.10. Is





0
0
1



 in the span of the vectors





1
0
1



 ,





−1
1
1



 ,





1
1
3



?

Answer: Note that the span of these vectors could by all of R
3, or a plane,

or a line, or a point. We solve the system




1 −1 1 0
0 1 1 0
1 1 3 1



→





1 −1 1 0
0 1 1 0
0 2 2 1



→





1 −1 1 0
0 1 1 0
0 0 0 1





which is inconsistent. So the given vector is not in the span.

In fact, it’s not hard to solve this problem without computing anything.
If we denote these three vectors by u1,u2,u3, then u3 = 2u1 + u2. So the
span of the vectors u1,u2,u3 is the same as that of u1,u2 which is a plane.

It’s not hard to see it is the plane x + 2y = z. Since





0
0
1



 is not in this

plane, it is not in the span.

3.4. Application to polynomial interpolation. There is a unique line
passing through the points (1, 1) and (−1, 1). How many degree two poly-
nomials are there passing through these points? 1 Although this problem
seems non-linear (a parabola is a graph of a quadratic function) in fact this
is a system of linear equations. Suppose that the function is

f(x) = ax2 + bx + c.

The unknowns here are the values of a, b, c, since we are solving for the
parabola, not x. Each point gives us an equation for a, b, c:

a(1)2 + b(1) + c = 1

a(−1)2 + b(−1) + c = 1.

The matrix form of this system is
[

1 1 1 1
1 −1 1 1

]

.

Since the number of unknowns is greater than the number of equations,
from Theorem 3.8 we know that there are either zero or infinite solutions.
To figure out which, we have to do elimination. There is already a leading
1 in the first row, so there’s nothing to do there. We subtract the first row
from the second to get

©2 −©1

[

1 1 1 1
0 −2 0 0

]

.

1If you want, imagine you have collected some experimental data and know for some

reason that the quantities you are measuring are related by a degree two function.
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Divide the second row by −2 to get a leading 1:

©2 /(−2)

[

1 1 1 1
0 1 0 0

]

.

This matrix is now in row-echelon form. To get reduced row-echelon form,
subtract the second row from the first:

©1 −©2
[

1 0 1 1
0 1 0 0

]

.

The equations are
a + c = 1, b = 0.

The bound variables are a, b; the free variable is c. Expressing the bound
variables in terms of the free variables gives

a = 1 − c, b = 0.

The solution vectors are




1 − c
0
c



 .

The solution functions are

f(x) = (1 − c)x2 + 0x + c = (1 − c)x2 + c.

It’s easy to check that these all satisfy f(±1) = 1. Since there is one
solution for each value of c, there are infinite solutions.

Example 3.11. It’s easy to come up with a similar example which has no
solutions: If the data points are (1, 1) and (1,−1), there is no function with
these values because any function takes only one value at any value of x.
If we try to solve this system, we get the matrix form

[

1 1 1 1
1 1 1 −1

]

which has rref (reduced row-echelon form)
[

1 1 1 1
0 0 0 −2

]

.

This is inconsistent.

Example 3.12. Find all polynomials of degree 2 passing through the points
(−1, 1), (0, 2), (1, 1).

Pluggin in the data points into the polynomial ax2 + bx + c gives the
system of equations

a(−1)2 + b(−1) + c = 1

a(0)2 + b(0) + c = 2

a(−1)2 + b(1) + c = 1.

This system has augmented matrix




1 −1 1 1
0 0 1 2
1 1 1 1



 .

The matrix has rref equal to




1 0 0 −1
0 1 0 0
0 0 1 2



 .

The equations are

a = −1, b = 0, c = 2.

There is a unique solution, f(x) = −x2 + 2 .

Here is the general result, which we will prove later using determinants:

Theorem 3.13. Given n points (x1, y1), . . . , (xn, yn), with x1, . . . , xn dis-
tinct, there is a unique polynomial of degree n + 1 passing through them.
If d > n + 1, there are infinitely many polynomials passing through these
points.

3.5. Gauss-Jordan elimination. Elimination can be done in many dif-
ferent ways. Gauss observed in the 1800s that there is a systematic way of
doing elimination. Doing elimination by hand, Gauss’ method may not be
the best way, for instance, it may involve fractions when a different choice
of operations might avoid them.

Gauss’ algorithm depends on the following observation: if there is a non-
zero entry in a column in a matrix, then that entry can be used to make
all the other entries in that column zero, by subtracting multiples of that
row from the other rows. We followed Gauss’ method when we found the
rref of the matrix





1 2 3
2 4 6
3 6 8



 .

The steps (in the short-hand we used above) were

©2 − 2©1
©3 − 3©1





1 2 3
0 0 0
0 0 −1



 7→ ©2 ↔ ©3





1 2 3
0 0 −1
0 0 0



 7→ −©2





1 2 3
0 0 1
0 0 0



 .
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This is called the forward pass. The backward pass has just one step:

©1 − 3©2




1 2 0 −5
0 0 1 2
0 0 0 0



 .

Gauss’s algorithm is the following.

Definition 3.14. The forward pass in Gauss-Jordan elimination consists
of the following steps:

(1) Find the first column containing a non-zero value.
(2) Find the first entry in that column that is non-zero. The place of

this entry is a pivot.
(3) Switch rows so the pivot is in the first row.
(4) Make the first row have a leading one, by dividing the first row by

the value in the pivot,
(5) For each non-zero entry below the pivot, multiply the first row by

its value, and subtract it to make the entry zero.
(6) Repeat steps (b) - (e) for the next column containing a non-zero

value, ignoring rows that already have leading ones.

After the forward pass, the matrix is in row-echelon form. The backward
pass in Gauss-Jordan elimination consists of the following steps:

(1) Find the last non-zero row, that is, the last row containing a pivot.
(2) For each non-zero entry above the leading one, subtract the value

of that entry times the pivot row to make that entry zero.
(3) Repeat step (b) for the row above.

After the backward pass, the matrix is in reduced row-echelon form.

The phrase Gaussian elimination is another term for the forward pass
in Gauss-Jordan elimination (or alternatively, Gauss-Jordan elimination
extends Gaussian elimination by adding the backward pass.)

3.6. Elementary matrices. Each row operation can be represented by
multiplying by an elementary matrix on the left. The elementary matrix
corresponding to the row operation is the result of performing the row
operation on the identity matrix.

Example 3.15. The elementary matrix corresponding to ©3 7→ ©3 −3©1 is

©3 7→ ©3 − 3©1





1 0 0
0 1 0
0 0 1



 7→





1 0 0
0 1 0

−3 0 1



 .

The elementary matrix corresponding to ©1 ↔ ©2 is

©1 ↔ ©2




1 0 0
0 1 0
0 0 1



 7→





0 1 0
1 0 0
0 0 1



 .

The elementary matrix corresponding to ©2 7→ −©2 is

©2 7→ −©2





1 0 0
0 1 0
0 0 1



 7→





1 0 0
0 1 0
0 0 −1



 .

Theorem 3.16. Doing a row operation on a matrix gives the same result
as multiplying on the left by the corresponding elementary matrix.

Example 3.17.




1 0 0
0 1 0

−3 0 1









1 2 3
0 0 0
3 6 8



 =





1 2 3
0 0 0
0 0 −1



 .





0 1 0
1 0 0
0 0 1









1 2 3
0 0 0
0 0 −1



 =





1 2 3
0 0 −1
0 0 0



 .

3.7. LU factorization. In this section we discuss an equivalent formula-
tion of Gaussian elimination in terms of matrix multiplication. This for-
mulation is used in linear algebra software packages such as MATLAB.

To explain the reformulation, note that the row-echelon form of a matrix
is always upper triangular, since the leading 1 in each row is to the right of
the leading 1 above it. In this section, we call the row-echelon form U , since
it is upper triangular. Suppose that A can be put into row-echelon form
U by a sequence of row operations correspondiqng to elementary matrices
E1, . . . , Ek. Doing the row operation is the same as multiplying by the
elementary matrix, by Theorem 3.16. So U is the matrix product

U = EkEk−1 . . . E1A.

Example 3.18. Gaussian elimination on A =





2 4 6
3 6 9
3 6 11



 is

[

1
2©1

−3©1

]





2 4 6
3 6 9
3 6 11



→ ©2 ↔ ©3





1 2 3
0 0 0
0 0 2





→ ©2 /2





1 2 3
0 0 2
0 0 0



→





1 2 3
0 0 1
0 0 0



 .
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The elementary matrices corresponding to these operations are

E1 =





1 0 0
−3 1 0

0 0 1



 , E2 =





1 0 0
0 0 1
0 1 0



 , E3 =





1 0 0
0 1/2 0
0 0 1



 .

Therefore,




1 2 3
0 0 1
0 0 0



 =





1 0 0
0 1/2 0
0 0 1









1 0 0
0 0 1
0 1 0









1 0 0
−3 1 0

0 0 1









2 4 6
3 6 9
3 6 11



 .

Check it for yourself.

A factorization of a matrix A is a formula for A as a product of matrices.
For example,

[

2 0
0 2

]

=

[

2 0
0 1

] [

1 0
0 2

]

is a factorization of

[

2 0
0 2

]

We can take the inverses of the elementary matrices to get a factorization
for A:

(3) A = E−1
1 E−1

2 . . . E−1
k U.

Example 3.19. A factorization for





2 4 6
3 6 9
3 6 11



 is





1 0 0
−3 1 0

0 0 1





−1 



1 0 0
0 0 1
0 1 0





−1 



1 0 0
0 −1 0
0 0 1





−1 



1 2 3
0 0 1
0 0 0



 .

Taking the inverses of these matrices using Proposition 4.8 we get




2 4 6
3 6 9
3 6 11



 =





1 0 0
3 1 0
0 0 1









1 0 0
0 0 1
0 1 0









1 0 0
0 −1 0
0 0 1









1 2 3
0 0 1
0 0 0



 .

In general, it’s not that easy to take the product of the matrices E−1
1 , . . . , E−1

k .

However, suppose that none of the operations are row switches. The row
operations in the forward pass subtract rows from lower rows or multiply
rows, so the elementary matrices E1, . . . , Ek in the forward pass, as well as
their inverses, are lower triangular. Since the product of lower triangular
matrices is lower triangular, the product L defined by

L = E−1
1 E−1

2 . . . E−1
k

is also lower triangular. From this and (3) we get

A = LU.

This is called an LU factorization of A.

Proposition 3.20. If the row operations are in the order given by Gauss’s
algorithm, then each entry in L is the unique non-zero entry in E−1

1 . . . E−1
k .

Example 3.21. The row operations used to put A =





1 2 3
2 4 4
3 6 9



 into

reduced row-echelon form

ref(A) = U =





1 2 3
0 0 1
0 0 0





are order)

©2 7→ ©2 − 2©1 , ©3 7→ ©3 − 3©1 , ©2 7→ −©2 /2.

The corresponding elementary matrices are

E1 =





1 0 0
−2 1 0

0 0 1



 , E2 =





1 0 0
0 1 0

−3 0 1



 , E3 =





1 0 0
0 −1/2 0
0 0 1



 .

Their inverses are

E−1
1 =





1 0 0
2 1 0
0 0 1



 , E−1
2 =





1 0 0
0 1 0
3 0 1



 , E−1
3 =





1 0 0
0 −2 0
0 0 1



 .

Their product is

L = E−1
1 E−1

2 E−1
3 =





1 0 0
2 −2 0
3 0 1



 .

Let’s summarize the discussion in a theorem:

Theorem 3.22. If Gaussian elimination on A does not involve any row
switches, then there is an LU factorization of A where U is the result of
the forward pass in elimination. If elimination involves subtracting a scalar
cij times row i from row j, and dividing row i by a scalar cii, then L is the
lower triangular matrix whose ij-th entry is cij.
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This simple way of getting L only works if the elementary matrices are
in order. For instance the product





1 0 0
0 −2 0
0 0 1









1 0 0
2 1 0
0 0 1









1 0 0
0 1 0
3 0 1



 =





1 0 0
−4 −2 0

3 0 1





which is not equal to L. So in order to get the LU factorization, you have
to do the operations in the order that in Gauss’ algorithm.

On the other hand, if you are only trying to find the row echelon form by
hand, it might be easier to use a different order of operations, for instance
in order to avoid fractions.

More generally, if Gaussian elimination on a matrix A involves row
switches then all of the row switches can be done after the other row oper-
ations. This gives a factorization

A = LPU

where P is the product of elementary matrices corresponding to the row
switches.

Example 3.23. Gaussian elimination on A =





1 2 3
2 4 6
3 6 8



 with all the

row switches at the end is

©2 − 2©1
©3 − 3©1





1 2 3
0 0 0
0 0 −1



 7→
−©3





1 2 3
0 0 0
0 0 −1



 7→ ©2 ↔ ©3





1 2 3
0 0 −1
0 0 0



 .

The upper triangular matrix U is

U =





1 2 3
0 0 −1
0 0 0



 .

The elementary matrices are

E1 =





1 0 0
−2 1 0

0 0 1



 , E2 =





1 0 0
0 1 0

−3 0 1



 ,

E3 =





1 0 0
0 1 0
0 0 −1



 , E4 =





1 0 0
0 0 1
0 1 0



 .

Their inverses are

E−1
1 =





1 0 0
2 1 0
0 0 1



 , E−1
2 =





1 0 0
0 1 0
3 0 1



 ,

E−1
3 =





1 0 0
0 1 0
0 0 −1



 , E−1
4 =





1 0 0
0 0 1
0 1 0



 .

To get L we take the product of the matrices corresponding to adding and
multiplying row operations:

L = E−1
1 E−1

2 E−1
3 =





1 0 0
2 1 0
3 0 −1



 .

To get the P matrix we take the product of the matrices corresponding to
the switches. In this case there is only one:

P = E−1
4 =





1 0 0
0 0 1
0 1 0



 .

The LPU factorization of A is




1 2 3
2 4 6
3 6 8



 =





1 0 0
2 1 0
3 0 −1









1 0 0
0 0 1
0 1 0









1 2 3
0 0 −1
0 0 0



 .

3.8. Problems.

(1) Write the following systems in matrix form. (a) a+b = 3, a+2b = 5.
(b) x+y = 3, x−y = 0. (c) x1 +x3 = 5, x1−x2 = 2. (d) x1 +x3 =
5, x3 − x1 = 5. (e) c = 0, a + b = 1. (f) a + b = 5, b = 2, b = 3.

(2) Write the equations represented by the following matrices, assum-

ing variables x1, x2 etc. (a)

[

1 0 1
0 1 2

]

(b)

[

0 1 1
1 0 2

]

(c)

[

0 0 1
1 0 2

]

(d)

[

1 0 1
0 0 0

]

(3) Find all solutions (if any) to each system by elimination. (You
may use matrix form if you wish.) (a) a + b = 3, a + 2b = 5. (b)
x + y = 3, x − y = 0. (c) x1 + x3 = 5, x1 − x2 = 2. (d) x1 + x3 =
5, x3 − x1 = 5. (e) c = 0, a + b = 1. (f) a + b = 5, b = 2, b = 3.

(4) Identify which of the following matrices are in (i) row-echelon form
(ii) reduced row-echelon form.

(a)

[

1 0 1
0 2 2

]
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(b)

[

0 1 1
1 0 2

]

(c)

[

0 0 1
1 0 2

]

(d)

[

1 0 1
0 0 0

]

(e)

[

1 0 1
0 0 0

]

(f)

[

0 0 0
0 0 0

]

(g)

[

1 2 1
0 1 2

]

(h)

[

1 0 1
0 1 2

]

(i)

[

0 1 1
0 0 0

]

(5) True or False? Explain your answer.
(a) If the number of columns of A is greater than the number of
rows, then Ax = b cannot have a unique solution.

(b) If A has more rows than columns, then the number of solu-
tions of Ax = b is either 0 or 1.

(c) If A has the same number of rows as columns, then any linear
system of equations Ax = b has a unique solution.

(d) If A has more columns than rows, then the number of solu-
tions of Ax = b is either 0 or ∞.

(6) Find all solutions to the systems below by finding the reduced row-
echelon form (rref) for the associated matrix. Circle the pivots in
the rref.
(a) x1 + x2 − 2x3 + x4 = 6, 2x1 − x2 + x3 − 3x4 = 0
(b) x2 − 2x3 + x4 = 6, 2x1 − x2 + x3 − 3x4 = 0
(c) x2 + x4 = 6, 2x1 − x2 − 3x4 = 0
(d) 2x2 + 2x4 = 6, x2 + x4 = 3
(e) x1 + x2 − 2x3 + x4 = 6, 2x1 − x2 + x3 − 3x4 = 0, x1 + x4 = 1
(f) x1−x2+x3+2x4 = 3, 2x1−2x2+4x3+2x4 = 6, x1−x2+3x3 =

3.
(7) (a) a row echelon form and (b) the reduced row echelon form and

(c) an LU factorization for the matrix





1 −1 0 −8 −3
−2 1 0 9 5

3 −3 0 −2 −11





(8) Using elimination find (a) a row echelon form (b) the reduced row
echelon form

A =





1 3 −1 1 0
2 6 −1 4 15

−1 −3 2 −1 15



 .

Find all solutions to the system whose augmented matrix is A, that

is,
x1 + 3x2 − x3 + x4 = 0

2x1 + 6x2 − x3 + x4 = 15
−x1 + −3x2 + 2x3 − x4 = 15

.

(9) Using elimination find (a) a row echelon form (b) the reduced row
echelon form for the augmented matrix





2 0 1 2 −1
6 0 3 7 −3
4 0 2 5 −2



 .

(10) True or False? Explain your answer.
(a) The number of columns containing pivots in rref(A) is the

same as the number of rows containing pivots.
(b)

(11) (a) Let f(t) be a function of the form f(t) = c0 + c2t
2 + c4t

4. Write
the system of equations f(−1) = 0, f(0) = 1, f(1) = 0 in matrix
form Ax = b.
(b) Using row reduction, find all solutions to this system (i.e. func-
tion satisfying these conditions.)
(c) Find an LU factorization for A.

(12) Write a 3 by 3 matrix that
(a) subtracts −5 times row 1 from row 3
(b) exchanges rows 1 and 3
(c) divides row 2 by −2.

(13) Find the unique quadratic (degree 2) polynomial passing through
the points (0, 1), (1, 2), (−1, 3).

(14) Find an LU factorization for A =

[

1 2
3 2

]

.

4. Matrix inverses

We showed above how to multiply matrices. The order of matrix multi-
plication matters, that is, matrix multiplication is not commutative. In this
section we discuss inverses of matrices. Every invertible matrix is square,
but not every square matrix is invertible. Matrix division can be defined by
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multiplying by matrix inverses, but the rules for matrix division are more
restrictive than for division of numbers.

4.1. Another example of matrix products. Here is a second simple
example of a linear algebra problem. Suppose that two basketball teams
play in the same area, say Rutgers and Seton Hall, and compete for fans.
Suppose that each year 20 percent of Seton Hall fans switch to Rutgers,
and 10 percent of Rutgers fans switch to Seton Hall, while the total number
of fans stays the same. Suppose that each team has ten thousand fans this
year.

How many fans will there be with each team next year? It is not really
necessary to use linear algebra to solve this problem. Ten percent of ten
thousand is one thousand, so one thousand fans switch to Seton Hall while
two thousand of Seton Hall’s fans switch to Rutgers. Overall Rutgers gains
one thousand fans while Seton Hall loses one thousand fans, so that the
total next year is eleven thousand for Rutres and nine thousand for Seton
Hall.

For other questions, such as how many fans will be with each team many
years in the future, or some years in the past, linear algebra is helpful. Here
is the linear algebra solution to the problem of how many there will be next
year. If we let r(t) and s(t) be the number of Rutgers and Seton Hall fans,
then

r(t + 1) = r(t) − .1r(t) + .2s(t) = .9r(t) + .2s(t)

s(t + 1) = s(t) + .1r(t) − .2s(t) = .1r(t) + .8s(t)

or in matrix form
[

r(t + 1)
s(t + 1)

]

=

[

.9 .2

.1 .8

] [

r(t)
s(t)

]

.

If the current year t = 0 has ten thousand of each then we do matrix
multiplication to find out the number in the next year

[

r(1)
s(1)

]

=

[

.9 .2

.1 .8

] [

10, 000
10, 000

]

=

[

11, 000
9, 000

]

= .

Matrix multiplication is a convenient way to go forward any number of years
forward in time, for example, to forward three years in time we compute

[

r(3)
s(3)

]

=

[

.9 .2

.1 .8

]3 [
10, 000
10, 000

]

=

[

.9 .2

.1 .8

]2 [
11, 000
9, 000

]

=

[

.9 .2

.1 .8

] [

11, 700
8, 300

]

=

[

12, 190
7, 810

]

.

Now consider the following question. Suppose that each team has ten
thousand fans this year. How many fans did each team have last year? This
is the kind of question you can solve using elimination. But another way of
solving this problem is to find the inverse of the matrix above and multiply
the vector by the inverse matrix. That is, if multiplying by a matrix goes
forward in time, then multiplying by the inverse matrix goes backward.

4.2. The definition of the inverse. We said before that AD = AE does
not imply D = E, even if A is non-zero. This is because it doesn’t make any
sense to “divide by A on both sides”, for arbitrary matrices. The matrices
for which it does make sense are called invertible.

Definition 4.1. A matrix A is

(1) left invertible if there is a matrix B such that BA = I
(2) right invertible if there is a matrix C such that AC = I
(3) invertible if it is both left and right invertible.

Note 4.2. (1) If A is both left and right invertible then the left and
right inverses are equal:

C = IC = (BA)C = B(AC) = BI = B.

In this case the inverse is unique, by the same argument. The
left/right inverse is called the inverse of A and denoted A−1.

(2) If A is left invertible, then AD = AE does imply that D = E, since
we can multiply both sides by the left inverse B:

BAD = BAE =⇒ ID = IE =⇒ D = E.

(3) Similarly, for right invertible matrices DA = EA implies D = E.

Example 4.3. (1) The matrix A =

[

2 0
0 3

]

is invertible with inverse

A−1 =

[

1/2 0
0 1/3

]

. More generally, any diagonal matrix with

diagonal entries a11, . . . , ann is invertible with inverse the diagonal
matrix with entries 1/a11, . . . , 1/ann.

(2) The matrix A =

[

1 n
0 1

]

is invertible with inverse A−1 =

[

1 −n
0 1

]

.

(3) The matrix A =

[

1 1 1
1 −1 1

]

has right inverse C =





1
2

1
2

1
2 − 1

2
0 0



.

(4) The inverse of the Rutgers-Seton Hall matrix is
[

.9 .2

.1 .8

]−1

= (10/7)

[

.8 −.2
−.1 .9

]
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We can check this by multiplying
[

.9 .2

.1 .8

]

(10/7)

[

.8 −.2
−.1 .9

]

= .7(10/7)I

and the same for the other order. To answer the question in the first
section about the number of fans in the previous year, we multiply
[

.9 .2

.1 .8

]−1 [
10, 000
10, 000

]

= (10/7)

[

.8 −.2
−.1 .9

] [

10, 000
10, 000

]

= (10/7)

[

6, 000
8, 000

]

=

[

8571
11429

]

.

Note we are rounding off to integers since there is no such thing as
a “fractional fan”. That is, the model is really only approximate
since we cannot divide up a single fan into pieces. (Perhaps one
could think of fractional fans as fans whose loyalty is divided.)

There is a simple formula for the inverse of a 2 × 2 matrix. The deter-
minant of a 2 × 2 matrix is

det

[

a b
c d

]

= ad − bc.

The determinant is non-zero if and only if the matrix is invertible; the a
formula for the inverse is (check!)

[

a b
c d

]−1

=
1

ad − bc

[

d −b
−c a

]

.

Later we’ll generalize this formula to larger matrices.

If A is invertible then so are its square A2 and its transpose:

(A2)−1 = (A−1)2

since A2(A−1)2 = AAA−1A−1 = AIA−1 = I, and

(AT )−1 = (A−1)T .

Similarly, the inverse of An is (A−1)n, for any n > 0. If A and B are
invertible then

(AB)−1 = B−1A−1.

You can think of the reason for this in the following silly way. Suppose at
the beginning of the day you put on your shoes (call this operation A) and
tie your shoe laces (call this operation B). What do you do when you come
home?

4.3. Finding inverses via elimination. The most efficient way of finding
the inverse of a square matrix A is via elimination. Consider the vector
equation Ax = y. The inverse matrix A−1 solves the equation x = A−1y.
So if we can express x in terms of y, we can read off the coefficients to get
the matrix A−1.

Writing out the equations for Ax = y gives

a11x1 + a12x2 + . . . + a1nxn = y1

a21x1 + a22x2 + . . . + a2nxn = y2

...

an1x1 + an2x2 + . . . + annxn = yn.

We now have a system of linear equations with variables on the right-hand
side. Reading off the coefficients we get the matrix form











a11 a12 . . . a1n 1 0 . . . 0
a21 a22 . . . a2n 0 1 . . . 0

...
an1 an2 . . . ann 0 0 . . . 1











.

or, for short, [A|I]. To solve for x, we do elimination. If, at the end, we get
the identity matrix on the left-hand side, then the right-hand side is the
inverse is the matrix on the right.

Example 4.4. To find the inverse of A =

[

2 0
0 3

]

we do elimination on

[

2 0 1 0
0 3 0 2

]

.

We divide the first row by 2 and the second by 3 to get the rref
[

1 0 1/2 0
0 1 0 1/3

]

.

The inverse is A−1 =

[

1/2 0
0 1/3

]

.

Example 4.5. Find the inverse of A =

[

2 3
4 6

]

. We do elimination on

[

2 3 1 0
4 6 0 1

]

.
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We subtract twice the first row from the second to get
[

2 3 1 0
0 0 −2 1

]

.

The second equation is inconsistent: this matrix has no inverse.

Example 4.6. Find the inverse of A =





1 1 1
1 2 3
0 1 1



. We do elimination

on the augmented matrix




1 1 1 1 0 0
1 2 3 0 1 0
0 1 1 0 0 1



 .

We subtract the first row from the second to get




1 1 1 1 0 0
0 1 2 −1 1 0
0 1 1 0 0 1



 .

We subtract the second from the first and third to get




1 0 −1 2 −1 0
0 1 2 −1 1 0
0 0 −1 1 −1 1



 .

Multiply the third by −1 to create a leading 1:




1 0 −1 2 −1 0
0 1 2 −1 1 0
0 0 1 −1 1 −1



 .

Now add the third to the first, and subtract twice the third from the second
to get





1 0 0 1 0 −1
0 1 0 1 −1 2
0 0 1 −1 1 −1



 .

The inverse is

A−1 =





1 0 −1
1 −1 2

−1 1 −1



 .

Notice that if A is invertible, then Ax = y has a unique solution for
every y. This implies that rref(A) = I, since (1) if there were a row of
zeroes, the system would be inconsistent for some values of y, and (2) if
column did not contain a leading 1, there would be free variables, so any
solution would not be unique. So any invertible matrix is automatically
square. Let’s summarize what we’ve shown so far:

Theorem 4.7. A matrix A is invertible if and only if A is square and
rref(A) = I. In this case, the inverse is the right hand side of the matrix
rref([A|I]).

It’s easy to check that a 2 × 2-matrix A has rref(A) = I if and only if
the determinant is non-zero.

4.4. Application: A formula for the line between two points. There
is a unique line through any two points (x1, y1), (x2, y2). Let’s find a
formula for it, using matrices. (Think for a moment about you would find
a formula another way.) The equation for a line is f(x) = ax + b. The two
data points give

ax1 + b = y1, ax2 + b = y2

or in matrix form
[

x1 1
x2 1

] [

a
b

]

=

[

y1

y2

]

.

The solution is
[

a
b

]

=

[

x1 1
x2 1

]−1 [
y1

y2

]

.

Let’s find the inverse using the formula for two by two inverses. The deter-
minant is x1 − x2, so the inverse is

[

x1 1
x2 1

]−1
1

x1 − x2

[

x2 −1
x1 −1

]

.

The solution is
[

a
b

]

=
1

x1 − x2

[

y1 − y2

−y1x2 + x1y2

]

or

f(x) =
y1 − y2

x1 − x2
x +

x1y2 − y1x2

x1 − x2
.

Check that the slope and y-intercept make sense.

4.5. Inverse of Elementary Matrices. You don’t have to do elimination
to compute the inverse of an elementary matrix:

Proposition 4.8. If E is an elementary matrix corresponding to a row
operation, then E−1 is the elementary matrix corresponding to the opposite
operation.
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Example 4.9. The elementary matrix corresponding to ©3 7→ ©3 − 3©1

is E =





1 0 0
0 1 0

−3 0 1



 . The opposite operation is ©3 7→ ©3 + 3©1 . So the

inverse of E is

©3 7→ ©3 + 3©1





1 0 0
0 1 0
0 0 1



 7→





1 0 0
0 1 0
3 0 1



 = E−1.

The elementary matrix corresponding to ©1 ↔ ©2 is E =





0 1 0
1 0 0
0 0 1



.

The opposite operation is ©1 ↔ ©2 (Switching again undoes the switch.)
So the inverse of E is E itself.

The elementary matrix corresponding to ©2 7→ −2©2 is E =





1 0 0
0 1 0
0 0 −2



.

The opposite operation is ©2 7→ ©2 /(−2). So the inverse of E is

©2 7→ ©2 /(−2)





1 0 0
0 1 0
0 0 1



 7→





1 0 0
0 1 0
0 0 −1/2



 .

4.6. The idea of the inverse. It’s important to understand the definition
of the inverse informally. A matrix is invertible if it times something is the
identity, and something times it is the identity.

Here is an example:

Example 4.10. Show that if a square matrix A is such that A2 is invertible,
then A is also invertible.

Answer: Start out any problem like this by writing out the meaning of
the assumption and the conclusion. It is probably best to try it first in
English.

A is invertible iff A times something and something times A are the
identity.

A2 is invertible iff A2 times something and something times A2 are the
identity.

Now let’s write out the same thing using symbols. The “somethings” in
the previous two sentences might be different, so we use different letters for
them.

A is invertible iff A is square and for some B, AB = I.

A2 is invertible iff for some C, A2C = I.

Now assume that A2 is invertible. So for some C, A2C = CA2 = I.

Can you find B so that AB = BA = I?

Yes! A2C = (AA)C = A(AC) = I. So if we define B = AC then
AB = I. This shows that A is invertible.

4.7. Problems.

(1) Compute the matrix product in each case, or explain why the prod-
uct is undefined.

(a)

[

1 1
1 −1

] [

.5 .5

.5 −.5

]

(b)
[

1 1
]

[

.5

.5

]

(c)

[

.5

.5

]

[

1 1
]

(d)

[

1 2
0 1

] [

1 −2
0 1

]

(e)

[

1 2
0 1

] [

1 1/2
0 1

]

(2) Find the inverses of the following matrices using elimination.

(a)

[

1 1
1 −1

]

(b)

[

1 2
0 1

]

(c)

[

0 1
1 0

]

(3) Find the inverses of the following matrices using the formula for
two-by-two inverses:

(a)

[

1 1
1 −1

]

(b)

[

1 2
0 1

]

(c)

[

0 1
1 0

]

(4) Find the inverses of the following matrices using elimination, or
explain why the matrix is not invertible.



26

(a)





1 1 −1
1 −1 1

−1 1 1





(b)





1 1 −2
1 −2 1

−2 1 1





(c)





1 2 0
0 1 2
0 0 1





(d)





0 1 0
0 0 1
1 0 0





(5) True/False:
(a) If A is invertible then AT is invertible.
(b) If A and B are matrices such that AB = I then A and B are

invertible.
(c) The inverse of an invertible upper triangular matrix is upper

triangular.
(d) If A is invertible then ref(A) is invertible.
(e) The identity matrix I is invertible.
(f) The inverse of a symmetric matrix is symmetric.

(6) Find the inverse of

A =





0 1 0
0 0 1
2 0 0





(7) Find the inverse of

A =





1 2 3
0 1 2
0 0 1



 .

(Matrices of this form are called upper triangular.) You might want
to check your answer by multiplying A by A−1.

(8) Let A =





0 0 3
0 1 0

1/3 0 0



. Compute (a) A2 (b) A−1 and (c) AT .

(9) Compute (a) A2 (b) A−1 and (c) AT for A =





0 0 3
0 1 0

1/3 0 0





(or A =





0 2 1
0 1 2
3 0 0



 . or A =





1 2 3
0 1 2
0 0 1



 .)

(10) Let A =









1 2 3 0
4 5 6 0
7 0 0 0
0 0 0 2









. Find the inverse of A, by row reduction.

(11) Write out what it means for (i) in English (ii) using symbols for
(a) A to be invertible;
(b) AB to be invertible;
(c) A and B to be invertible;

where A, B are matrices such that AB is defined.
(12) Prove that if a matrix A is invertible, then A3 is also invertible.
(13) Prove that if a matrix A3 is invertible, then A is also invertible.
(14) Prove that if A and B are square matrices such that AB is invert-

ible, then A is invertible and B is invertible.

5. Determinants via patterns

The determinant is a number associated to a matrix which “determines”
whether the matrix is invertible: The determinant is non-zero if and only
if the matrix is invertible.

5.1. The definition of the determinant. Let A be a square n×n matrix.
A pattern in A is a choice of n entries from A, so that one entry is chosen
from each row and column. The product of the pattern is the product of
chosen entries.

Example 5.1. The patterns in the matrix

[

a b
c d

]

are

[

©a
©d

]

,

[

©b
©c

]

.

Each pair of entries in the pattern is either oriented southwest-northeast
(SW-NE) or southeast-northwest (SE-NW). The pair is said to be an invo-
lution if it is oriented SW-NE. The sign of the pattern is

sign(P ) = (−1)#involutions,

that is 1 if the number of involutions is even, and −1 if the number of
involutions is odd.

Example 5.2. ad is not an involution in the matrix

[

a b
c d

]

, but bc is

an involution. The sign of the pattern ad is 1, the sign of the pattern bc is
−1.
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The determinant of A is defined by

det(A) =
∑

patterns P

(−1)#involutions(P ) product of entries)(P ).

Example 5.3. The determinant of a 2 × 2 matrix is det(A) = ad − bc.

We can ignore patterns that contain a zero, since these don’t contribute
to the determinant.

Example 5.4. Find the determinant of A =





1 0 2
3 4 0
5 6 7



. The non-zero

patterns are





©1
©4

©7



 (no involutions)





©2
©4

©5



 (3 involu-

tions) and





©2
©3

©6



 (2 involutions). So the determinant is

det(A) = (1)(4)(7) + (−1)3(5)(4)(2) + (−1)2(3)(6)(2) = 24.

Therefore, the matrix is invertible.

Example 5.5. Find the determinant of the upper triangular matrix

A =









1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10









.

The only non-zero choice from the first row is 1. The only non-zero choice
from the second row, that is not in the same column as 1, is 3. In the
same way, one sees that the only possible non-zero choices from the third
and fourth rows are 6 and 10. There are no involutions in this pattern.
Therefore, the determinant is

det(A) = (1)(3)(6)(10) = 180

and the matrix is invertible.

More generally, the same reasoning shows

Theorem 5.6. Let A be upper triangular, lower triangular, or diagonal.
Then the determinant is the product of diagonal entries. Therefore, A is
invertible if none of the diagonal entries are zero.

5.2. Determinants of Elementary Matrices. An elementary matrix E
corresponding to a row operation which adds a row to another has 1’s along
the diagonal, and is either upper or lower triangular. By Theorem 5.6, the
determinant of E is 1.

If E is the elementary matrix corresponding to multiplying row i by c,
then E is diagonal so by the Theorem det(E) is the product of diagonal
entries

det(E) = c.

Example 5.7. Multiplying row 3 by 5 gives

5©3









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









7→









1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 1









= E.

which has determinant 5.

Suppose E is the elementary matrix corresponding to a switch of rows i
and j.

Example 5.8. Switching rows 2 and 4 gives

©2 ↔ ©4









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









7→









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









= E.

E has exactly one non-zero entry in each column, and so a unique non-
zero pattern. The inverted pairs are the ij-th pair, and the ik-th and jk-th
pairs for k between i and j. Therefore, the number of inverted pairs is

#2|i − j| + 1

which implies that

det(E) = (−1)2|i−j|+1 = −1.

5.3. Properties of the determinant.

(1) (Transpose) Let A be a square matrix. Then det(A) = det(AT ).

For every pattern in A flips over into a transpose for AT , and
vice-versa. For instance, (2)(3)(6) is a pattern in both





1 0 2
3 4 0
5 6 7



 ,





1 3 5
0 4 6
2 0 7



 .
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If a pair is oriented SW-NE before in A, the flipped pair is also
oriented SW-NE:





©2
©3



 ,





©3

©2





So the number of involutions in both patterns is the same. Since
the determinant is the sum over patterns, with sign given by the
number of involutions, this shows

(2) (Switching Two Rows) Let B equal the matrix A with two rows
switched. Then det(B) = − det(A).

Example 5.9.

det





1 0 2
3 4 0
5 6 7



 = − det





3 4 0
1 0 2
5 6 7



 .

Every pattern in B corresponds to a pattern in A but the number
of involutions is different. Say row i is switched with row j. For
every row k in between, the pair of entries in row i and row k
switches from NE-SW to NW-SE or vice-versa. Similarly for the
pair of entries in row j and row k. The pair of entries in rows i,j
also switches from NE-SW to NW-SE. As a result the number of
involutions changes by 2 times the number of rows in between, plus
1. So the sign (−1)#involutions switches from + to −, or vice-versa.

(3) (Equal Rows) If A has two rows equal, det(A) = 0.

Example 5.10.

det





1 0 2
3 4 0
1 0 2



 = 0

because the first and third rows are equal.
Let B be the matrix with the two rows switched, that is, B =

A. Then det(A) = − det(B) = det(A) which can only happen if
det(A) = 0.

(4) (Summing rows or columns) Let v,w be n-vectors. Let A, B,
C be square matrices so that A, B, C are all equal except that
one of the rows is v for A, w for B, and v + w for C. Then
det(C) = det(A) + det(B).

Note it is not true that det(A+ B) = det(A)+ det(B); it is only
true if rows or columns are added!

This is best proved later, using cofactor expansion.

(5) If B is the matrix obtained by multiplying row i by c, then det(B) =
c det(A).

Example 5.11.

det





1 0 2
9 12 0
5 6 7



 = 3 det





1 0 2
3 4 0
5 6 7





because the second row has been multiplies by 3.

If B is obtained from A by multiplying every row by c, then
det(B) = cn det(A). That is,

det(cA) = cn det(A).

A common mistake is to forget the superscript n. In particular,
det(−A) is not equal to − det(A) unless the size n is odd.

(6) (Adding one row to another) If B is obtained from A by adding a
multiple of one row to another, then det(B) = det(A).

This is a consequence of the previous two results: Say row i of
A is v, and row j is w, and B has row i equal to v + cw. Then
det(B) = det(A) + c det(C), where C is the matrix obtained by
substituting w into row i. But then C has two rows equal, so
det(C) = 0.

Example 5.12. det





1 0 2
0 4 −6
5 6 7



 = det





1 0 2
3 4 0
5 6 7



 because

three times the first row has been subtracted from the second.

Now we’re ready to show that the determinant determines whether the
matrix is invertible.

Theorem 5.13. The following are equivalent for a square matrix A:

(1) det(A) 6= 0
(2) rref(A) = I
(3) A is invertible.

Proof. We already proved (2) ⇐⇒ (3). It remains to prove (1) ⇐⇒ (2).

Suppose the in the course of reducing A to its reduced row-echelon form,
we do a number of row operations, such as adding multiples of rows to other
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rows, multiplying rows by non-zero numbers c1, . . . , cr, and switching rows
s times.

Under the first type of row operation, the determinant is unchanged.
Under the second type, the determinant is multiplied by ci. Under the
third, the determinant changes sign.

det(rref(A)) = (−1)sc1 . . . cr det(A).

This shows that det(A) is non-zero if and only if det(rref(A)) is non-zero.

The rref(A) is upper triangular, by (3) in its definition (3.5). So its
determinant is non-zero if and only if there are non-zero numbers along the
diagonal. If det(A) is non-zero, each of these must be a leading 1. But then
the rref must equal the identity. �

Using similar techniques we can show the following.

Theorem 5.14. For any square matrices A, B, det(AB) = det(A) det(B).

Proof. Look at the vector equation Ax = ABy. If A is invertible, this
equation has solution x = By. Suppose in the elimination s rows get
switched, and rows get multiplied by non-zero numbers c1, . . . , cr. Then

det(A)(−1)sc1 . . . cn = det(I) = 1.

Since the same operations happen on the right,

det(AB)(−1)sc1 . . . cr = det(B).

But the left-hand side is 1/ det(A). �

Corollary 5.15. (1) If A is invertible then det(A−1) = 1/ det(A).
(2) AB is invertible if and only if A is invertible and B is invertible.
(3) An is invertible if and only if A is invertible.

Proof. (a) det(A) det(A−1) = det(AA−1) = det(I) = 1. Now divide by
det(A−1) on both sides. (a) det(AB) = det(A) det(B), so det(AB) is non-
zero exactly if det(A) and det(B) are non-zero. (b) is similar. �

Note that multiplication by an elementary matrix is the same as a row
operation. We check:

(1) The determinant changes sign when rows are switched. Proof:
det(PijA) = det(Pij) det(A) = − det(A), since det(Pij) = −1.

(2) The determinant is unchanged when a multiple of one row is added
to another. Proof: det(EijA) = det(Eij) det(A) = det(A), since
det(Eij) is the product of the diagonal entries which equals 1.

(3) The determinant is multiplied by c, if row i is multiplied by c.

5.4. Problems.

(1) For each matrix (a) list the non-zero patterns (b) identify the in-
volutions in each pattern (c) find the determinant.

(a)





1 0 0
0 2 0
0 0 3





(b)





1 2 3
0 4 5
0 0 6





(c)





1 0 0
1 2 0
1 2 3





(d)





0 1 0
0 0 1
1 0 0





(e)





0 1 0
0 0 1
1 0 0





(f)









1 2 0 0
3 4 0 0
0 0 5 6
0 0 7 8









(g)





1 0 2
0 4 −6
5 6 7





(2)(3) For each pair of matrix, compute the determinants and explain the
relationship in terms of the properties of determinants under row
operations.

(a)





1 0 2
0 4 −6
5 6 7



 and





2 0 4
0 4 −6
5 6 7





(b)





1 0 2
0 4 −6
5 6 7



 and





0 4 −6
1 0 2
5 6 7




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(c)





1 0 2
0 4 −6
5 6 7



 and





1 0 2
1 4 −4
5 6 7





(4) True or false:
(a) For any square matrix A, det(−A) = −det(A).
(b) If det(A) = 0, then Ax = 0 has infinite solutions.

(5) True/False:
Suppose A = [v1|v2|v3] is the matrix with columns v1, v2, v3. If

det(A) = 2, then
(a) the determinant of the matrix A′ = [v3−v1|v2|v1−v2] is −2.
(b) the determinant of the matrix A′ = [v2|v3|v1 − v2] is also 2.
(c) the determinant of the matrix A′ = [v1 − v2|v2 − v3|v3 − v1]

is also 2.
(6) Find the determinant of the matrix

A =





2 −1 1
−1 0 3

2 1 −4





(a) by expanding along the second row;
(b) by row-reducing A to an upper triangular matrices and using

the behavior of the determinant under elementary row operations.
(7) (Strang) Compute the determinant of

A =





a a a
a b b
a b c



 .

using row reduction.
(8) Show that a square matrix A is invertible, if and only if det(A) 6= 0.

5.5. Geometry of Determinants. A rotation matrix is a matrix of the
form

R =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

.

Proposition 5.16. If v is any 2-vector, then Rv is the rotation of v around
0 by angle θ.

Proof. Write v = v1e1 + v2e2. Linear combinations are preserved under
rotation; so the rotation of v by θ is v1 times the rotation of e1 by θ plus
v2 times the rotation of e2 by θ.

✟✟✟✟✟✟✘✘

✘✘❳❳

❈❈✄✄

❚
❚

❚
❚

❚❈❈

◗
◗

◗
◗

◗
◗❛❛

✧✧✧✘✘

Rv
v v2e2

v1e1

v1Re1

v2Re2

The rotation of e1, e2 by θ are the vectors

Re1 =

[

cos(θ)
sin(θ)

]

, Re2 =

[

− sin(θ)
cos(θ)

]

so the rotation of v is

v1Re1 + v2Re2 = Rv.

�

Lemma 5.17. The determinant of R is 1.

Proof. det(R) = cos2(θ) + sin2(θ) = 1. �

Let A be a 2 matrix with columns v1 and v2.

Proposition 5.18. The absolute value | det(A)| of the determinant of A
is the area of the parallelogram with edge vectors v1 and v2.

Proof. Choose a rotation matrix R so that Rv1 lies on the x-axis. Since R
is either a rotation or a reflection, the area of the parallelogram spanned
by the columns of RA

w1 = Rv1, w2 = Rv2

is the same as that of v1,v2. Since w1 is on the x-axis,

w1 =

[

a
0

]

w2 =

[

b
c

]

the area of the parallelogram is |ac|.
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✘✘❳❳☎
☎
☎
☎
☎
☎
☎✁✁

a

c

On the other hand,

det(RA) = ac.

Since det(RA) = det(R) det(A) = det(A), this completes the proof. �

Example 5.19. Find the area of the parallelogram P with vertices at
[1 0], [0 2], [0 − 1], and [−1 1].

The edge vectors are

v1 = [1 0] − [0 2] = [1 − 2], v2 = [0 − 1] − [0 2] = [0 − 3]

so

A =

[

1 −2
0 −3

]

which has determinant −3. Therefore the area(P) = 3 .

Example 5.20. Find the area of the triangle T with vertices [1 0], [0 2], [0 −
1].

The area of the triangle is half that of the parallelogram, or area(T) = 3/2 .

This formula generalizes to n-vectors (in particular, to n = 3) as follows.
A parallelopiped in R

n is a set of vectors

P = {v0 + c1v1 + . . . + cnvn, 0 ≤ c1, . . . , cn ≤ 1.}

Example 5.21. The parallelopiped with edge vectors [1 1 0] , [1 0 2] , [0 2 1]
is drawn

✦✦✦✦
✁
✁
✁
✁

★
★

★
★

✦✦✦✦

★
★

★
★

✁
✁
✁
✁

✁
✁
✁
✁

✁
✁
✁
✁★

★
★

★
✦✦✦✦

★
★

★
★

✦✦✦✦

Proposition 5.22. If A is the matrix with columns v1, . . . ,vn, and P is
the parallopiped with edges v1, . . . ,vn, then

det(A) = |Vol(P )|.

Proof. We can rotate the vector so that the vector v1 lies on the x axis, the
vector v2 lies in the xy plane, etc. (See the section on QR factorization.)
This doesn’t change the volume, nor the determinant of A. Then A is
upper triangular, so the determinant is the product of the diagonal entries
a1, . . . , an.

Let P (j) denote the parallelopiped in R
j whose edge vectors are v1, . . . ,vj .

Then P (j) is the base of P (j + 1) and

area(P (j)) = base · height = area(P (j − 1))|aj |
so

area(P (n)) = a1 . . . an = | det(A)|.
�

Example 5.23. The parallelopiped with edge vectors [1 1 0] , [1 0 2] , [0 2 1]
has volume

| det(





1 1 0
1 0 2
0 2 1



)| = | − 4 − 1| = 5.

A n-simplex is a set of vectors of the form

S = {v0 + c1v1 + . . . + cnvn, 0 ≤ c1, . . . , cn ≤ 1,

n
∑

i=1

ci ≤ 1}.
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A 2-simplex is just a triangle.

Example 5.24. If v0 = [1 1],v1 = [1 0],v2 = [0 1] S is the triangle with
vertices at (1, 1), (1, 2), (2, 1).

Proposition 5.25. The volume of an n-simplex S with edge vectors v1, . . . ,vn

is

Vol(S) =
1

n!
| det(A)|

where A is the matrix with columns v1, . . . ,vn.

Proof. This is the same proof as 5.22, except that the volume of the simplex
S(j) with edge vectors vv1, . . . ,vj is related to the volume of S(j − 1) by

Vol(S(j)) =
base× height

dimension
=

1

j
Vol(S(j − 1))aj .

�

Example 5.26. The triangle with vertices (1, 1), (3, 2), (2, 3) has edge vec-
tors

v1 = [3 2] − [1 1] = [2 1] , v2 = [2 3] − [1 1] = [1 2]

and area

area(T ) =
1

2

∣

∣

∣

∣

det

[

2 1
1 2

]∣

∣

∣

∣

= 3/2.

5.6. Problems.

(1) Find the area of the parallelogram with vertices
(a) [0 0], [2 1], [1 2], [3 3].
(b) [1 1], [−2 0], [2 − 1] and a fourth vertex.
(c) [3 3], [1 − 1], [−1 1] and a fourth vertex.

(2) Find the area of the triangle with vertices
(a) [1 1], [−2 0] and [−2 − 1]
(b) [1 3], [2 4] and [4 2]
(c) [3 3], [1 − 1], [−1 1]

(3) Find the volume of the parallelopiped with vertices
(a) [0 0 0], [1 0 0], [1 1 0], [1 1 1] and four other vertices
(b) [2 2 2], [1 0 0], [1 1 0], [1 1 1] and four other vertices
(c) [2 2 2], [1 1 0], [1 0 1], [0 1 1] and four other vertices

(4) Find the volume of the tetrahedron with vertices
(a) [0 0 0], [1 0 0], [1 1 0], [1 1 1] and four other vertices
(b) [2 2 2], [1 0 0], [1 1 0], [1 1 1] and four other vertices
(c) [2 2 2], [1 1 0], [1 0 1], [0 1 1] and four other vertices

(5) (a) Give an example of a “degenerate triangle” whose vertices are
distinct but which has area zero. Verify the area is zero by
computing the determinant of the matrix whose columns are
its edges. Sample answer: the “degenerate triangle” with ver-
tices [1 0], [2 0], [3 0]. The “edge vectors” are [1 0] and [2 0]

and det(

[

1 2
0 0

]

) = 0.

(b) Give an example of a degenerate tetrahedron whose vertices
are distinct points in R

3 and whose faces are non-degenerate
triangles and whose vertices are distinct but which has volume
zero. Verify the volume is zero by computing the determinant
of the matrix whose columns are its edges. Give an example
of a degenerate tetrahedron whose vertices are distinct points
in R

3 whose vertices are distinct but which has a degenerate
face. Verify the volume is zero by computing the determinant
of the matrix whose columns are its edges.

(6)

6. Determinants via cofactor expansion

In the last section we explained how to define determinants as a sum
over patterns in a matrix. In this section we explain how to compute
determinants more systematically, using cofactors. In particular we want
to explain how the formula for 2 × 2 matrices

[

a b
c d

]−1

=
1

ad − bc

[

d −b
−c a

]

generalizes to bigger size.

6.1. Cofactors. Let A be a square n × n matrix. Let Mij denote the
matrix A with row i and column j deleted. Mij is called the ij-th minor
of A.

Example 6.1. The 13-th minor of





1 3 5
0 4 6
2 0 7



 is M13 =

[

0 4
2 0

]

.

The number

Aij = (−1)i+j det(Mij)
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is the ij-th cofactor of A. The signs (−1)i+j are given by the table of
alternating signs, for example, for 3 × 3 the table is





+ − +
− + −
+ − +



 .

Example 6.2. The 13 cofactor of





1 3 5
0 4 6
2 0 7



 is

A13 = (−1)1+3 det

([

0 4
2 0

])

= +(0 − 8) = −8.

Example 6.3. The cofactors of

[

a b
c d

]

are d,−c,−b, a.

Here is the reason we are interested in cofactors:

Theorem 6.4. For any i, the dot product of the i-th row of A with the
cofactors for the i-th row is det(A). If i is not equal to j, the dot product
of the i-th row of A with the cofactors for the j-th row is equal to 0. That
is,

(4) ai1Ai1 + . . . ainAin = det(A), ai1Aj1 + . . . ajnAjn = 0.

Before we explain the theorem, here is an example.

Example 6.5. The cofactors for the first row of





1 3 5
0 4 6
2 0 7



 are

+(28 − 0) = 28,−(0 − 12) = 12, +(0 − 8) = −8.

The dot product of [28 12 − 8] with the rows of A are

28(1)+12(3)−8(5) = 24, 28(0)+12(4)−8(6) = 0, 28(2)+12(0)−8(7) = 0.

Proof. Now we prove the theorem. Each pattern in A contains exactly one
element in row i, say aik. The remaining chosen entries form a pattern
in Mij . So the product of entries appears in the sum (4). Conversely, any
pattern in Mij defines a pattern in A, by adding the entry aij . So the terms
in the sum

ai1 det(Mi1) + . . . ain det(Min)

are the same as those that appear in det(A).

It remains to explain the sign (−1)i+j . The number of involutions in
the pattern in Aij is the number of involutions in the pattern in Mij ,

plus the number v of involutions of pairs containing aij . Let’s compute v.
The matrix Mij is naturally broken up into 4 parts: the entries that lie
NE, NW, SE, SW of aij . We have

v = #NE entries + SW entries.

Since there is only one chosen entries in each row and column

#NE entries = (i−1)−#NW entries, #SW entries = (j−1)−#NW entries.

So
v = i + j − 2 − 2#NW entries

which implies
(−1)v = (−1)i+j .

This proves the first part of (4).

Now suppose we take the dot product of row j in A with the cofactors
for row i. Let B be the matrix obtained from A by replacing row i with row
j. The cofactors for row i are the same for both B and A. The dot product
of the j-th row of A with the cofactors, is the same as the dot product of
the i-th row of B, with the cofactors. By the first part of (4), applied to
B, the result is det(B). But since B has two rows equal, det(B) = 0. �

6.2. Cofactor expansion of the determinant. The first formula in (4)
is called the cofactor expansion of the determinant along row i. For instance,
suppose we want to compute the determinant of

A =





1 3 5
0 4 6
2 0 7



 .

We choose a row along which to expand, say the second. We take each
entry in the row, and multiply by the determinant of the corresponding
minor, with the appropriate sign from the table of signs:

det(A) = −0 det

[

3 5
0 7

]

+ 4 det

[

1 5
2 7

]

− 6 det

[

1 3
2 0

]

= 24.

The same thing works for any column. For any i, the dot product of the
i-th column of A with the cofactors for the j-th column is det(A), if i = j,
and 0 otherwise.

Example 6.6. Suppose we want to find the determinant of the 4×4 matrix

A =









1 2 0 0
2 3 4 5
3 4 0 0
5 6 7 0









.
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There is only one non-zero entry in the fourth column; therefore it’s best
to expand along that column. We get

det(A) = −0 + 4 det





1 2 0
3 4 0
5 6 7



− 0 + 0.

Now there is only one non-zero entry in the third column, so we expand
along it:

det(A) = 4(0 − 0 + 7 det

[

1 2
3 4

]

= 28(1(4) − 2(3)) = −56.

The adjoint of A is the transpose of the matrix of cofactors. That is, the
ij-the entry of adj(A) is the ji-th cofactor Aji.

Example 6.7. The adjoint of A =





1 3 5
0 4 6
2 0 7



 is the matrix

adj(A) =





28 −21 −2
12 −3 −6
−8 6 4



 .

6.3. The cofactor formula for the inverse. Here is the promised for-
mula for the inverse:

Theorem 6.8. A−1 = 1
det(A) adj(A).

Proof. It suffices to show that A adj(A) = det(A)I. The dot product of the
i-th row of A with the j-th column of adj(A) is the dot product of the i-th
row of A with the cofactors for the j-th row. By (4), this equals det(A)
if i = j, and 0 otherwise. These are the same as the entries of the matrix
det(A)I. �

Example 6.9. The inverse of A =





1 3 5
0 4 6
2 0 7



 is

A−1 =
1

24





28 −21 −2
12 −3 −6
−8 6 4



 .

The cofactor formula is particularly useful when there are unknowns in
the matrix.

Example 6.10. Find the inverse of A =





a b c
0 a b
0 0 a



 . Since A is upper

triangular, the determinant is the product of diagonal entries det(A) = a3.
The adjoint is

adj(A) =





a2 ab b2 − ac
0 a2 ab
0 0 a2



 .

The inverse is

A−1 =
1

a3





a2 ab b2 − ac
0 a2 ab
0 0 a2



 .

Sometimes when the matrices contain unknowns it’s easier to find the
determinant using the row operations.

Example 6.11. Suppose we want to the unique polynomial passing through
(x1, y1), (x2, y2) and (x3, y3). We write f(x) = a+ bx+ cx2. The equations

a + bx1 + cx2
1 = y1, a + bx2 + cx2

2 = y2, a + bx3 + cx2
3 = y3

can be written in matrix form




1 x1 x2
1

1 x2 x2
2

1 x3 x2
3









a
b
c



 =





y1

y2

y3



 .

The determinant of the matrix is

det









1 x1 x2
1

1 x2 x2
2

1 x3 x2
3







 = det









1 x1 x2
1

0 x2 − x1 x2
2 − x2

1

0 x3 − x1 x2
3 − x2

1









since subtracting the first row from the second and third does not change
the determinant. Multiplying the second by 1/(x2 − x1) and subtracting
(x3 − x1) times the second row from the third gives

(x2 − x1) det







1 x1 x2
1

0 1
x2

2
−x2

1

x2−x1

0 0 (x2
3 − x2

1) −
(x3−x1)(x

2

2
−x2

1
)

x2−x1






.

So the determinant is

(x2 − x1)((x
2
3 − x2

1) −
(x3 − x1)(x

2
2 − x2

1)

x2 − x1
)

= (x2 − x1)((x3 − x1)(x3 + x1) − (x3 − x1)(x2 + x1))

= (x2 − x1)((x3 − x1)(x3 + x1 − x2 − x1))

= (x2 − x − 1)(x3 − x1)(x3 − x2).
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This is called a Vandermonde determinant. You can easily guess how it
generalizes to higher size.

6.4. Problems.

(1) For each matrix find the determinant by cofactor expansion along
the given row and given column.

(a)





1 0 0
0 2 0
0 0 3



 by expansion along the first row.

(b)





1 2 3
0 4 5
0 0 6



 by expansion along the first column.

(c)





1 0 0
1 2 0
1 2 3



 by expansion along the second row.

(d)





0 1 0
0 0 1
1 0 0



 by expansion along the second column.

(e)





0 1 0
0 0 1
1 0 0



 by expansion along the third row.

(f)









1 2 0 0
3 4 0 0
0 0 5 6
0 0 7 8









by expansion along the third column.

(g)





1 0 2
0 4 −6
5 6 7



 by expansion along a row or column of your

choice.

(2) (a) Find the cofactor matrix for A =





1 2 3
1 0 1
1 1 0



 . (b) Find the

determinant of A, by expanding along the third column.
(c) Find the inverse of A, using parts (a),(b).
(d) Find the inverse of A, by row reduction.

(3) (Strang)
(4) Compute the determinant of

A =





1 2 3
4 4 4
5 6 7





using the cofactor formula.

(5) Let A =









1 2 3 0
4 5 6 0
7 0 0 0
0 0 0 2









. Find the determinant of A, by expand-

ing along the third column.

7. Linear transformations

This section explains how to think of matrix multiplication geometrically
as a transformation of the space of vectors. This is often considered an
optional topic in first courses on linear algebra, although for more advanced
topics it is essential.

7.1. Definition of a linear transformation.

Definition 7.1. A function from R to R assigns to any real number x
another real number f(x). A map T from R

n to R
m is similar, but it

assigns to any vector x in R
n a vector T (x) in R

m, called the value of T at
x.

Example 7.2. The following are all maps from R
2 to R

2.

T1[x1 x2] = [5x1 + 2x2 3x1 − x2]

T2[x1 x2] = [x2
1 − x2

2 x2
1 + x2

2]

T3[x1 x2] = [x1 + 2 x2 − 3]

Definition 7.3. A map from R
n to R

m is a linear transformation if it
preserves vector addition and scalar multiplication, that is, if

(1) T (x + y) = T (x) + T (y), for all x,y ∈ R
n;

(2) T (cx) = cT (x), for all x ∈ R
n, c ∈ R.

These conditions can be combined into a single condition, that T preserves
linear combinations, that is,

T (x̧ + dy) = cT (x) + dT (y).

Example 7.4. Of the three maps R
2 to R

2 above, only the T1 is a linear

transformation. In fact, if A is the matrix

[

5 2
3 −1

]

then T1(x) = Ax.

So
T (cx + dy) = A(cx + dy) = cAx + dAy = cT (x) + dT (y).

More generally, any map T (x) of the form T (x) = Ax is a linear transfor-
mation.
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The map T2 fails because, for example,

T (2[3 0]) = T ([6 0]) = [36 36]

but
2T ([3 0]) = 2[9 9] = [18 18].

The map T3 fails because, for example,

T3[1 0] + T3[2 0] = [3 0] + [4 0] = [7 0]

but T3[3 0] = [5 0.

7.2. Examples of linear transformations in two dimensions. Let’s
look at some examples of linear transformations in R

2.

(1) Let L be a line in R
2 passing through 0. For any x ∈ R

2, define
P (x) to be the vector whose head is the closest point to the head
of x in L.

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✔
✔
✔
✔
✔
✔

✔
✔
✔
✔
✔
✔

✑
✑

✑
✑

✑

✑
✑

✑
✑

✑

P is orthogonal projection onto L. Let’s check graphically that
it is a linear transformation:

(Figure)

(2) Let L be a line in R
2 passing through 0. For any vector x ∈ R

2,
define S(x) to be the reflection of x over L. Then S is a linear
transformation R

2 → R
2.

(3) Let θ be an angle, and for any vector x let R(x) be the rotation
counterclockwise of x around 0 by angle θ. Then T is a linear
transformation R

2 → R
2.

7.3. Linear transformations are matrices.

Theorem 7.5. Any linear transformation T : R
n → R

m is of the form
T (x) = Ax for some m × n matrix A, called the matrix for the linear
transformation.

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✔
✔
✔
✔
✔
✔

✔
✔
✔
✔
✔
✔

✭✭✭✭✭✭
✭✭✭✭✭✭

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✚
✚

✆
✆
✆
✆
✆
✆
✆

✆
✆
✆
✆
✆
✆
✆

Proof. Define e1 = [1 0 . . . 0], e2 = [0 1 0 . . . 0], . . . , en = [0 0 . . . 0 1]. Define
A to be the matrix whose columns are Ae1, . . . , Aen. For any vector x we
have

x =







x1

...
xn






=











x1

0
...
0











+ . . . +











0
...
0

xn











= x1e1 + . . . + xnen.

Since T preserves linear combinations

T (x) = T (x1e1 + . . . xnen)

= x1T (e1) + . . . xnT (en)

= [T (e1) . . . T (en)]x

= Ax.

�

7.4. Examples in two dimensions. Let L be the line with slope 1 in R
2,

passing through 0. Let’s find the matrix for projection onto L.

The closest vector to e1 in L is

[

1
2
1
2

]

. The closest vector to e2 is the

same vector. Therefore,

P (x) = Ax, whereA =

[

1
2

1
2

1
2

1
2

]

.
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Suppose we want to now find the closest vector to [5 2] in L. We multiply
by A to get

A

[

5
2

]

=

[

7/2
7/2

]

.

The matrix for reflection is similar. The reflection of e1 through L is e2,
and the reflection of e2 through L is e1. So the matrix for reflection is

A = [e2 e1] =

[

0 1
1 0

]

.

Now let R be rotation around 0 by angle θ. We have

R(e1) =

[

cos(θ)
sin(θ)

]

, R(e2) =

[

− sin(θ)
cos(θ)

]

.

So the matrix for R is

A =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

.

Which of these matrices are invertible? Let’s compute their determi-
nants.

det

[

1
2

1
2

1
2

1
2

]

= 1/4 − 1/4 = 0.

det

[

0 1
1 0

]

= 0 − 1 = −1.

det

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

= cos2(θ) + sin2(θ) = 1.

In general, reflections and rotations are invertible; projections are not. In
fact, the inverse of a reflection is just the same reflection, since S(S(x)) = x.
The inverse of a rotation by θ is rotation by −θ.

7.5. The matrix of a composition is the matrix product. If T1 :
R

n → R
m and T2 : R

m → R
p are maps, the composition is the map

T2 ◦ T1 : R
n → R

p, x → T2(T1(x)).

If T1 and T2 are linear, then so is T2 ◦ T1:

T2(T1((cx + dy)) = T2(cT1(x) + dT2(y)) = cT2(T1(x)) + dT2(T1(y)).

Proposition 7.6. Let T1 and T2 be linear transformations from R
n to R

n

with matrices A1 and A2. Then the matrix for T2 ◦ T1 is A2A1.

Example 7.7. Suppose that P is orthogonal projection onto a line L.
Since P (v) already has been projected, P (P (v)) = v, that is, P ◦ P = P .
If A is the matrix for P , then A2 = A.

Example 7.8. Suppose S is reflection over a line L in R
2. Then S(S(v)) =

v, that is, the reflection reflects back to the original vector. If A is the
matrix for S, then A2 = I.

Example 7.9. Suppose Rθ is rotation by θ, and Rϕ is rotation by ϕ. The
composition is rotation by θ + ϕ,

Rθ ◦ Rϕ = Rθ+ϕ.

We get

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]

=

[

cos(θ + ϕ) − sin(θ + ϕ)
sin(θ + ϕ) cos(θ + ϕ)

]

.

The left hand side is
[

cos(θ) cos(ϕ) − sin(θ) sin(ϕ) − cos(θ) sin(ϕ) − sin(θ) cos(ϕ)
cos(θ) sin(ϕ) + sin(θ) cos(ϕ) cos(θ) cos(ϕ) − sin(θ) sin(ϕ)

]

.

Equating the entries of the matrices we get the angle-sum formulas.

cos(θ + ϕ) = cos(θ) cos(ϕ) − sin(θ) sin(ϕ)

sin(θ + ϕ) = cos(θ) sin(ϕ) + sin(θ) cos(ϕ).

Example 7.10. Derive a formula for the cos of 3θ, using the same method.

7.6. Problems.

(1) Determine whether the following maps T are linear transforma-
tions. If T is linear, find the matrix A such that T [x] = Ax. If T
is not linear, explain why.

(a) T [x1, x2, x3] = [x1 − x3, x2 − x3, x1 − x2].
(b) T [x1, x2, x3, x4] = [x1 + 1, x2 + x1 − 3].
(c) T : R

2 → R
2 is rotation counterclockwise by 45 degrees, about

the point (0, 0).
(d) T : R

3 → R
3, where T [x] is the cross-product of x with the

vector [−1, 0, 1].
(e) T [x1, x2] = [x1, 1/x2].
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8. Linear independence and span

We already saw that, regardless of the number of variables and equa-
tions, a linear system of equations may or may not be solvable, and if it
is solvable, then the solution may or may not be unique. In this section
we give geometric interpretations to solvability and uniqueness. Namely, a
linear system is solvable if the inhomogeneous term is in the span of the
columns of A, and the solution is unique if the columns of the coefficient
matrix are linearly independent.

8.1. Linear independence. A set of vectors is linearly dependent if one
is a combination of the others. To give an informal example, a set of two
vectors pointing north and east is independent, while a set of two vectors
pointing north and south is dependent, since the south-pointing vector is a
negative scalar times the north-pointing vector. More formally:

Definition 8.1. (Linear independence)

(1) Vectors v1, . . . ,vr are linearly dependent (or independent, for short)
if some vector in the list is a combination of the others, that is,
vi = c1v1 + . . . ci−1vi−1 + ci+1vi+1 + . . . + cnvn for some i and
constants cj , j 6= i.

(2) If v1, . . . ,vr are not dependent, they are independent.

Example 8.2. (1) Two vectors are independent if and only if they are
not proportional. For example, [−1 0 1] and [−2 0 2] are dependent,
because

[−2 0 2] = 2[−1 0 1].

But [−1 0 1] and [2 0 2] are independent.
(2) Three non-zero vectors are independent of none of the vectors lies

in the plane or line spanned by the other two. For example, [1 −
1 0], [0 − 1 1], [1 0 − 1] is dependent, because

[1 0 − 1] = [1 − 1 0] − [0 − 1 1]

is a combination of [1 − 1 0], [0 − 1 1].
(3) The zero vector is always a linear combination of other vectors, for

example, [0 0] is a combination of [1 0] and [0 1] since

[0 0] = 0[1 0] + 0[0 1].

It follows that any collection of vectors which includes the zero
vector is a dependent collection of vectors.

Here are some equivalent definitions:

Theorem 8.3. Vectors v1, . . . ,vr are dependent (that is, not indepen-
dent) iff there is a smaller subset that has the same span as v1, . . . ,vr

iff v1, . . . ,vr is the minimal generating set for the span.

Example 8.4. The collection [1 0 0], [0 1 0], [1 1 0] is dependent because
its span is the xy-plane, but it is not a minimal generating set for the xy
plane since [1 0 0], [0 1 0] also generate the xy-plane.

The collection [1 0 0], [0 1 0], [1 1 0] is is also dependent because the third
vector is a combination of the first two,

[1 1 0] = [1 0 0] + [0 1 0].

Definition 8.5. A dependence relation on v1, . . . ,vr is a collection of
scalars c1, . . . , cr not all zero such that c1v1 + . . . crvr = 0.

Example 8.6. Consider the vectors





1
1
3



 ,





1
0
1



 ,





−1
1
1



. Then





1
1
3



 = 2





1
0
1



+





−1
1
1



 , or −





1
1
3



+ 2





1
0
1



+





−1
1
1



 = 0

is a dependence relation.

Here is the algorithm for checking whether a set of vectors v1, . . . ,vr is
linearly independent. Write the equation

c1v1 + . . . crvr = 0

in matrix form Ac = 0, where A is the matrix whose columns are v1, . . . ,vr.

Theorem 8.7. Vectors v1, . . . ,vr are dependent iff there is a dependence
relation on them iff A=̧0 has non-trivial solutions, where A is the matrix
with columns v1, . . . ,vr, iff ref(A) has free columns.

Example 8.8. Determine whether





1
−1

0



 ,





0
1

−1



 ,





−1
0
1



 are inde-

pendent or dependent. Answer: Elimination gives




1 0 −1
−1 1 0
0 −1 1



→





1 0 −1
−1 1 0
0 0 0





so the last columns if free, so the vectors are dependent. To find a depen-
dence relation, we find any non-zero solution. The first row gives x = z,
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the second row gives x = y, so a solution is x = y = z = 1, which gives the
dependence relation





1
−1

0



+





0
1

−1



+





−1
0
1



 = 0.

Corollary: If k > n then any collection of n-vectors u1, . . . ,uk is linearly
dependent.

Proof: Since the system Ax = 0 has more columns than row, some
columns must be free.

Example 8.9. For what values of c are the vectors [0 0 − 1], [1 1 2], [1 1 c]
independent?

Answer: the matrix with these vectors as columns has determinant
(−1)(c − 2) which is non-vanishing iff c 6= 2.

To prove that a given subset V of R
n is a subspace, check that all three

conditions hold.

Example 8.10. Show that the set V of vectors of the form [x 0 ] is a
subspace of R

3. Answer: (i) contains 0: Setting x = 0 shows that [0 0 0] is
in V . (ii) check that it closed under sums: To do this write a pair of general
elements of V ; this means that you need to invent a new variable name. So
let [x1 0 0] and [x2 0 0] be elements of V . Their sum is [x1 + x2 0 0] which
is of the form [x 0 0] with x = x1 + x2. So V is closed under sums. (iii)
check that V is closed under scalar multiplication: Let [x1 0 0] be a vector
in V and c a scalar. Then c [x1 0 0] = [cx1 0 0] is of the form [x 0 0] with
x = cx1, so V is closed under scalar multiplication.

Proofs involving span and linear independence are similar. For example,
to prove that vectors are linearly independent, you can show that there is
no dependence relation, by supposing that there is a relation of the form
c1v1 + . . . + ckvk = 0, and showing that c1 = . . . ck = 0.

Example 8.11. Show that if u,v are independent, then so are u + 2v,v.
Answer: Suppose that there is a dependence relation c(u + 2v) + dv = 0.
Then cu + (2c + d)v = 0. Since u,v are independent, we must have c =
0, 2c + d = 0. But then c = 0, 2(0) + d = d = 0, so c, d are both zero. This
shows that u + 2v,v do not satisfy a dependence relation.

Example 8.12. Show that if u,v span a set V , then so do u + 2v,v.
Answer: Let w be in V . We must show that c(u + 2v) + dv = w for some
scalars c, d. Equivalently, cu + (2c + d)v = w. We know that u,v span V ,

so au + bv = w for some a, b. So we want to solve c = a, (2c + d) = b. The
solution is c = a, d = b − 2c = b − 2a.

8.2. Span. The span of a collection of vectors is the space of all combi-
nations of them. For an informal example, the span of a vector pointing
north would be the line pointing north-south (since southern-pointing vec-
tors are obtained from northern-pointing ones by scalar multiplication by a
negative number) while the span of vectors pointing east and north would
be a horizontal plane.

Here is the formal definition:

Definition 8.13. (Span) Let v1, . . . ,vr be vectors in R
n. The span of

v1, . . . ,vr is the set of linear combinations

c1v1 + . . . + crvr.

Example 8.14. (1) The span of a single non-zero vector v is the set
of all cv, that is, the line through v.

(2) The span of the vector [1 0 0] is the x-axis. V = {[x 0 0]} in R
3.

(3) The span of the vectors [1 0 0], [0 1 0] is the xy-plane. V = {[x y 0]}
in R

3.
(4) The span of the vectors [1 0 0], [0 1 0], [1 1 0] is also the xy-plane.

V = {[x y 0]} in R
3. This is because any vector that is a combina-

tion of these three vectors is in fact a combination of the first two,
since

[1 1 0] = [1 0 0] + [0 1 ].

That is,

x[1 0 0] + y[0 1 0] + z[1 1 0] = (x + z)[1 0 0] + (y + z)[0 1 0].

(5) The span of the vectors [1 0 0], [2 0 0] is also the x-axis.

8.3. Problems.

(1) Check whether the following vectors are linearly independent or
dependent, if necessary using row reduction. In each dependent
case, identify one of the vectors that is a combination of the others.
(a) v1 = [1 0],v2 = [0 1].
(b) v1 = [1 0],v2 = [0 1],v3 = [1 1].
(c) v1 = [1 0],v2 = [0 1],v3 = [0 0].
(d) v1 = [0 0],v2 = [0 1],v3 = [1 0].
(e) v1 = [1 1 0],v2 = [1 0 1],v3 = [0 1 1]. v1 = [1 1 0],v2 =

[1 0 1],v3 = [0 1 1].
(f) v1 = [1 − 1 0],v2 = [1 0 − 1],v3 = [0 1 − 1].
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(g) v1 = [1 − 1 00],v2 = [0 1 − 1 0],v3 = [0 0 1 − 1].
(2) Check whether the following vectors span the given set.

(a) v1 = [1 0],v2 = [0 1], V = R
2.

(b) v1 = [1 0],v2 = [0 1], V = {[x 0]}.
(c) v1 = [1 0 0],v2 = [0 1 0], V = {[x y 0]}.
(d) v1 = [1 0 0],v2 = [0 1 0],v3 = [1 1 0], V = {[x y 0]}.
(e) v1 = [1 − 1 00],v2 = [0 1 − 1 0],v3 = [0 0 1 − 1], V =

{[x y z w], x + y + z + w = 0}.
(3) For what values of c are the given vectors independent?

(a) [1 2], [3 c]
(b) [1 2], [0 c]
(c) [0 1 − 1], [1 1 2], [1 1 c]
(d) [1 2 c], [2 3 c].

(4) True/False:
(a) The vectors v1 = [1 2 3], v2 = [−1 0 1], v3 = [2 6 10] are

independent.
(b) The vectors v1 = [1 0 − 1], v2 = [1 − 1 0], v3 = [0 1 − 1] are

independent.
(c) The vectors v1 = [1 0 1], v2 = [1 1 0], v3 = [0 1 1] are inde-

pendent.
(5) Find a set of vectors that is as small as possible that has the same

span as
(a) {[−1 0 1] , [0 1 2] , [1 1 1]}.
(b) {[−1 0 1] , [−2 0 2] , [−3 0 3]}.
(c) {[−1 0 1] , [0 1 3] , [1 1 1]}.

(6) Prove that
(a) if v1 and v2 are linearly independent, then v1 and v1 +v2 are

linearly independent.
(b) If v1 and v2 span a subset V , then so do v1 and v1 + v2.
(c) If v1 and v2 are linearly independent, then v1−v2 and v1+v2

are linearly independent.
(d) If v1 and v2 span a subset V , then so do v1 −v2 and v1 +v2.

9. Linear subspaces

In three-dimensional geometry lines and planes play a special role. In
linear algebra, we naturally want to do geometry in four dimensional space
and higher. What are the analogs of lines and planes? For example, if the
variables in four-dimensions are x, y, z, w, then the equation w = 0 defines
a three-dimensional object, parametrized by variables x, y, z. Sometimes
these three-dimensional objects are called hyperplanes, but you can see

that we go to higher and higher dimensions, we would need more and more
new words. A solution is to come up with a word which means something
like line or plane, but describes something in any dimension.

These corresponding objects in higher dimensional geometry are called
subspaces. For example, in four-dimensions with variables x, y, z, w, the
equation w = 0 would define a three-dimensional subspace, while the equa-
tions w = 0, z = 0 would describe a two-dimensional subspace.

Here is the formal definition. Recall that for any integer n, R
n is the set

of all n-vectors.

Definition 9.1. (Subspace) A subspace V of R
n is a subset that satisfies

the following three properties:

(1) V contains the zero vector 0.
(2) V is closed under vector addition: if v, w are in V then v + w is

also in V
(3) V is closed under scalar multiplication: if v is in V and c is a scalar

then cv is also in V .

Properties (b) and (c) are equivalent to saying that V is closed under
linear combination: if v, w are in V and c, d are scalars then cv + dw is also
in V .

Property (a) is equivalent to saying that V is non-empty. This is because
if V contains at least one vector v, then it also has to contain −v, by (c) and
so contain v + (−v) = 0, by (b). Usually, when we check that a subset V is
a subspace, we will only verify properties (b) and (c), since (a) is usually
obvious.

Example 9.2. (1) The set V of all vectors of the form [x x2] is not a
subspace, because it is not closed under scalar multiplication. For
v = [2 4] is in V , but 1

2v = [1 2] is not.
(2) The set V of all vectors of the form [x 5x] is a subspace. In fact,

if A is the matrix [−5 1], then V is the set of vectors such that
Av = 0.

(3) The set V of all vectors [x y] with xy = 0 is not a subspace. It
is closed under scalar multiplication but not vector addition, hence
not a subspace.

(4) The set V of all vectors [x y] with x ≥ 0 and y ≥ 0. It is closed under
vector addition but not scalar multiplication by negative numbers,
hence not a subspace.

(5) The set V of all vectors of the form [x 2x + 1] is not a subspace,
even though there are no higher order terms. V is closed under
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neither scalar multiplication nor vector addition; for instance, [0 1]
is in V , but twice it, [0 2] is not.

(6) The set V of all vectors of the form [x y] with x, y ≥ 0 is closed
under vector addition, but not scalar multiplication by negative
numbers, so it is not a subspace.

(7) The set V of all vectors that are either in the x-axis or the y-axis,
that is, [x y] such that either x or y is zero, is closed under scalar
multiplication but not vector additions, so it is not a subspace.

More generally, we call any subset that is closed under addition and
multiplication by scalars a subspace.

Example 9.3. (1) Consider the set Mnn of n × n matrices. Let V =
{A = AT } the subset of symmetric matrices. If A, B are symmetric
then so is A + B; similarly if c is a scalar and A is a symmetric
matrix then cA is also symmetric. Hence V is a subspace of Mnn.

(2) Consider the set Pn of polynomials in a single variable x of degree
at most n. Let V be the set of polynomials such that p(1) = 0.
Then if p, q are in V , so is p+ q, and if c is a scalar and p lies in V ,
then so does cp. Hence V is a subspace.

9.1. Properties of Subspaces.

Definition 9.4. (Intersections, unions, and sum of subspaces)

(1) If V and W are subspaces their intersection V ∩W is the set of all
vectors v that are in both V and in W .

(2) The union V ∪W is the set of vectors that are in either V or in W .
(3) The sum V + W is the set of vectors of the form v + w, for some v

in V and w in W .

Example 9.5. If V is the x-axis and W is the y-axis in R
3, then V ∩W is

just the origin, a single point; V ∪ W is the union of the two axis; V + W
is the xy-plane.

Theorem 9.6. (1) Any subspace V must contain 0.
(2) The intersection V ∩ W of two subspaces V, W is a subspace.
(3) The union V ∪W of two subspaces V, W is not in general a subspace.
(4) The sum V + W of two subspaces V, W is a subspace.

Proof. (1) Take any vector v in V and multiply by c = 0. Since V is closed
under scalar multiplication, cv = 0v = 0 is also in V . (2) If v, w are in
both V and W , then cv + dw is in V and in W , and so in V ∩ W . (3)
See the example above. (4) An element in V + W is of the form v + w for

some v,w. Any scalar multiple c(v + w) = cv + cw is also of this form,
so V + W is closed under scalar multiplication. We have to show that if we
take two elements of V + W , they sum to another element. Suppose the
second element is v′ + w′, Then v + w + (v′ + w′) = (v + v′) + (w + w′)
which is also in V + W . �

9.2. The subspaces associated to a matrix. The following three sub-
spaces are associated to a matrix A.

Definition 9.7. (Nullspace, column space, and row space)

(1) The nullspace of A is the subspace of all vectors x such that Ax = 0,
that is, the solution set to the homogeneous system corresponding
to A.

(2) The column space of A is the span of the columns of A.
(3) The row space of A is the span of the rows of A.

Remark 9.8. The meaning of the first two of these spaces is the following:

(1) The column space captures whether a linear system Ax = b is con-
sistent. Namely, Ax = b is consistent iff b lies in the column space.
For example, in the pancake-waffle system elimination gives





2 3/2 f
1 2 s
2 2 e



 →





2 3/2 f
0 5/4 s − f/2
0 1/2 e − f





→





2 3/2 f
0 −5/4 s − f/2
0 0 e − f − (2/5)s + (1/5)f





→





2 3/2 f
0 −5/2 s − 2f
0 0 −(4/5)f − (2/5)s + e





which is consistent iff 0 = (−4/5)f − (2/5)s + e or equivalently

e = (4/5)f + (2/5)s.

To check, if f = s = 10 then we need (4/5)10 + (2/5)10 = 12 eggs.
So the column space of A is the set of vectors [f s e] such that
e = (4/5)f + (2/5)s, that is, the system is consistent.

(2) The nullspace represents the failure of a solution of a linear system
Ax = b to be unique. Namely, a solution is unique iff the nullspace
of A is the zero vector, and otherwise, any two solutions differ by
an element of the null-space. For example, suppose that we have
recipes for little (l) pancakes and big (b) pancakes calling for 2 flour
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1 sugar 2 eggs and 4 flour 2 sugar 4 eggs respectively. We get a
matrix





2 4 f
1 2 s
2 4 e





This reduces to




2 4 f
1 2 s
2 4 e



→





2 4 f
0 0 s − f/2
0 0 e − f





which is consistent if s− f/2 = 0 and e− f = 0. Let’s say that the
system is solvable, for example, let’s say that f = e = 10 and s = 5.
Then the variable b, the number of batches of big pancakes is free
and the solutions are described by 2l + 4b = 10, or equivalently

l + 2b = 5.

In other words, we can make 5 batches of little pancakes, 3 batches
of little pancakes and 1 batch of little pancakes, 1 batch of little
pancakes and 1 batch of big pancakes etc. Note that the solution
is not unique, because each big pancake is equivalent to 2 batches
of little pancakes.

The nullspace of the matrix is the set of solutions to




2 4 0
1 2 0
2 4 0





that is, l + 2b = 0 or l = −2b. Any two solutions to the system
differ by a null-space vector. For example, the solutions l = 5, b = 0
and l = 3, b = 1 differ by the vector −2, 1 wihch is in the nullspace.

9.3. The column space.

Proposition 9.9. (Interpretation of column space in terms of solving linear
systems) The column space is the space of all vectors b for which Ax = b
has a solution.

In this case, Ax = b has a solution only if the components of b add up
to zero. This is because only changes that preserve the total number 90 of
students are possible, since we are assuming that no students die from the
flu.

Definition 9.10. For any matrix A, the nullspace of A is the set of all
vectors v such that Av = 0.

Lemma 9.11. For any matrix A, the nullspace of A is a subspace.

Proof. We have to check that nullspace(A) is closed under linear combina-
tions: Assume that v,w are in nullspace(A). By definition Av = Aw = 0,
so

A(cv + dw) = cAv + dAw = 0.

This implies that cv + dw is also in V . �

Also:

Proposition 9.12. (Nullspace as space of dependence relations) Any vec-
tor w in the null-space gives a dependence relation on the columns v1, . . . ,vn

of A: if w1, . . . , wn are the entries in w then

w1v1 + . . . + wnvn = 0.

Proof. Ax = 0 means x1v1 + . . . xnvn = 0. �

Proposition 9.13. The span of any set of vectors is a subspace.

Proof. Closed under +: (c1v1 + . . . crvr)+(d1v1 + . . . drvr) = (c1 +d1)v1 +
. . . (cr+dr)vr. Closer under ·: k(c1v1+. . . crvr) = (kc1)v1+. . . (kcr)vr. �

Here is the algorithm for checking whether a set v1, . . . ,vr spans R
n:

Write the equation

c1v1 + . . . cnvn = v

in matrix form. We want to know whether it always has a solution. This
is equivalent to showing that the row-echelon form has no rows of zeros.

Example 9.14. Determine whether [1 − 1 0], [1 0 − 1], [0 1 − 1] span R
3.

Answer: We put the vectors in as columns and do elimination:




1 1 0
−1 0 1
0 −1 −1



→





1 1 0
0 1 1
0 −1 −1



→





1 1 0
0 1 1
0 0 0





Since there is a row of zeros in the ref, the system could be inconsistent
depending on what is on the other side of equation. So the vectors do not
span R

3.

To be even more precise, one can say what the span is:





1 1 0 x
−1 0 1 y
0 −1 −1 z



→





1 1 0 x
0 1 1 x + y
0 −1 −1 z



→





1 1 0 x
0 1 1 x + y
0 0 0 x + y + z




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which is consisten iff x + y + z = 0. So the span of the vectors is the plane
defined by x + y + z = 0. An example of a vector which is not in the span
of the given three vectors is [1 0 0].

Proposition 9.15. (Number of vectors needed to span R
n) If v1, . . . ,vr

spans R
n, then r must be at least n.

Proof. Otherwise, if r < n, there will be rows of zeros in the ref of the
matrix A with columns v1, . . . ,vr, which means that the system Ax = b
will be inconsistent for some choices of b. q �

Definition 9.16. (Generating sets) Let V be a subspace of R
n. A set of

vectors S = {v1, . . . ,vk} is a generating set for V iff span(S) = V , that is,
every vector in V is in the span of the vectors in S.

Example 9.17. (1) {[1 0 0] , [0 1 0] is a generating set for the plane
z = 0.

(2) {[1 0 0] , [0 1 0] , [1 1 0] is another generating set for the plane z = 0.

9.4. Problems.

(1) For each set of vectors, check whether the set (a) contains 0 (b) is
closed under vector addition (c) is closed under scalar multiplica-
tion.
(a) V = {0}
(b) V = R

n

(c) V = {[x 0 0]}, the x-axis in R
3.

(d) V = {[x y 0]}, the xy-plane in R
3.

(e) V = {[x y z], x + y + z = 1}, a plane in R
3.

(f) V = {[x y z], x + y + z = 0}, a plane in R
3.

(g) V = {[x y], x ≥ 0, y ≤ 0}, a quadrant in R
2.

(h) V = {[x y], xy ≤ 0}.
(i) V = {[x x]} = span[1 1], a line in R

2.
(2) Construct a matrix whose nullspace consists of all combinations of

(1, 1, 1, 0) and (−1, 1, 0, 1).
(3) Construct a 2x3 matrix whose column space contains [1 2] and

whose null-space contains [1 0 1].
(4) Prove that the span of a single vector u is a subspace.
(5) Prove that set of vectors [x y z] with z = x+ y is a subspace of R

3.
(6) Prove that set of vectors of the form [x 0 z] is a subspace of R

3.

10. Basis and Dimension

In this section we introduce ways of describing subspaces using finite sets
of vectors called bases. The number of elements in any basis is called the
dimension of the subspace.

A basis for a subspace is a minimal generating set. That is, any vector
in the subspace is a linear combination of vectors in the basis, and the basis
is a smallest set with such a property. Here is a picture:

Too big, not a basisToo small, not a basis Just the right size, a basis

Definition 10.1. A set of vectors v1, . . . ,vr is a basis for a subspace V if
any of the following equivalent conditions are satisfied:

(1) v1, . . . ,vr is a minimal generating set for V
(2) (1) v1, . . . ,vr is linearly independent and (2) v1, . . . ,vr spans V .

Example 10.2. e1 = [1 0 0 . . . 0], e2 = [0 1 0 . . . 0], . . . , en = [0 0 . . . 0 1]
is the standard basis for R

n. We check linear independence: no ei is a
combination of the others, since ei has a 1 in the i-th entry and the other
vectors have i-th entry 0. We check span:

(5)

[x1 x2 . . . xn] = x1[1 0 . . . 0] + x2[0 1 0 . . . 0] + . . . + xn[0 0 . . . 0 1]

x1e1 + . . . xnen

for any x1, . . . , xn which shows every vector in R
n is a linear combination

of the standard basis vectors e1, . . . , en.

The general procedure for finding a basis is the following: Find an ex-
pression for the general element of the vector space. Then, express it as a
combination of linearly independent elements.

Theorem 10.3. A set v1, . . . ,vr of vectors is a basis for a vector space V if
and only if any vector in V can be written uniquely as a linear combination
of these vectors: v = c1v1 + . . . crvr where c1, . . . , cr are unique.

Proof. By the “span” part of the definition of basis, any v can be written
as a combination v = c1v1 + . . . crvr of v1, . . . ,vr. To show that the
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constants c1, . . . , cr are unique, we use the “linear independence” part of
the definition of basis. Namely, suppose that v is a linear combiniation in
two ways:

v = c1v1 + . . . crv, v = c′1v1 + . . . c′rv.

Subtracting the two ways gives

0 = (c1 − c′1)v1 + . . . + (cr − c′r)vr .

This is a dependence relation unless c1 − c′1 = 0, . . . , cr − c′r = 0. Since
v1, . . . ,vr are linearly independent, there is no dependence relation, so
c1 = c′1, . . . , cr = c′r. So the constants c1, . . . , cr are unique. �

Theorem 10.4. (Condition for n vectors to be a basis for R
n) A set of

vectors v1, . . . ,vr are a basis for R
n if and only if the matrix A with columns

v1, . . . ,vr is invertible, in particular, A is square so r = n.

Proof. The condition that the vectors span R
n means that the system Ax =

v, is always consistent, so the rref of A has no zero rows. The condition
that the vector are independent means that the system Ax = 0 has no non-
trivial solutions, so the rref of A has a pivot in every column. So v1, . . . ,vn

is a basis iff the rref of A is the identity, so A is invertible. �

Example 10.5. Show that if v1, . . . ,vn is a basis, and A is an invertible
matrix, that Av1, . . . , Avn is a also a basis.

Theorem 10.6. (Any two bases have the same number of elements) Any
two bases v1, . . . ,vr, w1, . . . ,ws for a finite dimensional vectors space V
of R

n have the same number of elements.

Proof. By the Theorem above, any vi can be written uniquely as a combina-
tion of w1, . . . , wws, and any wj can be written uniquely as a combination
of v1, . . . ,vr. That is,

v1 = c11w1 + . . . + c1sws

. . .

vr = cr1w1 + . . . + crsws

and

w1 = d11v1 + . . . + d1rvs

. . .

ws = dr1v1 + . . . + dsrws

for some constants c11, . . . , crs, d11, . . . , drs. Let C be the matrix with en-
tries cij and D is the matrix with entries dij . Then the above equations
can be written





v1

. . .
vr



 = C





w1

. . .
ws



 ,





w1

. . .
wr



 = D





v1

. . .
vr



 .

But then by substitution




v1

. . .
vr



 = DC





v1

. . .
vr



 ,





w1

. . .
wr



 = CD





w1

. . .
wr



 .

Writing out what this means, if eij are the coefficients of DC then

v1 = e11v1 + . . . + errvr

. . .

v1 = e11v1 + . . . + errvr

But since each v1 is a combination of v1, . . . ,vr is a unique way,

v1 = 1v1 + . . . + 0vr

. . .

v1 = 0v1 + . . . + 1vr

we get e11 = e22 = . . . err = 1 and the remaining coefficients are 0, and
similarly for the coefficients of CD. That is,

DC = I, DC = I.

But then C, D are invertible which implies C, D are square so r = s.

�

Definition 10.7. (Dimension of a subspace) Let V be a subspace. The
dimension of V is the number of elements in any basis.

Example 10.8. (1) Let V = R
n. Then e1 = [1 0 . . . 0 0], . . . en =

[0 0 . . . 0 1] is a basis, the standard basis, with n vectors. So the
dimension of V is n.

(2) Let V = {[x 0 ]} the x-axis in R
3. Then a basis is [1 0 0] so the

dimension of V is 1.
(3) Let V = {[x y z], x = 0} be the yz-plane in R

3. A basis is
[0 1 0], [0 0 1], which has 2 elements so the dimension of V is 2.

(4) Let V = {[x y z], x + y + z = 0}. This is a plane in R
3. A basis is

[1 − 1 0], [1 0 − 1] which has size 2. So the dimension is 2.
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Definition 10.9. By our convention, the span of the empty set of vector
is {0}, so V = {0} has basis given by the empty set and V has dimension
0.

10.1. Rank and Nullity. In this section, we call a column of A bound
(resp. free) if the corresponding column in ref(A) contains (resp. does not
contain) a leading 1.

Theorem 10.10. (Basis and dimension of subspaces associated to a ma-
trix) Let A be any matrix.

(1) A basis for the null-space is obtained by solving the homogeneous
system Ax = 0. The dimension of the null-space is the number of
free variables.

(2) A basis for the column-space is given by the bound columns in A.
The dimension of the column-space is the number of leading 1’s.

(3) A basis for the row-space is given by the non-zero rows in the ref(A).

Example 10.11. Find a basis for the nullspace, the row-space, and the
column space of the matrix

A =





1 2 3 4 5
2 4 7 9 11
3 6 10 13 16



 .

Gaussian elimination gives

−2©1
−3©3





1 2 3 4 5
0 0 1 1 1
0 0 1 1 1



 7→
−©2





1 2 3 4 5
0 0 1 1 1
0 0 0 0 0





7→
−3©2

−©2





1 2 0 1 2
0 0 1 1 1
0 0 0 0 0





which is the rref of A. The pivots are in columns 1 and 3, so taking the
first and third columns from the first matrix gives a basis for the column
space





1
2
3



 ,





3
7

10



 .

Taking the non-zero rows in the rref (one could use the ref as well) gives a
basis for the row-space

[1 2 0 1 2] [0 0 1 1 1] .

To find the basis for the null-space, we write out the equations for the rref

a = −2b − d − e, c = −d − e

which imply the solution set to Ax = 0 is


































−2b − d − e
b

−d − e
d
e













= b













−2
1
0
0
0













+ d













−1
0

−1
1
0













+ e













−1
0

−1
0
1













.























So a basis for the null-space is












−2
1
0
0
0













,













−1
0

−1
1
0













,













−1
0

−1
0
1













.

Proof of Theorem: The null-space is the set of vectors x such that Ax =
0. For any solution x, we call an entry in x bound if it corresponds to a
pivot column in A, and otherwise we say it is free. By Section 3, the bound
entries in x are linear functions of the free variables, and free entries in x
are equal to the free variables. So x is linear combination of vectors, one
for each free variable, and each vector has one 1 and the rest 0’s in its free
entries.

The non-zero rows in the ref or rref are linearly independent, because the
pivot columns contain exactly one non-zero entry, and span the row-space
of A since the span of the rows is unchanged by row operations.

Each basis vector for the null-space gives a dependence relation on the
columns of A, containing just one free column. Therefore, the free columns
can be expressed in terms of the bound columns, using the basis for the
null-space. There are no dependence relations on the free columns in A,
since there are no null-space vectors with free variables all zero.

Definition 10.12. (Rank and nullity)

(1) The rank of a matrix is the dimension of the column space, which is
the same by the theorem above as the dimension of the row-space,
and the same as the number of leading 1’s.

(2) The nullity of a matrix is the dimension of the null-space, which by
the theorem above is the same as the number of columns without
leading 1’s.

An m × n matrix has rank between 0 and the minimum of m and n,
since there can be at most one leading 1 in each row and column.



46

Example 10.13. Find the rank and nullity of





1 2 3
−1 −2 0

4 6 1



 .

Theorem 10.14. A matrix has rank 0 if and only if it is the zero matrix.
A matrix A has rank n if and only if A is invertible.

Proof. If there are no leading 1’s, ref(A) = 0, but then A = 0. If every
column has a leading 1, ref(A) = I, so A is invertible. �

Theorem 10.15. (Rank-Nullity Theorem) The dimension of the column
space (the rank) plus the dimension of the null-space (the nullity) is equal
to the number of columns.

For instance, if A is a 5 × 3 matrix with column space 2 dimensional,
then the null-space is one-dimensional, so there are homogeneous solutions.

Corollary 10.16. If A is an m × n matrix, and m > n then the rows of
A are dependent. If n < m then the columns are dependent.

Proof. If m > n then the rank is at most n, so the dimension of the row-
space is at most n. Since there are m vectors in an n-dimensional space,
they are dependent. Similar for the case n < m �

Theorem 10.17. The rank of A is equal to the rank of AT .

Proof. The rank of AT equals the dimension of the column-space of AT

equals the dimension of the row-space of A, which equals the dimension of
the column-space of A, which equals the rank of A. �

10.2. Uniqueness of Reduced Row-Echelon Form.

Theorem 10.18. The reduced row echelon form rref(A) of a matrix A is
unique.

Proof. Let W denote the row-space of A, w1, . . . ,wr the non-zero rows of
the rref(A) and ij the column number of the leading 1 in wj . Let e1, . . . , en

be the standard basis for Rn and

Vn = span(en), Vn−1 = span(en−1, en), . . . , V1 = span(e1, . . . , en).

By induction on i = r − j + 1, we show that wj , . . . ,wr is the unique basis
for the intersection Vij

∩ W such that the matrix with rows wj , . . . ,wr is
in reduced row-echelon form.

Case i = 1: Then j = r. wr is the unique vector in the row-space in
Vir

∩ W with leading coefficient 1.

Case i implies i + 1: Assume wj+1, . . . ,wr is unique. Then there is
a unique choice of wj so that wj , . . . ,wr is in reduced row-echelon form,
since the entries above the leading 1’s must be zero. �

10.3. Problems.

(1) Make the following generating sets for the given subspaces into
bases by removing vectors.
(a) {[1 0], [0 1], [1 1]}, V = R

2.
(b) {[1 0], [2 0], [1 1]}, V = R

2.
(c) {[0 0], [2 0], [1 1]}, V = R

2.
(d) {[1 0 − 1], [0 1 − 1], [1 − 1 0]}, V = {[x y z], x + y + z = 0}.
(e) {[1 0 − 1], [2 0 − 2], [1 − 1 0]}, V = {[x y z], x + y + z = 0}.

(2) Find a basis for the given subspaces.
(a) The subspace of R4 defined by x1 + 2x3 + x4 = 0.
(b) The space V of solutions to the equation x− z −w = 0 in R4.
(c) he space V of vectors perpendicular to [1 1 1 1] and [1 2 3 4].

(3) Make the following linearly independent sets for the given subspaces
into bases by adding vectors.
(a) {[1 0]}, V = R

2.
(b) {[2 2]}, V = R

2.
(c) {[1 1 − 2]}, V = {[x y z], x + y + z = 0}.
(d) {[0 0 1 0]}, V = {[x y z w], x + y + w = 0}.
(e) {[−1 0 0 1]}, V = {[x y z w], x + y + w = 0}.

(4) Find a basis for the (a) column-space (b) row-space and (c) null-
space of the following matrices.

(a) A =

[

1 0
0 1

]

.

(b) A =

[

1 0 1
0 1 0

]

.

(c) A =

[

1 0 0 1
0 0 1 0

]

.

(d) A =









1 2
1 2
2 4
2 4









.
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(e) A =









1 2
1 3
2 4
2 5









.

(f) A =





1 −1 1 2
2 −2 4 2
1 −1 3 0



 .

(5) For each of the matrices in the previous problem, find the rank and
nullity of A? Write down a dependence relation on the columns of
A, if one exists.

(6) (a) Find a basis for the subspace V = {[a b c d], a = d, b = c}.
(b) Find a basis for the subspace V = {[a b c d], a = b = c}.
(c) (See Section 9.) Find a basis for the subspace V = {A ∈

M33, A = AT }.
(d) (See Section 9.) Find a basis for the subspace V = {A ∈

M33, A = −AT }.
(e) (See Section 9.) Find a basis for the subspace V of polynomials

p(x) of degree at most 6 such that p(x) = p(−x).
(7) True/False:

(a) The row-space of rref(A) is the same as the row-space of A.
(b) The row space is the orthogonal complement of the nullspace.

11. Geometry of vectors

A vector has a length and a direction. This means that we can talk about
the angle between any two non-zero vectors. In this section we relate these
geometric ideas to the algebraic notion of dot product.

Definition 11.1. If two vectors v and w are the same size, define the dot
product of v and w by taking the sum of the product of their components:











v1

v2

...
vn











·











w1

w2

...
wn











= v1w1 + v2w2 + . . . vnwn.

For example,




1
2
3



 ·





4
5
6



 = 1(4) + 2(5) + 3(6) = 32.

The dot product can also be thought of as a matrix product between a
matrix with one row and a matrix with one column:





1
2
3



 ·





4
5
6



 =
[

1 2 3
]





4
5
6



 = 32.

Proposition 11.2. The dot product of a vector with itself is the square of
its length:

u · u = u2
1 + u2

2 + . . . + u2
n = ‖u‖2

The dot product is related to the angle θ between the two vectors as
follows.

Theorem 11.3. For any two vectors u,v of the same size,

u · v = ‖u‖‖v‖ cos(θ)

.

Proof. This formula can be proved using the law of cosines. Look at the
triangle with edge vectors u,v, and u− v. The law of cosines says

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos(θ).

The left-hand-side is

(u − v) · (u − v) = u · u − 2u · v + v · v.

Subtracting the quantity

u · u + v · v = ‖u‖2 + ‖v‖2.

from both sides leads to the formula. �

The equation (11.3) can be used to compute the angle between vectors:

θ = arccos(
u · v

‖u‖‖v‖).

Example 11.4. The angle between the vectors u = [1 1 0] , v = [0 1 1] is

θ = arccos(
1(0) + 1(1) + 1(1)√

12 + 12 + 02
√

02 + 12 + 12
)

= arccos(
1

2
) =

π

3
.

The formula (11.3) has an important special case.
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Definition 11.5. Two vectors are perpendicular or orthogonal if the angle
between them is π/2, that is, 90 degrees. This is the case if and only if

θ =
π

2
⇐⇒ cos(θ) = 0 ⇐⇒ u · v = 0.

That is, two vectors are perpendicular if and only if their dot product is
zero. By convention, the zero vector is perpendicular to every vector.

Example 11.6. Suppose we want to find a vector v = [v1 v2 v3] perpen-
dicular to u = [1 1 1]. The condition that the dot product is zero is

1(v1) + 1(v2) + 1(v3) = v1 + v2 + v3 = 0.

It’s easy to find solutions. For example, v1 = 1, v2 = −1, v3 = 0, or
v1 = 0, v2 = 1, v3 = −1 are both solutions. These give the vectors

v = [1 − 1 0] , or v = [0 1 − 1] .

11.1. Problems.

(1) Find the dot product of the vectors
(a) [1 0] and [0 1]
(b) [1 0] and [−1 − 1]
(c) [2 2 1] and [2 − 1 2]
(d) [1 0 1] and [1 1 0].

(2) Find the angle between the vectors
(a) [1 0] and [0 1]
(b) [1 0] and [−1 − 1]
(c) [2 2 1] and [2 − 1 2]
(d) [1 0 1] and [1 1 0].

(3) In each case, find a non-zero vector perpendicular to the given
vector.
(a) [1 0]
(b) [−1 − 1]
(c) [2 2 1]
(d) [a b c], where a, b, c are arbitrary scalars.

(4) Find a unit vector u perpendicular to
(a) w = [1 0].
(b) w = [1 1].
(c) w = [2 1 2].
(d) Prove (cu) · v = c(u · v) for two-vectors u,v.
(e) Prove (cu) · v = c(u · v) for n-vectors u,v.

12. Orthogonality and Gram-Schmidt

In this section we discuss collections of orthogonal vectors. A collection
of vectors is orthogonal if each pair is orthogonal. Then we discuss a way
of creating orthogonal collections, called the Gram-Schmidt algorithm.

12.1. Orthogonality. We begin with orthogonal vectors. Two vectors are
orthogonal iff they are perpendicular. For example, given two vectors, if
one points north and the other east in the plane then they are orthogonal. If
one vector points north and the other points northeast then the two vectors
are not orthogonal.

Definition 12.1. (Orthogonal vectors) Vectors v1, . . . ,vr are orthogonal
if any two vectors vi,vj with i 6= j are perpendicular, that is, vi · vj = 0

Example 12.2. (1) The vectors [1 0 0], [0 1 0], [0 0 1] are orthogonal
in R

3.
(2) The vectors [1 0 0], [0 1 0], [0 0 0] are orthogonal in R

3.
(3) The vectors [1 1 1 1], [1 − 1 0 0], [0 0 1 − 1] are orthogonal in R

4.

Example 12.3. The standard basis e1, . . . , en for Rn is orthogonal.

Example 12.4. [1 0 0], [0 2 0], [0 0 3] are orthogonal.

Example 12.5. [1 1], [1 − 1] are orthogonal.

Orthogonal vectors are particularly nice for a number of reasons. For
instance,

Theorem 12.6. (Orthogonality implies linear independence) Any orthog-
onal set of vectors is linearly independent.

Proof. First proof: Suppose that v1, . . . ,vr is an orthogonal set of vectors.
Suppose one vector, say vr, is a combination of the others:

vr = c1v1 + . . . + cr−1vr−1.

Dot with vr on both sides to get

vr · vr = 0 =⇒ vr = 0

which is a contradiction.

Second, more symmetric proof: Suppose that

c1v1 + . . . crvr = 0.

Dot with v1 to get

c1v1 · v1 + c1v2 · v1 + . . . = c1v1 · v1 = 0
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which implies c1 = 0. Dotting with v2,v3 etc. gives c2 = c3 = 0. So there
are no dependence relations. �

A basis is orthogonal if it consists of orthogonal vectors. One of the nice
things about orthogonal vectors is that if a vector is in the span of some
orthogonal vectors then it is easy to find the coefficients:

Theorem 12.7. (Formula for linear combinations of orthogonal vectors)
Suppose that v1, . . . ,vr is a basis for V , so that any v can be written
uniquely

(6) v = c1v1 + . . . + crvr.

If the basis is orthogonal, there is a simple expression for the coefficients
c1, . . . , cr:

c1 =
v · vj

vj · vj
.

Proof. Dot both sides of (6) with vj to get

v · vj = (c1v1 + . . . + crvr) · vj

= c1v1 · vj + . . . + cj−1vj−1 · vj + cjvj · vj + cjvj−1 · vj + . . . crvr · vj

= c10 + cj−10 + cjvj · vj + cj+10 + . . . cr0

= cjvj · vj .

Now divide both sides by vj · vj . �

Example 12.8. Suppose we want to express [3 2] as a combination of [1 1]
and [1 − 1]. One way would be to solve the system

[

1 1 3
1 −1 2

]

.

But since [1 1], [1 − 1] is an orthogonal basis, there is an easier way:

c1 =
[3 2] · [1 1]

[1 1] · [1 1]
=

5

2
.

c2 =
[3 2] · [1 − 1]

[1 − 1] · [1 − 1]
=

1

2
.

Example 12.9. Express [3 2 1] as a combination of

v1 = [1 1 1],v2 = [1 − 1 0],v3 = [1 1 − 2].

Step 1: check that v1,v2,v3 forms an orthogonal basis. v1 · v2 = 1 − 1 =
0,v2 · v3 = 1 − 1 = 0,v1 · v3 = 1 + 1 − 2 = 0. Step 2: Compute the
coefficients c1, c2, c3: c1 = (3+2+1)/(1+1+1) = 2, c2 = (3−2)/(1+1), c3 =
(3 + 2 − 2)/(1 + 1 + 4) = 1

2 .

12.2. Orthonormality. Orthonormality is similar to orthogonality but in
addition to orthogonality one requires that each vector has lengthone.

Definition 12.10. (Orthonormal vectors) A set of vectors v1, . . . ,vr is
orthonormal if

(1) v1, . . . ,vr are orthogonal and
(2) each of the vectors v1, . . . ,vr is a unit vector.

Proposition 12.11. (Making orthogonal vector orthonormal) Any orthog-
onal set of vectors v1, . . . ,vr can be made into an orthonormal set by di-
viding by the lengths

u1 =
v1

‖v1‖
, . . . ,ur =

vr

‖vr‖
.

Example 12.12. The vectors [1 1 1], [1 − 1 0], [1 1 − 2] is orthogonal, but
not orthonormal. To make it orthonormal we divide by the lengths to get

[1 1 1]√
3

,
[1 − 1 0]√

2
,

[1 1 − 2]√
6

.

A basis v1, . . . ,vr for a subspace V of Rn is called orthonormal if the
vectors are orthonormal.

Proposition 12.13. (Formula for linear combinations of orthonormal vec-
tors) Suppose u1, . . . ,ur is an orthonormal basis. Then any vector v can
be written

v = c1u1 + . . . + crur

where

cj = vj · v.

Example 12.14. (Silly example) Let e1, . . . , en be the standard basis for
Rn. Then for any vector x, the formula gives cj = ej · x = xj so that
x = x1e1 + . . . xnen = [x1 0 0 . . . 0] + . . . [0 . . . 0 xn] = [x1 . . . xn] = x.

Example 12.15. Let’s express [3 2 1] in terms of u1 = [1 1 1]√
3

, u2 =
[1 −1 0]√

2
, u3 = [1 1 −2]√

6
. We get

c1 = 6/
√

3, c2 = 1/
√

2, c3 = 3/
√

6.

12.3. Gram-Schmidt. Any basis can be made into an orthonormal basis,
by a procedure call the Gram-Schmidt process. Let’s start with just two

vectors. We define u1 by making v1 into a unit vector: u1 = v1

‖v1‖ . We

want to define u2 to be a unit vector perpendicular to u1. It’s easier to
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first construct a vector perpendicular to u1, and then make it a unit vector,
since changing the length doesn’t change any angles. Let’s try

w2 = v2 − cu1.

In order to get u1 · u2 = 0, we need

(v2 − cu1) · u1 = 0 =⇒ v2 · u1 = cu1 · u1 =⇒ c = v2 · u1.

Hence w2 = v2 − (v2 · u1)u1, u2 = v2

‖v2‖ .

Example 12.16. Make the vector [3 2], [2 3] into an orthonormal basis
using Gram-Schmidt.

u1 = [3 2]/
√

13.

w2 = [2 3] − 12

13
[3 2] = [−10/13 15/13].

u2 = w2/‖w2‖ = [−2 3]/
√

13.

One can continue the process for more than two vectors:

w3 = w3 − (w3 · u1)u1 − (w3 · u2)u2, v3 = w3

‖w3‖ and so on.

Example 12.17. Make the basis [1 1 0], [0 1 1], [1 0 1] into an orthonormal
basis using Gram-Schmidt.

u1 = v1/‖v1‖ = [1 1 0]/
√

2.

w2 = v2 − (v2 · u1)u1)

= ([0 1 1] − 1

2
[1 1 0])

= [−1

2

1

2
1]

u2 = w2/‖w2‖ = [−11 2]/
√

6

w3 = v3 − (v3 · u1) · u1 − (v3 · u2)u2

= [1 0 1] − 1

2
[1 1 0] − 1

6
[−1 1 2]

= [
2

3
− 2

3

2

3
]

u3 = v3/‖w3‖ = [1 − 1 1]/
√

3.

Theorem 12.18. Let v1, . . . ,vr be linearly independent. Then the formu-
las

u1 = v1/‖v1‖
w2 = v2 − (v2 · u1)u1, u2 = w2/‖w2‖, . . .

v′
r = vr − (vr · u1)u1 − . . . − (vr · ur−1)ur−1, ur = vr/‖v′

r‖
define an orthonormal basis for the span of v1, . . . ,vr.

Proof. By induction on r. Step r = 1: Clearly u1 is a unit vector, with
the same span as v1. Step r − 1 =⇒ r. Suppose we have shown that
u1, . . . ,ur−1 are orthonormal with the same span as v1, . . . ,vr−1. Since vr

is not a combination of v1, . . . ,vr−1,

v′
r = (vr − (vr · u1)u1 − . . . − (vr · ur−1)ur−1)

is non-zero. So ur is also non-zero. Therefore, the formula makes sense,
and it clearly defines a unit vector. It remains to check ur · uj = 0, j < r.
This follows from the formula above, since

v′
r · uj = (vr · uj − 0− . . .− (vr · uj)uj · uj − 0 . . .) = vr · uj − vr · uj = 0.

�

12.4. Problems.

(1) Check whether the following sets of vectors are orthogonal, by
checking whether the dot products between distinct vectors are
zero.
(a) [1 0 0], [0 1 0], [0 0 1].
(b) [1 0 0 0], [0 1 0 0], [0 0 1 1].
(c) [1 0 1 0], [0 1 0 0], [0 0 1 1].
(d) [1 0 0 0], [0 1 0 0], [0 0 0 0].

(2) Express each vector as a combination of the given vectors, if possi-
ble, using the formula for the constants above.
(a) [1 2 3] as a combination of [1 0 0], [0 1 0], [0 0 1].
(b) [1 2 3 3] as a combination of [1 0 0 0], [0 1 0 0], [0 0 1 1].
(c) [1 2 3 4] as a combination of [1 0 0 0], [0 1 0 0], [0 0 1 1].
(d) [3 − 4 1] as a combination of [1 − 1 0] and [1 1 − 2].

(3) Use Gram-Schmidt to make the following independent sets (a) or-
thogonal (b) orthonormal.
(a) [1 0], [1 1].
(b) [2 1], [2 2].
(c) [1 0 0], [0 1 0], [1 1 1].
(d) [1 0 0], [1 1 0], [1 1 1].
(e) [1 − 1 0 0], [0 1 − 1 0], [0 0 1 − 1].
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(f) [1 − 1 0 0], [0 0 − 1 1], [0 0 1 − 1].
(4) Find an orthonormal basis for the following subspaces by (a) finding

a basis and (b) making it orthonormal using Gram-Schmidt.
(a) V = {x = 0} in R

2.
(b) V = {x + y = 0} in R

2.
(c) V = {y = 0} in R

3.
(d) V = {x + y + z = 0} in R

3.
(e) V = {x + z + w = 0} in R

4.
(f) V = {x + z + w = 0, y + w = 0} in R

4.
(5) Apply the Gram-Schmidt process to make {(1, 1), (2, 0)} into an

orthonormal basis.
(6) Find an orthonormal basis for the space V of solutions to the equa-

tion x − z − w = 0 in R4. Find the projection of the vector
v = [0, 0, 0, 1] onto V . Find the distance of v from V . Find the
matrix for the orthogonal projection of V .

13. Orthogonal Matrices and applications

Invertible matrices are matrices whose columns form a basis. Orthogonal
matrices are matrices whose columns form an orthonormal basis. It would
have been better to call these orthonormal matrices, but the terminology
has been established for a long time. It turns out that orthogonal matrices
are especially nice, for example, it is easy to find their inverses.

13.1. Orthogonal matrices. The definition of an orthonormal basis can
be written in matrix form. Let Q be the matrix with columns v1, . . . ,vr.
Note that the rows of QT are v1, . . . ,vr. So QT Q is the matrix whose
entries are vi · vj , that is, the rows of QT dotted with the columns of Q.

Proposition 13.1. The following conditions are equivalent:

(1) v1, . . . ,vr is orthonormal;
(2) vi · vj = 1, if i = j, and 0 otherwise;
(3) The matrix whose entries are vi · vj is the identity matrix ;
(4) QT Q = I.

Proof. The equivalence of (1) and (2) is just the definition of orthonormal.
The equivalence of (2) and (3) follows since matrices are equal iff all their
entries are equal. The equivalence of (3) and (4) is just the definition of
matrix products QT Q whose ij-th entry is the dot product vi · vj of the
i-th row vi of QT (hence columns of Q) with the j-th column vj of Q. �

Proposition 13.2. The following conditions are equivalent. If any of them
hold then the matrix is called orthogonal:

(1) Q is square and QT Q = I.
(2) Q is square and Q−1 = QT .
(3) The columns of Q form an orthonormal basis for Rn, where n is

the number of columns of Q.

Thus orthogonal matrices are those for which the inverse operation is
the same as the transpose operation. In particular, inverses of orthogonal
matrices are much easier to find than inverses of arbitrary matrices.

Example 13.3. (1) The identity matrix I is orthogonal. Indeed, I−1 =
I = IT . The columns of I form the standard basis for Rn, which
is orthonormal.

(2) Any permutation matrix is orthogonal, for example,

[

0 1
1 0

]

.

(3) Any rotation matrix

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

is orthogonal.

Orthogonal matrices have a number of nice properties:

Proposition 13.4. (1) If Q is orthogonal, then so is Q−1.
(2) If Q1 and Q2 are orthgonal, then so is Q1Q2.
(3) If Q is orthogonal, then det(Q) = ±1.

Proof. (1) QT = Q−1 implies (Q−1)T = (QT )−1 = (Q−1)−1. (2) is left to
you. (3) If QT Q = I then applying det to both sides we get

1 = det(I) = det(QT Q) = det(QT ) det(Q) = det(Q)2

so det(Q) = ±1. �

Example 13.5. Classify orthonormal bases for R2. The first vector u1

can be any unit vector. This means u1 = [cos(θ) sin(θ)] for some angle θ.
The vector u2 must be a unit vector perpendicular to u1. There are only
two possibilities: u2 = ±[− sin(θ) cos(θ)].

Classify orthogonal 2× 2 matrices. By what we have just said, the only
possibilities are

Qθ =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

, Q′
θ =

[

cos(θ) sin(θ)
sin(θ) + cos(θ)

]

.

The matrix Qθ has determinant cos2(θ) + sin2(θ) = 1; it is the matrix for
the linear transformation given by counter-clockwise rotation by angle θ.
The matrix Q′

θ has determinant − cos2(θ) − sin2(θ) = −1.
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13.2. QR Factorization. Suppose that A is the matrix with columns
v1, . . . ,vn, and let Q be the matrix whose columns are the result of Gram-
Schmidt. Each of the column operations in Gram-Schmidt can be realized
as multiplication on the right by an elementary matrix:

Q = AE1E2 . . . Ek.

Example 13.6. Let’s apply Gram-Schmidt to the three vectors

v1 = [1 1 0] ,v2 = [1 0 1] , v3 = [0 1 1] .

Then
u1 = [1 1 0] /

√
2,

w2 = v2 7→ v2 − (v2 · u1)u1 = [1 0 1]− 1

2
[1 1 0] =

[

1

2
− 1

2
1

]

= [1 − 1 2]

u2 = [1 − 1 2] /
√

6

(7) w3 = (v3 · u1)u1 − (v3 · u2)u2 = [0 1 1] − 1

2
[1 1 0] − 1

6
[1 − 1 2]

=

[

−2

3

2

3

2

3

]

7→ [−1 1 1] .

u3 = [−1 1 1] /
√

3.

Each of these operations is equivalent to multiplication of the matrix

A = [v1 v2 v3] =





1 1 0
1 0 1
0 1 1



 .

by an elementary matrix on the right. The elementary matrices are

E1 =





1/
√

2 0 0
0 1 1
0 0 1



 , E2 =





1 −1/
√

2 0
0 1 0
0 0 1



 , E3 =







1 0 0

0
√

2
3 0

0 0 1







E4 =





1 0 −1/
√

2
0 1 0
0 0 1



 , E5 =





1 0 0

0 1 −1/
√

6
0 0 1



 , E6 =





1 0 0
0 1 0

0 0 1/
√

3



 .

Switching the elementary matrices over to the other side gives

A = QE−1
k . . . E−1

1 .

Define
R = E−1

k . . . E−1
1

so that

A = QR.

Since the E’s are upper triangular, so is R. The ij-th entry of R is ui · vj ,
and the ii-th entry of R is ‖wi‖.
Example 13.7. In the example above

R = E−1
6 E−1

5 E−1
4 E−1

3 E−1
2 E−1

1 =







√
2 1/

√
2 1/

√
2

0
√

3
2 1/

√
6

0 0 2/
√

3/2






.

Therefore, the QR factorization of A is





1 1 0
1 0 1
0 1 1



 =





1/
√

2 1/
√

6 − 2
3

1/
√

2 −1/
√

6 2
3

0 2/
√

6 2
3











√
2 1/

√
2 1/

√
2

0
√

3
2 1/

√
6

0 0
√

3






.

Let’s summarize the discussion in a theorem:

Theorem 13.8. Any matrix A can be factored A = QR, where the columns
of Q are orthonormal vectors and R is the upper triangular matrix whose
ij-th entry is ui · vj and whose ii-th entry is ‖wi‖.

13.3. Problems.

(1) Determine whether the following matrices Q are orthogonal by
checking whether QT Q = I.

(a)

[

−1 0
0 1

]

(b)

[

2 0
0 1/2

]

(c)

[

1 1
1 −1

]

/
√

2

(d)





0 0 1
0 1 0
1 0 0





(2) Find the inverse of each of the following orthogonal matrices in the
easiest way possible.

(a)

[

−1 0
0 1

]

(b)

[

1 1
1 −1

]

/
√

2

(c)





0 0 1
0 1 0
1 0 0




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(3) True/False: (a) The rows of an orthogonal matrix form an orthonor-
mal basis. (b) If Q1 and Q2 are orthogonal, then so is Q1Q2. (c)
If Q is orthogonal, then det(Q) = ±1.

(4) True or false:
(a) If Q is orthogonal, then so is QT .
(b) If Q is an orthogonal matrix, then any eigenvalue of Q has

|λ| = 1.
(c) If Q is an orthogonal matrix, then so is Q2.
(d) If Q2 is an orthogonal matrix then so is Q.

14. Orthogonal complements and projections

In this section we discuss applications of orthogonality, in particular,
orthogonal projections which allow one to find the “closest point” to a
given point in a line, plane, etc.

14.1. Orthogonal complements. The orthogonal complement of a sub-
space is the subspace perpendicular to it. For example, the orthogonal
complement of the east-west line through the origin is the north-south line,
and the orthogonal complement of the horizontal plane is the vertical line.
More formally:

Definition 14.1. (Orthogonal complements) Let V be a subspace of Rn.
The orthogonal complement of V , denoted V ⊥, is the set of all vectors w
such that w is perpendicular to v for all vectors v in V . Equivalently,
w · v = 0 for all v in V .

Example 14.2. (1) The orthogonal complement of V = {[x 0]} is
V ⊥ = {[0 y]}.

(2) The orthogonal complement of V = span[1 1] is V ⊥ = span[1 − 1].
(3) The orthogonal complement of V = span[1 1 1] is V ⊥ = {[x y z], x+

y + z = 0} = span[1 − 1 0], [0 1 − 1].
(4) The orthogonal complement of V = {[x y 0 0]} in R

4 is V ⊥ =
{[0 0 z w]}.

(5) The orthogonal complement of V = {x + y + z + w} in R
4 is V ⊥ =

{[x x x x]}.

Example 14.3. Describe the orthogonal complement of the span of [2 1 0 1]
and [0 1 1 0]. The equations for V are

[2 1 0 1] · v = [0 1 1 0] · v = 0

which is equivalent to
[

2 1 0 1
0 1 1 0

]

v = 0.

So we are trying to find the null-space of the matrix

[

2 1 0 1
0 1 1 0

]

. We

do this by the nullspace algorithm:
[

2 1 0 1
0 1 1 0

]

7→
[

−©2
]

[

2 0 −1 1
0 1 1 0

]

which has equations

a = c − d, b = −c

and solution set








c − d
−c

c
d









= c









1
−1

1
0









+ d









−1
0
0
1









so the space has basis

{









1
−1

1
0









,









−1
0
0
1









.

Note that

Lemma 14.4. If v1, . . . ,vr is a basis for V , then w is in V ⊥ if and only
if w is perpendicular to v1, . . . ,vr.

Proof. wvj = 0 for j = 1, . . . , r implies w(c1v1 + . . . crvr) = 0 for any
scalars cj , which implies wv = 0 for all v in V . �

Example 14.5. Let v = [1 2 3] in R3 and let V be the span of V . The
orthogonal complement is the set of all vectors perpendicular to v, that
is the set of w = [x y z] such that x + 2y + 3z = 0. V ⊥ is the plane
perpendicular to (or with normal equal to ) [1 2 3].

Example 14.6. Let V be the span of v1 = [1 2 3] and v2 = [3 2 1]. Then
V is a plane and V ⊥ is the perpendicular to this plane, and so is a line. To
compute the equation for V ⊥, we do elimination:

V ⊥ = {[x y z], x + 2y + 3z = 0}
= {[−2y − 3z y z]}
= span[−2 1 0], [−3 0 1].



54

Note we have been using the null-space algorithm to find a basis for V ⊥.
We can always do this because of the following:

Proposition 14.7. For any matrix A, the nullspace of A is the orthogonal
complement of the rowspace of A.

Proof. w is in the null-space of A if and only if Aw = 0 if and only if each
row vj dotted with w gives 0. �

14.2. Properties of Orthogonal Complements.

Theorem 14.8. (1) V and V ⊥ intersect in the zero vector.
(2) If V has dimension r, then V ⊥ is a subspace of dimension n − r.
(3) Any vector u in R

n may be written uniquely as a combination of a
vector v in V and a vector w in V ⊥.

(4) For any subspace V , (V ⊥)⊥ = V .

Proof. (1) If u is in V and u is in V ⊥, then u · u = 0, so u = 0.

(2) Since v1, . . . ,vr are linearly independent, there is a leading one in
every row. So there are r leading 1’s. Therefore, dimV ⊥ is the number of
free variables, which is the number of columns without leading ones, which
is n − r.

(3) Pick a basis v1, . . . ,vr for V , and a basis w1, . . . ,wn−r for V ⊥. Then
v1, . . . ,vr,w1, . . . ,wn−r is orthonormal, so linearly independent, so a basis
for Rn. Hence any vector can be written uniquely

u = c1v1 + . . . + cnwn−r.

Let v = c1v1 + . . . + crvr and w = cr+1w1 + . . . cnwn−r. Then v is in V
and w is in W .

We prove that v and w are unique. Suppose u = v′ + w′ with v′ ∈
V,w′ ∈ W . Then

v + w = v′ + w′ =⇒ v − v′ = w′ − w.

So v − v′ ∈ W and w′ − w ∈ V . But this is a contradiction, by (1).

(4) (V ⊥)⊥ is the set of vectors u such that u is perpendicular to any
vector in V ⊥. Given any such vector, we may write it u = v + w by (3).
But then u is perpendicular to w so

u ·w = 0 + w ·w = 0

which implies w = 0. Hence u is in V . Conversely, any vector v in V
is perpendicular to V ⊥, and so lies in (V ⊥)⊥. We have shown that V is
contained in (V ⊥)⊥ and vice-versa, so the two subspaces must be equal. �

14.3. Orthogonal Projections. The orthogonal projection of a vector
on a subspace is its “shadow at high noon”, that is, its image under rays
moving perpendicular to the subspace. In particular, if the vector already
lies in the subspace then its orthogonal projection is itself, while if the
vector is already orthogonal to the subspace then its orthogonal projection
is zero. (A tall thin person at high noon has practically no shadow.)

Definition 14.9. (Orthogonal projections of vectors) Let V be a subspace
of Rn, and u a vector, and u = v+w the decomposition given by (3) above
so that v ∈ V and w ∈ V ⊥. The orthogonal projection of u onto V is the
vector v.

Example 14.10. Suppose V is the xy-plane and u = [1 2 3]. Then V ⊥ is
the z-axis and the decomposition of u is

[1 2 3] = [1 2 0] + [0 0 3].

So v = [1 2 0] is the projection of u onto V and w = [0 0 3] is the projection
of u onto V ⊥.

Orthogonal projections can be computed easily given an orthogonal basis
for the subspace. Let’s start with the case that the subspace V is a line:

Theorem 14.11. (Formula for the orthogonal projection of a vector onto
a line) Let V be the span of a single vector v1.

(1) The projection of u onto V is v = u·v1

v1·v1

v.

(2) The projection of u onto V ⊥ is w = v − u·v1

v1·v1

.

Proof. Let’s write u as a sum of vectors in V and an orthogonal vector

u = cv1 + (u− cv1).

Now we solve for c so that

cv1 · (u − cv1) = 0.

We get

cv1 · u = c2v1 · v1 =⇒ c =
v1 · u
v1 · v1

.

�

Example 14.12. Find the projection of the vector u = [1 0 0] onto the
span V of v1 = [1 2 3]. Find the projection of u onto V ⊥.
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Now we prove the formula in general. Note that the hard part about the
formula is not the formula itself, but actually the assumption that the basis
for the subspace is orthogonal. Finding such a basis (which lets you apply
the formula) usually requires much more work than applying the formula
itself.

Theorem 14.13. (Projection of a vector onto a subspace with an orthog-
onal basis) Suppose that V is a subspace with orthogonal basis v1, . . . ,vr.
Then the projection of u onto V is

v = (u · v1)v1 + . . . (u · vr)vr

and the projection of u onto V ⊥ is

w = v − (u · v1)v1 + . . . (u · vr)vr .

Proof. We write

v = c1v1 + . . . crvr, w = u − c1v1 + . . . crvr

and solve for c1, . . . , cr so that w · vj = 0 for j = 1, . . . , r. �

Example 14.14. Find the projection of the vector u = [1 2 3] onto the
subspace V spanned by v1 = [1 1 0] and v2 = [0 1 1].

14.4. Projection Matrices.

Theorem 14.15. The map T that sends u to its projection v is a linear
transformation. If v1, . . . ,vr is an orthonormal basis, the matrix P for T
is

P = v1v
T
1 + . . . + vrv

T
r .

If v1, . . . ,vr is an orthogonal basis, the formula for the matrix T is

P =
v1v

T
1

vT
1 v1

+ . . . +
vrv

T
r

vT
r vr

.

If v1, . . . ,vr is an arbitrary basis, the formula for the matrix is

P = A(AT A)−1AT

where A is the matrix with columns v1, . . . ,vr.

Proof. In the case v1, . . . ,vr is an arbitrary basis for V , Pu is the unique
point in V such that Pu is a combination of v1, . . . ,vr, and Pu ·vj = u ·vj

for each vj . In matrix form, this means that

AT Pu = AT u.

If P = A(AT A)−1AT then Pu is A times something, and so a combination
of v′

is. Also

AT Pu = AT A(AT A)−1AT u = AT u

so AT P = AT . This shows the formula. �

Example 14.16. Find the matrix for projection onto the xy-plane.

Example 14.17. Find the matrix for projection onto the span of [1 1 0]
and [0 1 1].

14.5. Problems.

(1) Identify the orthogonal complement to the following spaces.
(a) V = {[x 0], x ∈ R}
(b) V = {[x x], x ∈ R}
(c) V = {[x y], x + y = 0}
(d) V = span[1 1 1]
(e) V = {[x y z], x + z = 0}

(2) In each case, find a basis for V and a basis for V ⊥.
(a) V = {[x 0], x ∈ R}
(b) V = {[x x], x ∈ R}
(c) V = {[x y], x + y = 0}
(d) V = span[1 1 1]
(e) V = {[x y z], x + z = 0}

(3) In each case, find an orthonormal basis for V and for V ⊥.
(a) V = {[x 0], x ∈ R}
(b) V = {[x x], x ∈ R}
(c) V = {[x y], x + y = 0}
(d) V = span[1 1 1]
(e) V = {[x y z], x + z = 0}

(4) Find the projection of the given vector on the given subspace.
(a) v = [2 3], V = {[x 0], x ∈ R}
(b) v = [2 3], V = {[x x], x ∈ R}
(c) v = [2 3], V = {[x y], x + y = 0}
(d) v = [1 1 1], V = span[1 1 1]
(e) v = [1 2 3], V = span[1 1 1]
(f) v = [1 1 1], V = {[x y z], x + z = 0}

(5) Find an orthonormal basis for the subspace V that is the span of
the vectors [1 1 1] and [1 0 1]. Find the matrix for orthogonal
projection onto V . Find the projection of the vector [1 0 2] onto
V . Find the closest point to [1 0 2] in V ⊥.

(6) Find a non-zero vector perpendicular to v = [3 1 2 4] in R4.
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(7) Find a basis for the plane V in R
4 perpendicular to [1 0 0 1] and

[1 1 0 0]. (b) Make the basis you found in part (a) into an orthonor-
mal basis, using Gram-Schmidt. (c) Find the matrix for projection
onto V . Find the projection of b = [0 − 1 0 1] onto V .

(8) If V is the plane of vectors in R4 satisfying x1 + 2x2 + x3 = 0, find
a basis for V ⊥.

(9) (a) Find the projection of the vector v = [101] onto the line V
through [−10 − 1]. (b) Find the matrix P for projection onto V .
Check your answer to (a) by computing the product Pv.

(10) True/False:
(a) If P is the matrix for orthogonal projection onto a subspace

V , then P 3 = P .
(b) If P is the matrix for orthogonal projection onto a subspace

V , then V is an eigenspace for P .
(c) If P is the matrix for orthogonal projection onto a subspace

V , then V ⊥ is an eigenspace for P .
(d) If P is the matrix for orthogonal projection onto a subspace

V , then P is diagonalizable.
(e) If P is the matrix for orthogonal projection onto a subspace

V , then the only eigenvalues for P are 0, 1.

15. Least Squares Approximation

In this section we discuss another application of orthogonality called least
squares approximation. Least squares approximations arise whenever one is
trying to fit a function to a set of data points that have experimental error.
The least squares technique allows one to find the function that “best fits”
the data points in a precise sense.

Let’s start with a simple example in which the function that we are
trying to fit is linear. Suppose we want to find the line that best fits the
data points (0, 0), (1, 0) and (2, 3). Before we saw how to set this problem
up as a system of linear equations: We write f(x) = c1x + c0 and solve for
c1, c0

c1(0) + c0 = 0

c1(1) + c0 = 0

c1(2) + c0 = 3.

Since the three points are not colinear, there is no solution. The problem

is that the vector b =





0
0
3



 is not in the column space of the matrix

A =





0 1
1 1
2 1



.

Definition 15.1. (Least squares system) Given a linear system Ax = b
that is not solvable, we create a new system that is solvable by orthogonally
projecting the vector b onto the column space of A. This gives a vector Pb
which is a close to b as possible, yet now has a solution. The equation

Ax = Pb

is called the least squares equation.

Here is a shortcut to solving it. Since b−Pb is in the perp of the column
space,

AT (b − Pb) = 0.

Hence AT (Ax − Pb) = 0 which implies that

AT Ax = AT b.

Any solution is called a least square solution.

Example 15.2. Suppose we want to find the line that best fits the data
points (0, 0), (1, 0) and (2, 3). The least squares solution is





0 1
1 1
2 1





T 



0 1
1 1
2 1





[

c1

c0

]

=





0 1
1 1
2 1





T 



0
0
3





which becomes
[

5 3
3 3

] [

c1

c0

]

=

[

6
3

]

.

The solution is c1 = 3
2 , c0 = − 1

2 .

Example 15.3. Find all functions of the form f(t) = c0 + c1|t| that best
fit the data points (0, 0), (1, 1), (−1, 2).

Answer: The equations are

f(0) = c0 + c1|0| = c0 = 0

f(1) = c0 + c1|1| = c0 + c1 = 1

f(−1) = c0 + c1| − 1| = c0 + c1 = 2.



57

Note that since | − 1| = 1, the second and third equations are the same on
the left-hand-side, but different on the right, so the system is inconsistent.
The matrix form is





1 0 0
1 1 1
1 1 2



 .

The least squares equation is

[

1 1 1
0 1 1

]





1 0
1 1
1 1





[

c0

c1

]

=

[

1 1 1
0 1 1

]





0
1
2





or
[

3 2
2 2

] [

c0

c1

]

=

[

3
3

]

.

This system reduces

[

3 2 3
2 2 3

]

→
[

1 0 0
2 2 3

]

→
[

1 0 0
0 2 3

]

→
[

1 0 0
0 1 3/2

]

so the least squares solution is c0 = 0, c1 = 3/2. The least squares function
is

f(t) = (3/2)|t|.

Example 15.4. Find the functions f(t) = a + bt + ct2 that best fit the
data points (0, 0)(1, 1), (1, 2).

Answer: The equations are

f(0) = a + b(0) + c(0)2 = 0

f(1) = a + b(1) + c(1)2 = 1

f(1) = a + b(1) + c(1)2 = 2.

Note that since | − 1| = 1, the second and third equations are the same on
the left-hand-side, but different on the right, so the system is inconsistent.
The matrix form is





1 0 0 1
1 1 1 1
1 11 2



 .

The least squares equation is




1 1 1
0 1 1
0 1 1









1 0 0
1 1 1
1 1 1









a
b
c



 =





1 1 1
0 1 1
0 1 1









0
1
2





or




3 2 2
2 2 2
2 2 2









a
b
c



 =





3
3
3



 .

This system reduces




3 2 2 3
2 2 2 3
2 2 2 3



→
[

1 0 0 0
2 2 2 3

]

→





1 0 0 0
0 2 2 3
0 0 0 0



→





1 0 0 0
0 1 1 3/2
0 0 0 0





so the least squares solutions are a = 0, b = 3/2 − c. The least squares
functions are

f(t) = (3/2 − c)t + ct2.

15.1. Problems.

(1) Find the closest line, through the origin, to the points (0, 8)(1, 8), (3, 5), (4, 10).
(2) Using the least squares method, find the function of the form

(a) f(x) = c0+c2x
2 that best fits the data points (−1, 1), (0, 0), (1, 2).

(b) f(x) = a+bx3 that best fits the data points (−1,−1), (0, 0), (1, 3).
(c) f(x) = ax+bx2 that best fits the data points (−1, 0), (1, 0), (2, 2).
Compute the values of the function f(x) that you found at x =

−1, x = 0 and x = 1. Draw a rough sketch of the function f(x).
(3) Using least-squares approximation find all the functions of the form

f(t) = c0+c1t. which are best fits for the data points (−1, 0), (0, 0), (0, 2).
(4) Apply the least squares method to find the closest line(s) to the

data points (0, 0), (2, 0), (2, 3).
(5) Apply the least squares method to find the curve of the form c0 +

c1x + c2x
2 best fitting the points (−1, 1), (0, 0), (1, 1), (2, 1).

(6) Find all the functions of the form f(t) = c0+c1 cos(πt)+c2 cos(2πt).
that are best fits for the data points (− 1

2 , 1), (0, 0), (1
2 , 0).

16. Eigenvectors and eigenvalues

Eigenvectors and eigevalues are often a method of computing large ma-
trix powers in models where time evolution is given by matrix multiplica-
tion.

Here is a motivating example. Consider the following mathematical
model for the market for cola. Suppose c(t) (resp. p(t)) is the number
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of Coke (resp. Pepsi) drinkers at time t months. Suppose each month,
10 percent of the Coke drinkers switch to become Pepsi drinkers, and 20
percent of the Pepsi drinkers switch to Coke. If we start with 100 Pepsi
drinkers and no Coke drinkers, what happens as t goes to infinity?

t p c
0 0 100
1 20 80
2 34 66

To set this up as a linear algebra problem we write

c(t + 1) = .9c(t) + .2p(t)

p(t + 1) = .1c(t) + .8p(t)

or in matrix form

x(t + 1) = Ax(t) where A =

[

.9 .2

.1 .8

]

and x(t) =

[

c(t)
p(t)

]

.

This implies that

x(t) = Ax(t − 1) = A2x(t − 2) = . . . = Atx(0)

for any time t. The best method for solving this for large t is eigenvec-
tors/eigenvalues.

Definition 16.1. An eigenvector of a square matrix A is a vector x such
that Ax = λx for some number λ, called the eigenvalue of x. An eigenvalue
of a square matrix A is a number λ such that Ax = λx for some vector x,
called an eigenvector for λ.

Geometrically, an eigenvector is a vector x such that Ax lies in the same
direction (or opposite direction) as the original vector. The eigenvalue λ is
the “stretch factor”.

Example 16.2. Say A =

[

.9 .2

.1 .8

]

as above. Then x1 =

[

1
−1

]

is an

eigenvector with eigenvalue .7. Also x2 =

[

2
1

]

is an eigenvector with

eigenvalue 1.

Let’s use these eigenvectors to solve the coke/pepsi problem described

above. To begin, we write the initial state vector x0 =

[

0
100

]

in terms of

the eigenvectors:

x0 =

[

0
100

]

= −(200/3)

[

1
−1

]

+ (100/3)

[

2
1

]

=

[

−66
66

]

+

[

66
33

]

.

Graphically, the vector x0 is the purple vector while the blue and red vectors
are the second and first components, respectively. (The second is drawn
first, for reasons that will become clear in a moment.)

Now

xt = Axt−1 = A2xt−2 = . . . = Atx0 = (200/3)At

[

1
−1

]

+(100/3)At

[

2
1

]

= (200/3)(.7)t

[

1
−1

]

+ (100/3)(1)t

[

2
1

]

.

Each time step, the first component of xt shrinks by 30 percent, while the
second factor stays the same. This is shown in the figure below:

t=0

t=1

t=2

t=3
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For t very large, (.7)t is approximately zero. (That is, the blue component
shrinks to zero.) So

xt → (100/3)

[

2
1

]

=

[

66.7
33.3

]

.

That is, in the long run 2
3 of the customers are with Coke, and 1/3 with

Pepsi.

16.1. Finding eigenvalues. First we find the eigenvalues. The following
theorem gives a practical method for doing so.

Theorem 16.3. The following are equivalent:

(1) λ is an eigenvalue of A.
(2) Av = λv for some vector v 6= 0.
(3) (A − λI)v = 0 for some vector v 6= 0.
(4) nullspace(A − λI) 6= 0.
(5) A − λI is not invertible.
(6) det(A − λI) = 0.

Proof. (i) ⇐⇒ (ii) is the definition of eigenvalue. (iii) is obtained from
(ii) by subtracting λv from both sides. (iii) ⇐⇒ (iv) is the definition
of null-space. The null-space contains a non-zero vector iff there is a free
variable iff rref(A) is not the identity iff A is invertible, hence (iv) ⇐⇒
(v). Since a matrix is invertible iff it has non-zero determinant, (v) ⇐⇒
(vi). �

By the Theorem, to find the eigenvalues we have to solve det(A−λI) = 0.
The polynomial det(A − λI) is the characteristic polynomial of A.

Example 16.4. If A =

[

.9 .2

.1 .8

]

then

0 = det(A−λI) = det(

[

.9 .2

.1 .8

]

−
[

λ 0
0 λ

]

= (.9−λ)(.8−λ)−.02 = .7−1.7λ+λ2.

Solving such an equation is equivalent to factoring

.7 − 1.7λ + λ2 = (λ − λ1)(λ − λ2).

We want to find numbers λ1, λ2 so that λ1 + λ2 = 1.7 and λ1λ2 = .7. The
solution is

λ1 = 1, λ2 = .7.

This gives the eigenvalues above.

Example 16.5. Let A =





2 −1 0
−1 2 −1

0 −1 2



 . To find the eigenvalues we

set

0 = det(A − λI) =





2 − λ −1 0
−1 2 − λ −1

0 −1 2 − λ



 .

By expanding along the first row this equals

(2 − λ)((2 − λ)2 − 1) − (−1)(−1)(2 − λ) = (2 − λ)(λ2 − 4λ + 3) − (2 − λ)

= (2 − λ)(λ2 − 4λ + 2) = (2 − λ)(λ − (2 +
√

2))(λ − (2 −
√

2)).

So the eigenvalues are

λ1 = 2, λ2 = (2 +
√

2), λ3 = (2 −
√

2).

Example 16.6. Let A =





1 2 3
0 1 2
0 0 1



 . To find the eigenvalues we set

0 = det(A − λI) = (1 − λ)(1 − λ)(1 − λ).

So the eigenvalues are λ = 1, 1, 1.

More generally, if A is upper or lower triangular or diagonal, then A−λI
is also upper or lower triangular, so that det(A− λI) is the product (a11 −
λ) . . . (ann − λ). This shows

Theorem 16.7. If A is upper or lower triangular or diagonal then the
eigenvalues of A are the diagonal entries a11, . . . , ann.

16.2. Finding eigenvectors. Once we have found the eigenvalues, we can
find the eigenvectors. The following are equivalent:

(1) v is an eigenvector of A with eigenvalues λ;
(2) Av = λv
(3) (A − λI)v = 0
(4) v is in the nullspace of A − λI.

So to find the eigenvectors we have to find the nullspace of A − λI, for
each eigenvalue λ.
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Example 16.8. Let A =

[

.9 .2

.1 .8

]

. The eigenvalues are λ = .7 and

λ = 1. We compute

nullspace A − .7I = nullspace

[

.9 .2

.1 .8

]

−
[

.7 0
0 .7

]

= nullspace

[

.2 .2

.1 .1

]

= nullspace

[

1 1
0 0

]

= span

[

1
−1

]

.

nullspaceA − (1)I = nullspace

[

.9 .2

.1 .8

]

−
[

1 0
0 1

]

= nullspace

[

−.1 .2
.1 −.2

]

= nullspace

[

1 −2
0 0

]

= span

[

2
1

]

.

So “the” eigenvectors are

v1 =

[

1
−1

]

, v2 =

[

2
1

]

as we claimed above. Note these vectors are not unique: any multiples of
v1,v2 are also eigenvectors.

Example 16.9. Let A =





1 2 3
0 1 2
0 0 3



 so the eigenvalues are 1, 1, 3. Then

nullspace A − (1)I = nullspace





0 0 3
0 0 2
0 0 2





= nullspace





0 1 0
0 0 1
0 0 0



 = span





1
0
0



 .

and

nullspaceA − (3)I = nullspace





−2 2 0
0 −2 3
0 0 0





= nullspace





1 0 − 3
2

0 1 − 3
2

0 0 0



 = span





3
2
3
2
1



 .

So in this case there are two eigenvectors




0
0
1



 ,





3
2
3
2
1



 .

Example 16.10. Every vector is an eigenvector for the identity matrix I
with eigenvalue 1.

16.3. Properties of the eigenvalues. The characteristic polynomial det(A−
λI) has degree n, so there are at most n solutions to det(A − λI) = 0. If
there are exactly n solutions λ1, . . . , λn to the equation det(A− λI) = 0 in
the real numbers, so that

det(A − λI) = (λ1 − λ) . . . (λn − λ),

we say that the eigenvalues of A are all real. This terminology will be
explained later; for the moment we assume that all eigenvalues are real.
The number of times a factor (λi − λ) appears is the algebraic multiplicity
of λi.

Example 16.11. Suppose A =





1 2 3
0 1 2
0 0 3



. Then det(A − λI) = (1 −

λ)2(3−λ) so λ = 1 is an eigenvalue with algebraic multiplicity 2 and λ = 3
is an eigenvalue with algebraic multiplcity 1.

The trace of a square matrix A is the sum of the diagonal entries:

Tr(A) = a11 + . . . + ann.

For example, the trace of the n × n identity matrix is 1 + . . . + 1 = n.

Theorem 16.12. (Properties of eigenvalues)

(1) The number of real eigenvalues, counted with algebraic multiplicity,
is at most n.

(2) The number of complex eigenvalues, counted with algebraic multi-
plicity, is exactly n.
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(3) The determinant of A is the product of the complex eigenvalues
taken with algebraic multiplicity: det(A) = λ1λ2 . . . λn.

(4) The trace of A is the sum of the eigenvalues, with algebraic multi-
plicity: tr(A) = λ1 + λ2 + . . . + λn.

(5) The tranpose AT of a square matrix A has the same eigenvalues as
A.

(6) Suppose that the columns of A sum up to 1. Then λ = 1 is an
eigenvalue for A.

Proof. (c) We plug λ = 0 into the characteristic polynomial to get det(A) =
(λ1)(λ2) . . . (λn). (d) Note that the characteristic polynomial is

(λ1 − λ) . . . (λn − λ) = (−1)nλn + (λ1 + . . . + λn)(−1)n−1 + O(λn−2)

where O(λn−2) means terms of order at most n − 2 in λ. On the other
hand, the only term in det(A − λI) involving at least n − 1 λ’s is

(a11−λ) . . . (ann−λ) = (−1)nλn +(a11+ . . .+ann)(−1)n−1λn−1+O(λn−2).

Equating the coefficients of λn−1 finishes the proof. (e) The characteristic
polynomial

det(AT − λI) = det(AT − λIT ) = λ((A − λI)T ) = det(A − λI).

So the eigenvalues, which are the roots of the characteristic polynomial, are
also the same. (f) If the columns of A sum up to 1 then

[1 1 1 . . . 1]A = [1 1 1 . . . 1]A

which implies

AT











1
1
...
1











=











1
1
...
1











which implies that λ = 1 is an eigenvalue of AT . By the Theorem, this
implies implies that λ = 1 is an eigenvalue of A. �

Corollary 16.13. A matrix is invertible only if 0 is not an eigenvalue.

Proof. A is invertible, iff det(A) 6= 0, iff none of the λi’s is zero. �

Suppose A is a matrix which represents a physical system in which the
total number is preserved, e.g. the matrix in the Coke/Pepsi example

A =

[

.9 .2

.1 .8

]

.

Any such matrix has λ = 1 as an eigenvalue. This means that there is a
vector v that is an equilibrium for the system, that is Av = v.

16.4. Properties of the eigenvectors. For any eigenvalue λ define

Eλ = nullspace(A − λI).

This is the λ-eigenspace for A. The dimension of Eλ is called the geometric
multiplicity of λ.

Theorem 16.14. (Properties of eigenvectors)

(1) The number of independent eigenvectors with eigenvalue λ is be-
tween 1 and the algebraic multiplicity of λ.

(2) Eigenvectors from different eigenspaces are independent: If v1, . . . ,vr

is a collection of vectors from different eigenspaces Eλ1
, . . . , Eλr

then v1, . . . ,vr are linearly independent.
(3) The total number of independent eigenvectors of an n×n matrix is

between 1 and n.

Proof. (b) Suppose one, say vr is a combination of the others

vr = c1v1 + . . . cr−1vr−1.

Applying A to both sides we get

λrvr = c1λ1v1 + . . . + cr−1λr−1vr−1.

Subtracting λr times the first equation we get

0 = c1(λ1 − λr)v1 + . . . + cr−1(λr−1 − λr)vr−1.

By the inductive hypothesis, v1, . . . ,vr−1 are independent so

c1(λ1 − λr) = . . . = cr−1(λr−1 − λr) = 0.

Since all the eigenvalues λ1, . . . , λr are distinct, this implies that

c1 = . . . = cr−1 = 0

which shows that v1, . . . ,vr are independent. �

Example 16.15. Show that if v is an eigenvector for A and B, then it is
an eigenvector for A + B.

Answer: Suppose v is an eigenvector for A and B. Then Av is in the
same direction as v, and so is Bv. So Av = λv for some λ. Bv is also
λv for some λ, but we cannot use the same notation because they might
be different scalars. So suppose Av = λAv and Bv = λBv. Now we
ask, is (A + B)v the same direction as v? To answer this we distribute
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(A + B)v = Av + Bv = λAv + λBv = (λA + λB)v which is in the same
direction as v. So, yes.

16.5. Problems.

(1) In each case, determine whether the given vector is an eigenvector
for the given matrix and, if so, find the eigenvalue.

(a) A =

[

1 0
0 2

]

and v =

[

0
1

]

.

(b) A =

[

3 0
0 4

]

and v =

[

1
0

]

.

(c) A =

[

1 0
0 1

]

and v =

[

2
3

]

.

(d) A =

[

1 0
0 1

]

and v =

[

3
2

]

.

(e) A =

[

1 0
0 1

]

and v =

[

0
0

]

.

(f) A =

[

1 1
1 1

]

and v =

[

1
1

]

.

(g) A =

[

1 1
1 1

]

and v =

[

1
−1

]

.

(h) A =

[

1 1
1 1

]

and v =

[

1
0

]

.

(2) In each case, find the characteristic polynomial of the matrix and
factor it to find the eigenvalues.

(a) A =

[

1 0
0 2

]

.

(b) A =

[

1 0
0 1

]

.

(c) A =

[

1 1
1 1

]

.

(d) A =

[

.9 .2

.1 .8

]

.

(e) A =





2 1 1
1 2 1
1 1 2





(f) A =





2 1 1
1 2 0
0 0 2





(g) A =





1 2 0
0 2 3
0 0 4



.

(3) True or false? Explain.
(a) A square matrix is not invertible, if and only if 0 is an eigenvalue.

(4) Show that λ is an eigenvalue of A, if and only if det(A − λI) = 0.
(5) Show that if v1, v2 are eigenvectors of a matrix A with different

eigenvalues λ1, λ2 then v1, v2 are linearly independent.
(6) Show that if v is an eigenvector for A and B, then v is an eigenvector

for AB.

17. Diagonalization

In this section we rephrase the method of finding large matrix powers
using eigenvalues and eigenvectors in a different, more efficient way.

Definition 17.1. If an n × n matrix A has n independent eigenvectors
v1, . . . ,vn, A is called diagonalizable. In this case the eigenvectors v1, . . . ,vn

form a basis for Rn called an eigenbasis.

Example 17.2. (1) Any diagonal matrix is diagonalizable.
(2) In particular, the identity matrix is diagonal, so diagonalizable.

Any vector is an eigenvector for the identity matrix, so any basis is
an eigenbasis for the identity matrix.

(3) If A =

[

1 1
1 1

]

then v1 =

[

1
1

]

and v2 =

[

1
−1

]

are eigenvec-

tors with eigenvalues 2, 0 respectively.

(4) If A =

[

0 1
−1 0

]

then A is rotation by 90 degrees. So there are

no (real) eigenvectors, and so no eigenbasis.

Theorem 17.3. If A is diagonalizable, then A = SDS−1 where S is the
matrix whose columns are the eigenvectors of A, and D is the diagonal
matrix of eigenvalues.

Example 17.4. Find the diagonalization of A ==

[

.9 .2

.1 .8

]

, if it exists.

Answer: det(A − λI) = λ2 − 1.7λ + (.72 − .02) = (λ − 1)(λ − .7). So the
eigenvalues are λ = 1,−.7. (Alternatively just note that A is Markov so
λ = 1 is an eigenvalue and the sum of the eigenvalues is the trace 1.7 so
the other eigenvalue is .7.) The eigenvectors are

Eλ=1 = nullspace(A − I) = nullspace

[

−.1 .2
.1 −.2

]

= span

[

2
1

]
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and

Eλ=−.7 = nullspace(A − .7I) = nullspace

[

.2 .2

.1 .1

]

= span

[

1
−1

]

.

So

S =

[

−1 2
1 1

]

, D =

[

.7 0
0 1

]

then A = SDS−1.

Remark 17.5. The order that you choose for the eigenvalues doesn’t mat-
ter as long as you choose the same order for the eigenvectors.

Example 17.6. The matrix A =





1 2 3
0 1 2
0 0 3



 with eigenvalues 1, 1, 3

is not diagonalizable because there are only two independent eigenvectors




0
0
1



 ,





3
2
3
2
1



.

Example 17.7. The identity matrix, or more generally any diagonal ma-
trix is diagonalizable since it is already diagonal! In this case S = I and
D = A.

Finding the matrices S and D is called diagonalizing A.

Theorem 17.8. If a matrix A has n distinct eigenvalues λ1, . . . , λn, then
A is diagonalizable.

Proof. Choose an eigenvector vi for each eigenvalue λi. Since there are
n-eigenvalues, there are n eigenvectors, independent by the theorem above.

�

17.1. Application to matrix powers. Suppose A is a square matrix,
and we want to find a large power of A, say At. The best way to do this is
using diagonalization:

At = (SDS−1)t = SDS−1SDS−1 . . . SDS−1 = SDtS−1.

Since D is diagonal, its matrix powers are easy to compute:

Dt = diag(λt
1, . . . , λ

t
n).

Example 17.9. Find At, where A ==

[

.9 .2

.1 .8

]

. Then

At = SDtS−1

=

[

−1 2
1 1

] [

.7t 0
0 1t

] [

−1 2
1 1

]−1

=

[

−1(.7)t 2
1(.7)t 1

] −1

3

[

1 −2
−1 −1

]

=
1

3

[

(.7)t + 2 −2(.7)t + 2
−(.7)t + 1 2(.7)t + 1

]

.

As t becomes very large this matrix approaches

A∞ :=
1

3

[

2 2
1 1

]

.

17.2. Similarity. Two matrices A, B are said to be similar if there exists
an invertible matrix S such that A = SBS−1.

Proposition 17.10. (1) A is similar to itself. (2) If A is similar to B,
then B is similar to A. (3) If A is similar to B and B is similar to C then
A is similar to C.

Theorem 17.11. If A and B are similar, then they have the same char-
acteristic polyonmial. As a result, they have the same eigenvalues, with the
same algebraic multiplicities.

A matrix is diagonalizable if and only if it is similar to a diagonal matrix.
Let’s apply this to prove the following statement:

Proposition 17.12. The geometric multiplicity of an eigenvalue λi is be-
tween 1 and the algebraic multiplicity of λi.

Proof. First

geommultλi = dim(nullspace(A − λiI)) ≥ 1

since det(A − λiI) = 0.

Second, let v1, . . . ,vr be a basis for Eλi
and extend it to a basis v1, . . . ,vn

for Rn. Let S bd the matrix whose columns are v1, . . . ,vn. Note that

SAS−1ej = SAvj = Sλivj = λiej

for j ≤ r, so SAS−1 is of the form

SAS−1 =

[

λiIr ∗
0 ∗

]
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that is, block upper-triangular with λiIr in the upper-left corner. Hence
det(A − λI) = det(SAS−1 − λI) has at least r copies of λ − λi. So the
algebraic multiplicity is at least r. �

17.3. Problems.

(1) True or false? Explain.
(a) The identity matrix is diagonalizable.
(b) An n × n matrix is diagonalizable if and only if the sum of

the geometric multiplicities of the eigenvalues is n.
(c) The sum of the algebraic multiplicities of the eigenvalues of

an n × n matrix is n, if complex eigenvalues are included.
(d) Any projection matrix P is diagonalizable.
(e) If A is diagonalizable, then so is A2.
(f) Any diagonalizable matrix has n distinct eigenvalues.
(g) If an invertible square matrix A is diagonalizable, then so is

A−1.
(h) If A is diagonalizable, then so is AT .

18. Complex eigenvalues

Complex numbers are obtained from real numbers by supposing the ex-
istence of square roots of negative numbers. One of the basic facts about
polynomials is that, using complex numbers, any polynomial has number
of roots counted with multiplicity equal to the degree of the polynomial.
In linear algebra, this means that we can always find as many eigenvalues
as the size of the matrix.

18.1. Imaginary and complex numbers. To define complex numbers,
we suppose that −1 has a square root, called i, the imaginary unit, so

i2 = −1.

This is similar to how negative numbers are introduced: −x is the number
which satisfies the equation −x + x = 0.

An imaginary number is any real multiple bi of the imaginary unit i. A
complex number is the sum of a real number plus an imaginary number.
The sum of complex numbers is defined by summing the real and imaginary
parts

(5 + 2i) + (3 − 4i) = 8 − 2i.

Differences are similar:

(5 + 2i) − (3 − 4i) = 2 + 6i.

The product of complex numbers is again a complex number, using that
i2 = −1:

(5 + 2i)(3 − 4i) = 15 − 20i + 6i − 8i2 = 15 − 14i − 8(−1) = 23 − 14i.

Geometrically, complex numbers are represented as points in the complex
plane, which has horizontal axis the real axis and vertical axis the imaginary
axis.

❝❝

❝❝

real axis

imaginary axis

2-i

1+3i

Sum and subtraction of complex numbers is the same as addition and
subtraction of two-vectors.

❝❝

❝❝

❝❝

✂
✂
✂
✂
✂

❍❍❍

❍❍❍

✑
✑

✑
✑

✑

✂
✂
✂
✂
✂

real axis

imaginary axis

2-i

1+3i

3+2i

The complex conjugate of a complex number z = a + bi is the reflection
of that number over the real axis,

z = a − bi.

The norm |z| of a complex number z = a + bi is the length of the corre-
sponding 2-vector,

|z| =
√

a2 + b2.

The norm can also be defined using the conjugate:

zz = (a + ib)(a − ib) = a2 + b2 so |z| =
√

zz.
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This gives us a way to define inverses of complex numbers: We have

z
z

zz
= 1 so z−1 =

z

zz
.

Example 18.1. Find the inverse of 5 + 2i.

(5 + 2i)−1 =
5 − 2i

(5 + 2i)(5 − 2i)
=

5 − 2i

25 + 4
=

5

29
− 2

29
i.

18.2. Polar form. The geometric meaning of multiplication is best ex-
plained by the polar form of a complex number. Define the argument arg z
to be the angle θ between z and the positive real axis. Define r = |z| the
modulus of z.

❡❡

✑
✑

✑
✑

✑
✑

✑

real axis

imaginary axis

z

θ

r

Then the adjacent (resp.) side in the picture is

a = r cos(θ), b = r sin(θ).

The polar form of z is

z = r cos(θ) + r sin(θ)i.

The old way z = a + bi is called Cartesian form.

Example 18.2. Find the polar form of 1, i, 1 + i,−1,−1− i.

From the picture: For z = 1 we have r = 1, θ = 1. For z = i we have
r = 1, θ = π/2. For z = 1 + i we have r =

√
2, θ = π/4. etc.

Proposition 18.3. Complex conjugation in polar form reverses the sign
of the angle θ: If z = r cos(θ) + r sin(θ)i then z = r cos(−θ) + r sin(−θ)i.

Proof. z = r cos(θ) − r sin(θ)i = r cos(−θ) + r sin(−θ)i. �

Multiplication in polar form is simpler than in Cartesian form. Recall
the Taylor series expansions

ex = 1 + x + x2/2! + x3/3! + . . . .

cos(x) = 1 − x2/2! + x4/4! − x6/6! . . .

sin(x) = x − x3/3! + x5/5!− x7/7! . . .

From the Taylor series for ex we get

eiθ = 1 + iθ + (iθ)2/2! + (iθ)3/3! + . . .

= (1 − θ2/2! + θ4/4! − θ6/6! + . . .) + (θ − θ3/3! + θ5/5! + . . .)i

= cos(θ) + i sin(θ).

This shows

Theorem 18.4 (Euler). eiθ = cos(θ) + i sin(θ).

Now we can re-write the polar form

z = r cos(θ) + r sin(θ)i = reiθ.

This implies the following geometric interpretation of multiplcation of com-
plex numbers.

Proposition 18.5. Multiplication of complex numbers is given by multiply-
ing the lengths and adding the angles. That is, if z1 = r1e

iθ1 and z2 = r2e
iθ2

then

z1z2 = r1r2e
i(θ1+θ2).

18.3. Application: Angle-sum formulas. It’s easy to derive from Eu-
ler’s formula the formulas for the cosine or sine of the sum of two, three, or
more angles. For instance,

ei(θ1+θ2) = cos(θ1 + θ2) + i sin(θ1 + θ2).

On the other hand,

ei(θ1+θ2) = eiθ1eiθ2

= cos(θ1) + i sin(θ1))(cos(θ2) + i sin(θ2))

= (cos(θ1) cos(θ2) − sin(θ1) sin(θ2)) + i(cos(θ1) sin(θ2) + sin(θ1) cos(θ2))

Matching up the real and imaginary parts, we get

Proposition 18.6. cos(θ1 + θ2) = cos(θ1) cos(θ2) − sin(θ1) sin(θ2)) and
sin(θ1 + θ2) = cos(θ1) sin(θ2) + sin(θ1) cos(θ2).
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18.4. Application: Powers of complex numbers. The best way to find
a large power of a complex number is to first write it in polar form.

Example 18.7. Find z20 where z = 1 + i. Since the length r =
√

2 and
the angle θ = π/4, the polar form is z =

√
2ei(π/4). So

z20 =
√

2
20

(ei(π/4))20 = 210ei5π = 1024(cos(5π)+i sin(5π)) = 1024(−1) = −1024.

18.5. Complex vectors and matrices. A complex vector or matrix is a
vector or matrix with complex entries. For example,

v =

[

1 + i
1 − i

]

is a complex column vector. Similarly

A =

[

1 i
i 1

]

is a complex matrix. We can multiply matrices and vectors just as before:

Av =

[

1(1 + i) + i(1 − i)
i(1 + i) + 1(1 − i)

]

=

[

2 + 2i
0

]

.

For complex vectors v, the norm ‖v‖ is defined by

‖v‖ =
√

v · v.

If v = [a1 + b1i a2 + b2i . . . an + bni] then

‖v‖ =
√

a2
1 + b2

1 + . . . a2
n + b2

n.

For any complex number z and complex vector v, ‖zv‖ = |z|‖v‖. The only
vector with norm 0 is the zero vector.

18.6. The fundamental theorem of algebra. If we allow complex num-
bers, then any quadratic polynomial now has exactly two roots (counted

with multiplicity) since
√

b2 − 4ac always makes sense as a complex number.

Example 18.8. Find the roots of f(x) = x2+x+3. Ans x = (−1±
√
−8)/2.

In fact, we have the following theorem.

Theorem 18.9 (Fundamental Theorem of Algebra). If f(x) = c0 + c1x +
. . . + cnxn is a polynomial of degree n, then f can be factored f(x) =
cn(x − z1)(x − z2) . . . (x − zn) where z1, . . . , zn are complex numbers. That
is, any degree n polynomial has exactly n roots, counted with multiplicity.

Corollary 18.10. Any n × n matrix has exactly n eigenvalues, counted
with algebraic multiplicity, if we allow complex eigenvalues.

Proof. Apply the fundamental theorem of algebra to the characteristic poly-
nomial det(A − λI). �

If we have a complex eigenvalues, we can define complex eigenvectors
just as before.

Example 18.11. Find the complex eigevalues and eigenvectors of the ma-

trix A =

[

0 1
−1 1

]

. Ans. The characteristic polynomial is det(A− λI) =

λ2 + 1 which has roots λ± = ±i. The eigenspaces are: λ = i.

Ei = nullspace(A − iI) = nullspace

[

−i1
−1 i

]

= span

[

1
i

]

.

Similarly, the eigenspace E−i is the span of

[

1
−i

]

.

The geometric multiplicity of a complex eigenvector λ is the dimension
of the (complex) subspace Eλ. It is at least 1 and at most the algebraic
multiplicity.

Corollary 18.12. A matrix is diagonalizable over the complex numbers if
and only if the geometric multiplicity equals the algebraic multiplicity of λ,
for each complex eigenvalue λ.

Example 18.13. Find the eigenvalues and eigenvectors for the “shift ma-
trix”

A =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









.

Ans. det(A− λI) = λ4 − 1 = 0 implies that λ4 = 1, so writing λ = reiθ we
get

r4e4iθ = 1 =⇒ r = 1, 4θ = 2πk

so λ = exp(2kπi/4) for k = 0, 1, 2, 3. Using eiπ/2 = i we get

λ = 1, i,−1,−i.

The eigenvectors are

v1 =









1
1
1
1









,v2 =









1
i

−1
−i









,v3 =









1
−1

1
−1









,v4 =









1
−i
−1

i









.
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So the diagonalization is

A =









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

















1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

















1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









−1

.

18.7. Problems.

(1) Compute the following expressions involving complex numbers.
(a) (1 + i) + (2 + 5i).
(b) (1 + i) − (2 + 5i).
(c) 2 + 5i.
(d) (2 + 5i)2 + 5i.
(e) (1 + i)(2 + 5i).
(f) (2 + 5i)−1.
(g) (1 + i)/(2 + 5i).

(2) Factor the given polynomials and find all complex or real roots.
(a) λ2 − 1
(b) λ2 + 1
(c) λ2 + λ + 1
(d) λ3 + λ2 + λ + 1. (Hint: λ = −1 is a root.)
(e) λ4 − 1

(3) Find polar form for each given complex number
(a) 1 + i
(b) 2i

(c) (1/2) + (
√

3/2)i

(d) −
√

3/2 + (1/2)i.
(4) Find the Cartesian form of each of the following complex numbers

in polar form.
(a) e0

(b) eπi

(c) eπi/2

(d) 10eπi/3

(e) 50e9πi/2.
(f) eπ(1+i)/2

(5) Find the real and complex eigenvalues for the following matrices.

(a)

[

0 1
−1 0

]

(b)

[

1 −1
1 1

]

(c)





0 1 0
−1 0 0

0 0 2





(d)





0 1 0
0 0 1
1 0 0





(e)





.8 0 .2

.2 .8 0
0 .2 .8





(6) True/False:
(a) An n × n matrix with n even has at least one real
(b) An n× n matrix with n odd has at least one complex eigen-

value.
(c) An n×n matrix with n odd has at least one real eigenvector.

(7) Let z = 1 + i.

(a) Find the polar form of z.
(b) Find the complex conjugate z̄ of z.
(c) Find the inverse of z.
(d) Find z20. (Hint: use your answer to (a).)

(8) Let z = −1 + i. Find (a) The polar form of z.
(b) The conjugate of z.
(c) The inverse of z.
(d) The power z10 of z.

(9) (a) Find the (real and complex) eigenvalues for the matrix A =




0 1 0
0 0 1
1 0 0



 (b) Find the diagonalization of A. (c) Find A15,

using the diagonalization from (b).

19. Diagonalizability of symmetric matrices and quadratic

forms

19.1. Eigenvalues/vectors for Symmetric matrices. One class of ma-
trices for which complex eigenvectors and eigenvalues never appear is sym-
metric matrices.

Proposition 19.1. If A is symmetric and real ( that is, A = AT = A)
then all the eigenvalues are real.
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Proof. If v is a (possibly complex) eigenvector with (possibly complex)
eigenvalue λ then either λ = 0, which is real, or

‖v‖ = vT v = (
Av

λ
)T v

= 1
λvT AT v =

1

λ
vT Av

= 1
λvT Av =

1

λ
vT λv

= 1
λvT λv =

λ

λ
vT v

= λ
λ‖v‖2

Since ‖v‖ 6= 0, we must have λ = λ, which means that λ is on the real
axis. �

Proposition 19.2. If A is a symmetric real matrix, and Av and w are
perpendicular vectors, then so are v and Aw.

Proof. 0 = (Av) · w = (Av)T w = vT AT w = vT Aw = v · (Aw). �

Theorem 19.3. If A is a symmetric n×n matrix then A is diagonalizable,
and there exists an orthonormal basis of eigenvectors v1, . . . ,vn.

Proof. Let v1 be an eigenvector normalized to have length one, and v2, . . . ,vn

vectors so that v1, . . . ,vn is an orthonormal basis. Then λ1v1 = Av1 is
perpendicular to vj , j > 1, which implies that Avj is perpendicular to v1.
Hence Avj is a combination of the vectors v2, . . . ,vn.

Let S be the matrix with columns v1, . . . ,vn. Since these form an or-
thonormal basis, S is orthogonal, S−1 = ST . Then

ST ASe1 = ST Av1 = λ1e1

and

ST ASej = ST Avj

is a combination of the vectors e2, . . . , en. Therefore, ST AS has block
diagonal form

ST AS =

[

λ1 0
0 A1

]

for some n−1×n−1-matrix A1. Since A is symmetric and S is orthogonal,
ST AS is symmetric. So A1 is symmetric as well. Now choose an eigenvector
for A1 and continue with smaller and smaller matrices. In this way, we
obtain an orthonormal eigenbasis for A. �

Example 19.4. ATT,MCI,Sprint are competing for customers. Each loses
20 per cent of its customers to each of its competitors, each month. If
a(t), m(t), s(t) denote the number of customers in month t, then





a(t + 1)
m(t + 1)
s(t + 1)



 =





.6 .2 .2

.2 .6 .2

.2 .2 .6



 .

Because the columns of this matrix sum up to one, we know that λ = 1 is an
eigenvalue. To find the others, we long divide (λ−1) into the characteristic
polynomial ....

19.2. Quadratic Forms. Let x1, . . . , xn be coordinates on R
n. We have

the following kinds of functions in the variables x1, . . . , xn:

(1) A constant function is a function of the form f(x1, . . . , xn) = c for
some constant c.

(2) A linear function is a function of the form f(x1, . . . , xn) = c1x1 +
. . . + cnxn.

(3) A quadratic function, also called a quadratic form, is a function of
the form f(x1, . . . , xn) = c11x

2
1 + c12x1x2 + c2

2x
2
2 + . . .+ cnnx2

n, that
is, a linear combination of functions x2

1, x1x2, x
2
2, . . ..

By Taylor’s theorem in multivariable calculus, any function can be writ-
ten as a sum of a constant function, linear function, quadratic function,
plus higher order terms.

Any quadratic form can be written as a vector-matrix-vector matrix
product using a symmetric matrix. For example,

q(x1, x2) = x2
1 − 4x1x2 + x2

2 = [x1 x2]

[

1 −2
−2 1

] [

x1

x2

]

.

In general,

Proposition 19.5. A quadratic form q(x1, . . . , xn) with diagonal terms
cix

2
i and off-diagonal terms dijxixj is equal to

[x1 . . . x2] A





x1

. . .
xn



 .

where A is the matrix whose diagonal entries are ci and whose off-diagonal
entries are dij/2.

The factor of 1/2 is because the ij-th and ji-th entries contribute the
same sort of terms to q(x1, . . . , xn).
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In this section we use diagonalization to understand what the graphs of
quadratic functions look like.

Example 19.6. (1) q(x1, x2) = x2
1 + x2

2 is a quadratic form in two
variables. It has a graph in R

3, given by setting the vertical coor-
dinate (height) equal to the value of q given by x2

1 + x2
2. Its shape

is a paraboloid (three-dimensional version of parabola.)
(2) q(x1, x2) = x2

1 −x2
2 is a parabola point up in the x1 direction and a

parabola pointing down in the x2 direction. Its graph has a saddle
shape. (Hyperbolic paraboloid if you want to be technical.)

(3) q(x1, x2) = x2
1 − 4x1x2 + x2

2 is a quadratic form in two variables x1

and x2. We can try to graph the function q in three dimensions.
First we can graph the function when x1 = 0, and then when
x2 = 0.

To figure out the shape of the graph, let’s write q in matrix form.
Let Q be the matrix whose diagonal entries are the coefficients of
x2

1 and x2
2, and whose off-diagonal entries are 1

2 the coefficient of
x1, x2:

Q =

[

1 −2
−2 1

]

.

Let’s find the eigenvectors and eigenvalues for Q. The characteristic
polynomial is

det(Q − λI) = (1 − λ)2 − 4 = λ2 − 2λ − 3 = (λ + 1)(λ − 3)

so the eigenvalues are

λ = −1, 3.

We can find the eigenvalues: For λ = 1 the eigenspace is

E−1 = nullspace

[

2 −2
−2 2

]

= span

[

1
1

]

/
√

5.

E3 = nullspace

[

−2 −2
−2 −2

]

= span

[

1
−1

]

/
√

5.

So Q can be diagonalized

Q = SDST , D =

[

−1 0
0 3

]

, S =

[

1 1
1 −1

]

.

This means that if we define new coordinates

y =

[

y1

y2

]

= ST

[

x1

x2

]

Then

q(y1, y2) = yT Dy = −y2
1 + 3y2

2.
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Figure 6. Saddle

This quadratic form is easy to understand; it is a “saddle”. See
Figure ??

Another way of graphing the quadratic form is to draw it’s level sets

q(y1, y2) = c.

For the example above, these are hyperbolas.

Example 19.7. Graph the quadratic form q(x1, x2) = 2x2 + 2xy + 2y2.
Describe the level set q(x1, x2) = 4.

There is a similar story with three or more variables.

Example 19.8. Find the diagonalization of the quadratic form q(x1, x2, x3) =
6x1x2 + 8x2x3.

The matrix Q is





0 3 0
3 0 4
0 4 0



 .
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The eigenvalues of Q are found by setting

0 = det(Q − λI)

= det









−λ 3 0
3 −λ 4
0 4 −λ









= −λ3 + 4λ

= −λ(λ2 − 25)

= −λ(λ − 5)(λ + 5).

Therefore, the eigenvalues are

λ = 0, 5,−5.

The eigenvectors are

E0 = nullspace Q

= nullspace
©2 ↔ ©1

©3 − (4/3)©1





3 0 4
0 4 0
0 0 0





= span





−4
0
3



 .

The other eigenvectors are

E±2 = nullspace Q ∓ 5I

= nullspace





∓5 3 0
3 ∓5 4
0 4 ∓5





= nullspace
©1 /5

−(3/5)©1





∓1 3/5 0
0 ∓16/5 4
0 4 ∓5





= nullspace
(5/16)©2





∓1 3/5 0
0 ∓1 5/4
0 0 0





= span





3
±5

4



 .

An orthonormal eigenbasis is obtained by dividing by the lengths:

1

5





−4
0
3



 ,
1√
25





3
5
4





1√
25





3
−5

4



 .

Therefore,

Q = ST DS =





−4/5 0 3/5

3/
√

25 1/
√

2 4/
√

25

3/
√

25 −1/
√

2 4/
√

25









0 0 0
0 5 0
0 0 5









−4/5 3/
√

25 3/
√

25

0 1/
√

2 −1/
√

2

3/5 4/
√

25 4/
√

25



 .

Setting




y1

y2

y3



 = S





x1

x2

x3



 =





−4x1/5 + 3x2/
√

25 + 3x3/
√

25

x2/
√

2 − x3/
√

2

3x1/5 + 4x2/
√

25 + 4x3/
√

25





we get q(y1, y2, y3) = 5y2
2 − 5y2

3.

19.3. Problems.

(1) Let q(x1, x2) = 2x2
1 − 4x1x2 − x2

2. Find coordinates y1, y2 and
numbers a, b such that q(y1, y2) = ay2

1 + by2
2 .

(2) (a) Find the eigenvalues for the matrix A = 1
3





1 1 1
1 1 1
1 1 1



. (b)

Find the diagonalization of A. (c) Using diagonalization, find A5.
(d) Using diagonalization, find the eigenvalues of I − A.

20. Linear dynamical systems

By dynamical system we will mean a mathematical model for the time
evolution of a system.

20.1. An economic example.

Example 20.1. A typical example is the Coke/Pepsi example discussed
earlier. Recall: Suppose c(t) (resp. p(t)) is the number of Coke (resp.
Pepsi) drinkers at time t months. Suppose each month, 10 percent of the
Coke drinkers switch to become Pepsi drinkers, and 20 percent of the Pepsi
drinkers switch to Coke. If we start with 100 Pepsi drinkers and no Coke
drinkers, what happens as t goes to infinity?
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t p c
0 0 100
1 20 80
2 34 66

To set this up as a linear algebra problem we write

c(t + 1) = .9c(t) + .2p(t)

p(t + 1) = .1c(t) + .8p(t)

or in matrix form

x(t + 1) = Ax(t) where A =

[

.9 .2

.1 .8

]

and x(t) =

[

c(t)
p(t)

]

.

This implies that

x(t) = Ax(t − 1) = A2x(t − 2) = . . . = Atx(0)

The state of the system in any month t is described by the vector of
Coke/Pepsi drinkers

x(t) =

[

c(t)
p(t)

]

.

The time evolution of the system is an equation for x(t + 1) in terms of
x(t):

x(t + 1) =

[

.9 .2

.1 .8

]

x(t).

The matrix in this equation is the time evolution matrix.

Example 20.2. Two companies are competing for customers. Each year,
company A loses 60 percent of its customers to company B, while company
B each year loses 70 percent of its customers to company A. (Clearly neither
of the company’s produce a very high quality product!) (a) Write down the
state vector and time evolution matrix for this system. That is, represent
the system in the form x(t + 1) = Ax(t), for some matrix A. (b) Find the
diagonalization of the matrix A. (c) Suppose that initially, 100 customers
are with company A and none with company B. Find a formula for the
number of customers with company A at time t. (d) How many customers
does A have, for t very large. (e) Show the evolution of the system on the
graph with axes A,B.

Example 20.3. A party is going on in two rooms, the living room and the
kitchen, in someone’s apartment. Every hour, ninety percent of the people
in the living room move to the kitchen, and sixty percent of the people in

the kitchen move to the living room. (a) Find the transition matrix for this
problem, that is, the matrix A such that

x(t + 1) = Ax(t), where x(t) =

[

l(t)
k(t)

]

and l(t), k(t) are the number of people in the living room, kitchen at time
t. (b) Find the eigenvectors and eigenvalues for A. (c) Find matrices S and
D such that A = SDS−1. (d) Suppose that initially, 100 party-goers are
distributed equally among the two rooms. Find a formula for the number
of people in the kitchen at time t. (e) How many people are in the kitchen,
in the limit t → ∞? (f) Show the evolution of the system on the graph
with axes l, k. (t is not an axis!)

Answer: (a)

[

l(t + 1)
k(t + 1)

]

=

[

l(t) − .9l(t) + .6k(t)
k(t) + .9l(t) − .6k(t)

]

=

[

.1l(t) + .6k(t)

.9l(t) + .4k(t)

]

=
[

.1 .6

.9 .4

] [

l(t)
k(t)

]

. (b) Columns sum to 1, so λ1 = 1 and λ1 + λ2 = −1

implies λ2 = −1/2. The eigenspace for λ1 = 1 is nullspace(A − 1I) =

nullspace

[

−.9 .6
.9 .6

]

=

[

1 −2/3
0 0

]

= span

[

2
3

]

. The eigenspace for λ1 = −.5

is nullspace(A − −.5I) = nullspace

[

.6 .6

.9 .9

]

=

[

1 1
0 0

]

= span

[

−1
1

]

. (c)

S is the matrix of eigenvectors and D the matrix of eigenvalues so S =
[

2 −1
3 1

]

and D =

[

1 0
0 −1/2

]

. (d)

[

l(t)
k(t)

]

= At

[

l(0)
k(0)

]

= SDtS−1

[

50
50

]

=

[

2 −1
3 1

] [

1t 0
0 (−1/2)t

] [

2 −1
3 1

]−1 [
50
50

]

=

[

2 −1
3 1

] [

1t 0
0 (−1/2)t

] [

1 1
−3 2

]

/5

[

50
50

]

=
[

2 −1
3 1

] [

1t 0
0 (−1/2)t

] [

20
−10

]

=

[

2 −1
3 1

] [

20
−(−1/2)t10

]

=

[

2 −1
3 1

] [

20
−(−1/2)t10

]

=
[

40 + (−1/2)t10
60 − (−1/2)t10

]

(e) As t → ∞ we get

[

40
60

]

. On the l, k axis, the time t

vector is given by adding the vectors

[

40
60

]

and (−1/2)t

[

10
−10

]

.

20.2. A biological example. Let’s look at the following model of flu epi-
demic.

Example 20.4. Suppose that in a population of 80 students, at any point
in time there are w well students, s sick students, and i students who have
already been sick and developed immunity. Suppose each week 20 percent
of the well students get sick, 50 percent of the sick students get better and
develop immunity, but after one week the immunity wears off. Find the
matrix A that expresses the change ∆w, ∆s, ∆i in the numbers of well,
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sick, and immune students in terms of w, s, i.





∆w
∆s
∆i



 = A





w
s
i



 , A =





−.2 0 1
+.2 −.5 0

0 +.5 −1



 .

What is the practical meaning of the nullspace? It is the set of all vectors
[w s i] such that the change to the next week is zero. That is, the population
stays the same. The vectors [w s i] for which this happens are called
equilibrium vectors. Let’s find the null-space, by elimination.

nullspace(A) = span





5
2
1



 .

For instance, 50 well, 20 sick, and 10 immune is an equilibrium population.

Example 20.5. Continuing the model for the flu epidemic we discussed
earlier, suppose that in a population of 80 students, at any point in time
there are w well students, s sick students, and i students who have already
been sick and developed immunity. Suppose each week 20 percent of the
well students get sick, 50 percent of the sick students get better and develop
immunity, but after one week the immunity wears off.

The state vector is the number of well, sick, and immune students

x(t) =





w(t)
s(t)
i(t)





and the time evolution matrix is

A =





.8 0 1

.2 .5 0
0 +.5 0



 .

To solve for x(t), we find the eigenvectors and eigenvalues .....

Example 20.6. Let’s consider a new example, a population model. Sup-
pose that we consider a population of baby, adult, and retired rabbits. The
baby rabbits (resp. adult rabbits) mature into adult (resp. retired) rabbits
after one year; life span is three years. Each adult rabbit has 3

4 baby rabbit,
on average, each year. Each retired rabbit, has on average, 1/4 a baby each
year. Find the state vector and the time evolution matrix for this situation.
Find the ratio of baby, adult, and retired rabbits in the limit t → ∞.

20.3. A physics example. A party is going on in two rooms. Each hour,
70 percent of the people in room 1 move to room 2, and 80 percent of the
people in room 2 move to room 1.
(a) Write the system in matrix form, i.e. find a matrix A such that Ax(t +
1) = x(t), where x(t) is the distribution vector. (b) Find the percent of
customers with each company, in the long run. (c) Suppose that initially,
100 people are in room 1.

20.4. A computer science example. The Google PageRank algorithm
is based on matrix algebra. Consider for simplicity that the web has only
three pages, A, B, C, with A linking to B, C, B linking to C, and C linking
to A, B. Suppose that people surfing the web click randomly on the next
link, once per minute. The number a(t), b(t), c(t) of people looking at each
page changes according to the equations

a(t + 1) = (1/2)c(t)
b(t + 1) = (1/2)a(t) + (1/2)c(t)
c(t + 1) = (1/2)a(t) + b(t)

or




a(t + 1)
b(t + 1)
c(t + 1)



 =





0 0 .5
.5 0 .5
.5 1 0









a(t)
b(t)
c(t)



 .

We write this as

x(t + 1) = Ax(t)

where A is the matrix above. Google ranks the web-sites containing the
search term according to popularity in the following sense: the most popular
web-site should be the web-site which most people are visiting at even given
time, assuming that people surf randomly.

To find which web-site this is, we find the diagonalization of the matrix
A above. The eigenvalues λ1, λ2, λ3 satisfy

λ1 + λ2 + λ3 = Tr(A) = 0

λ1λ2λ3 = det(A) = .25

Since A is Markov, one of the eigenvalues, let’s say the first, is λ1 = 1. So
λ2 + λ3 = −1 and λ2(−1 − λ2) = 1/4 implies that λ2

2 + λ2 + 1/4 = 0 so
the other eigenvalues λ2 = λ3 = −1/2. The equilibrium for the system is a
multiple of the eigenvector for λ1 = 1,

Eλ1=1 = nullspace(A−I) = nullspace(





−1 0 .5
.5 −1 .5
.5 1 −1



) = span





1
1.5

2



 = span





2/9
3/9
4/9




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In the equilibrium state 2/9 of the people will be on page A, 3/9 of the
people on page B, and 4/9 of the people on page C.

Suppose that you search for a search term, and pages A, C both contain
the term. Google will list page C first, on the logic that it is more popular.

When this approach was introduced in the 90’s it made it more difficult
for companies to trick a search engine such as google into listing its results
first, since in order to influence the ranking one has to create a whole
network of pages which “flow traffic” to the given page, and these are easily
detected by the search engine.

Of course now Google’s search algorithm is much more complicated (and
secret.)

20.5. Markov processes. A square matrix A is called a Markov or prob-
ability matrix if

(1) The sum of each column is equal to 1.

(2) All of the entries in A are between 1 and 0.

The first condition is equivalent to

uA = u, u = [1 1 . . . 1] .

The second condition, assuming the first, is equivalent to saying that all of
the entries in A are non-negative (since if the sum of non-negative numbers
is equal to 1, each number must be at most 1).

Proposition 20.7. If A and B are Markov matrices, then so is AB.

Proof. Clearly if A and B are non-negative, then so is AB. So it suffices
to check u(AB) = (uA)B = uB = u since A and B are Markov. �

The following is sometimes called the Perron-Frobenius theorem:

Theorem 20.8. If A is a Markov matrix, then 1 is an eigenvalue for A.

Proof. Since uA = u, we have AT uT = uT so uT is an eigenvector of AT

with eigenvalue 1. Since A and AT have the same eigenvalues, 1 is also an
eigenvalue for A. �

Knowing that 1 is an eigenvalue of A helps to find its other eigenvalues.
For instance, to find the eigenvalues of a three-by-three Markov matrix you
could compute its characteristic polynomial det(A−λI), factor out (λ− 1)

using long division, and then factor the remaining degree two polynomial
using the quadratic formula.

Some other properties of Markov matrices that we will not show are

(1) all the other eigevalues have norm ‖λ‖ at most 1

(2) if all the entries of A are positive, then A has a unique eigenvector
with eigenvalue 1.

20.6. Recursive sequences. A recursive sequence is a sequence of num-
bers where the n-th number is defined by a formula involving previous
numbers. The most famous example, the Fibonacci sequence, is

1, 1, 2, 3, 5, 8, 13, . . . .

Each number is the sum of the two previous numbers. We will find a closed
formula for the n-th Fibonacci number, using eigenvalues and eigenvectors.

To express this as a linear system, we do the following trick which is very
important not only for linear algebra but also differential equations.

f(n + 1) = f(n) + f(n − 1)

f(n) = f(n)

What’s the point of writing the second equation, which is obvious? The

point is that the vector

[

f(n + 1)
f(n)

]

can now be written as a matrix times
[

f(n)
f(n − 1)

]

:

[

f(n + 1)
f(n)

]

=

[

1 1
1 0

] [

f(n)
f(n − 1)

]

.

This means that
[

f(n + 1)
f(n)

]

= An

[

1
0

]

where A =

[

1 1
1 0

]

. To find An, we diagonalize A.

To find the eigenvalues, we set

0 = det(A − λI)

= (1 − λ)(−λ) − 1

= λ2 − λ − 1

= (λ − (1 +
√

5)/2)(λ − 1 −
√

5

2
).



74

The eigenvectors are

v± =

[

1±
√

5
2

1

]

.

This means that the diagonalization of A is

A = SDS−1

=

[

1+
√

5
2

1−
√

5
2

1 1

]

[

1+
√

5
2 0

0 1−
√

5
2

]

[

1+
√

5
2

1−
√

5
2

1 1

]−1

.

The inverse of S is

S−1 =
1√
5

[

1 − 1−
√

5
2

−1 1+
√

5
2

]

so that the Fibonacci numbers are
[

f(t + 2)
f(t + 1)

]

= At

[

1
1

]

= S−1DtS

[

1
1

]

=

[

1+
√

5
2

1−
√

5
2

1 1

]

[

(1+
√

5
2 )t 0

0 (1−
√

5
2 )t

]

1√
5

[

1 − 1−
√

5
2

−1 1+
√

5
2

]

[

1
1

]

=
1√
5

[

1+
√

5
2

1−
√

5
2

1 1

]

[

1+
√

5
2

t+1

− 1−
√

5
2

t+1

]

=
1√
5

[

1+
√

5
2

t+2
− 1−

√
5

2

t+2

1+
√

5
2

t+1
− 1−

√
5

2

t+1

]

.

So the Fibonacci number

f(t) =
1√
5

(

(
1 +

√
5

2
)t − (

1 −
√

5

2
)t

)

.

Example 20.9. Let’s look now at some other recursive formula, for in-
stance

f(n + 1) = f(n) − f(n − 1)

which gives the sequence

1, 1, 0,−1,−1, 0, 1, 1, . . .

Find a closed formula for f(n).

To solve the equation we introduce a second equation

f(n) = f(n)

so that we get a system of linear equations
[

f(n + 1)
f(n)

]

=

[

1 −1
1 0

] [

f(n)
f(n − 1)

]

.

The characteristic polynomial is

det(A − λI) = (1 − λ)(−λ) + 1 = λ2 − λ + 1

which has roots

λ± =
1 ±

√
−3

2
= e±2πi/3.

This means that the matrix A is diagonalizable

A = SDS−1, D =

[

e2πi/3 0

0 e−2πi/3.

]

If n is a multiple of 3 then

An = SDnS−1 = SS−1 = I.

This explains why the sequence is periodic with period 3.

Example 20.10. Define a sequence f(n) by f(n + 1) = 2f(n) + f(n− 1).
Find a closed formula for f(n) using linear algebra.

20.7. Problems.

(1) Two companies are competing for customers. Each year, company
A loses 40 percent of its customers to company B, while company
B each year loses 30 percent of its customers to company A.

(a) Write down the state vector and time evolution matrix for this
system.
(b) Find the percent of customers with each company, in the long
run.
(c) Suppose that initially, 100 customers are with company A. Show
the evolution of the system on the graph with axes A,B.

(2) GM and Ford are competing for customers. Suppose that each year,
thirty percent of GM’s customers leave for Ford, while ten percent
of Ford’s customers leave for GM. The remaining customers remain
loyal. Let g[t], f [t] be the number of customers with GM and Ford
in year T .



75

(a) Find a matrix A such that
[

g[t + 1]
f [t + 1]

]

= A

[

g[t]
f [t]

]

.

(b) Find the eigenvalues and eigenvectors for the matrix A you
found in part (a).

(c) Let g[0] = 100, f [0] = 0. Compute [g[t], f [t]] for t = 1, 2.
(d) Find the number of customers with GM and with Ford, in

the limit t → ∞.
(e) Draw a sketch showing the sequence of points [g[t], f [t]].

(3) Fibonacci considered a model for a population of rabbits where
each pair of adult rabbits produces a pair of juvenile rabbits each
month, and each pair of juvenile rabbits becomes adult after one
month. A more realistic model takes into account death of the
adult rabbits. Suppose 1/2 of the adult rabbits die each month.
Then the equations for the model are

j(t + 1) = a(t), a(t + 1) =
1

2
a(t) + j(t),

where j(t), a(t) are the number of pairs of juvenile and adult rab-
bits at time t.

(a) Find the time evolution matrix A for this system.
(b) Find the eigenvalues and eigenvectors for A.
(c) Find the ratio of adult rabbits to juvenile rabbits, as t ap-
proaches infinity. (Hint: express the initial state as a linear combi-
nation c1v1 + c2v2 of the eigenvectors. You do not need to find c1

and c2.)
(d) If you did (b) correctly, the eigenvectors of A are perpendicular.
What property does A have which guarantees this is so?
(e) Write a recursive formula for a(t) in terms of a(t−1) and a(t−2),
similar to the Fibonacci formula F (t) = F (t − 1) + F (t − 2).
(f) Draw a graph showing the trajectory (time evolution) of the
system. Indicate the eigenspaces on your graph by dotted lines.

(4) Consider the recursive sequence defined by f(n) = f(n−1)−f(n−2)
with f(1) = f(2) = 1. Call these the Ibonacci numbers. The first
few are 1, 1, 0,−1,−1, 0, . . ..

(a) Find a matrix A so that
[

f(n + 1)
f(n)

]

= A

[

f(n)
f(n − 1)

]

.

(b) Find the (complex) eigenvalues and eigenvectors of A.

(c) Find a formula for the n-th Ibonacci number. It should be
clear from your formula that the sequence of Ibonacci numbers is
repeating.

21. Singular value decomposition

Let A be a matrix.

Proposition 21.1. The matrix AT A has n non-negative real eigenvalues.

Proof. AT A is symmetric: (AT A)T = AT (AT )T = AT A. Therefore the
eigenvalues are real. Let v be an eigenvector of AT A with eigenvalue λ.
Then

λ(v · v) = v · AT Av = (Av) · (Av) ≥ 0.

Since v · v > 0, this implies λ ≥ 0. �

Definition 21.2. The singular values of a matrix A are the square roots
of the eigenvalues of AT A.

Proposition 21.3. If A is a matrix and Q is an orthogonal matrix, then
the singular values of A are the same as those of QA or AQ, if these
products are defined.

Proof. The singular values of QA are the square roots of eigenvalues of
(QA)T QA = AT QT QA = AT A since Q is orthogonal. The proof for AQ is
similar. �

Theorem 21.4. Let A be any matrix. There exist orthogonal matrices
Q1, Q2 and a diagonal matrix D such that A = Q1DQ2. The diagonal
elements of D are the singular values of A, and D is unique up to ordering
of the diagonal elements. If A is invertible, then given a choice of D the
matrices Q1 and Q2 are also unique.

Proof. By diagonalization of symmetric matrices, the diagonalization of
AT A is QT

1 D1Q1 for some orthogonal Q1 and diagonal D1. Since the
eigenvalues are non-negative, D1 = DT D where D is the diagonal matrix
of square roots of D1. Hence

(8) AT = QT
1 DT DQ1.

Choose a basis v1, . . . ,vk for nullspace(A)⊥. Then the vectors

w1 = Av1, . . . ,wp = Avk
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are an orthornormal basis for colspace(A). Let wp+1, . . . ,wn be an or-
thonormal basis for colspace(A)⊥. Let

u1 = DQ1v1, . . . ,up = DQ1vp

and up+1, . . .un an orthornormal basis for colspace(DQ1)
⊥. By (8)

(9) wj ·wk = (Avj)·(Avk) = (DQ1vj)·(DQ1vk) = uj ·uk j, k = 1, . . . , p.

Since wj and uj , j ≥ p + 1 are orthonormal,

wj · wk = uj · uk

for any j, k = 1, . . . , n. Let S1 be the matrix whose columns are w1, . . . ,wn

and let S2 be the matrix whose columns are u1, . . . ,un. Let Q2 = S1S
−1
2 .

Then

Q2DQ1vj = S1e1 = Avj , j = 1, . . . , p.

so Q2DQ1 = A. By (9),

(Q2wj) · (Q2wk) = uj · uk = wj · wk, ∀j, k = 1, . . . , n

so Q2 is orthogonal. �

The decomposition

A = Q1DQ2

is called a singular value decomposition of A.

Here is the geometric meaning of singular values. Assume A is invertible,
and let S be the unit sphere in R

n:

S = {v2
1 + . . . + v2

n = 1}.
Multiplication by Q2 maps S to itself:

v ∈ S =⇒ Q2v = 1.

Multiplication by D maps S to an ellipsoid

E = DS = {λ−2
1 v2

1 + . . . + λ−2
n v2

n = 1}.
The numbers λ1, . . . , λn are the axis lengths of E. Multiplication by Q1

rotations E into another ellipsoid. See Figure 7.

Let’s summarize the discussion in a theorem:

Theorem 21.5. Let S be the unit sphere in R
n, and A a square matrix.

The set of vectors Av for v ∈ S form an ellipsoid in R
n, whose semiaxis

lengths are the singular values of A.

Q2DQ1

Figure 7. Geometric intepretation of singular values

22. Jordan normal form

In the previous sections, we saw that many matrices can be diagonalized,
that is, transformed into diagonal matrices by multiplying by an invertible
matrix on the left and its inverse on the right. This makes finding matrix
powers easier.

In this section, we extend this to all matrices, by show that any matrix
has a Jordan normal form. This is like a diagonal matrix, but possibly with
some 1’s above the diagonal.

Definition 22.1. (1) Let λ be a number. A Jordan block with eigen-
value λ is a matrix















λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

...
0 0 0 λ 1
0 0 0 . . . λ















with λ’s on the diagonal and 1’s above the λ’s.
(2) A matrix is in Jordan normal form if J is a block diagonal matrix

and each block is a Jordan block.

Theorem 22.2. Any square matrix A is similar to a matrix J in Jordan
normal form, which is unique up to ordering of the blocks.

Proof. Let m1, . . . , mk be the algebraic multiplicities of the eigenvalues so
that

det(A − λI) = (λ − λ1)
m1 . . . (λ − λk)mk .
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For each j let
Eλj

= {v|(A − λjI)mv), m ≫ 0}
denote the j-th generalized eigenspace which contains the j-th eigenspace

Eλj
= {v|(A − λjI)v)}.

First note that if v ∈ Eλj
then for m ≫ 0 we have

(A − λiI)mvj = ((A − λiI) + (λi − λj)I)mvj = (λi − λj)
mvj .

It follows that vectors from different generalized eigenspaces are linearly
independent. Indeed, suppose vj ∈ Eλj

, j = 1, . . . , k and

c1v1 + . . . + ckvk = 0.

Then

(A−λjI)m(c1v1 + . . .+ckvk) = (c1(λ1−λj)
mv1 + . . .+ck(λk −λj)

mvk) = 0

for all m ≫ 0 which can happen only if c1 = . . . = ck = 0. Similarly, if
v ∈ Eλj

then the non-zero vectors on the list

(10) v, (A − λjI)v, (A − λjI)2v, . . .

are all independent, multiplying any dependence relation by powers of A−
λjI. Indeed suppose that m + 1 is the first power of (A − λjI) so that
(A − λjI)m+1v = 0 and suppose

c1v + c2(A − λjI)v + . . . + cm(A − λjI)mv = 0.

Then multiplying by (A − λjI)m gives c1(A − λjI)mv = 0, so c1 = 0.
Multiplying by (A − λjI)m−1 gives c2 = 0 etc. In particular, this shows
that m ≤ n, that is,

(A − λjI)nv = 0, ∀v ∈ Eλj
.

For v, w ∈ Eλj
we say that v is an ancestor of w if w = (A−λj)

iv for some
integer i ≥ 0, and a chain such as (10) a chain of ancestors. The discussion
above shows that each vector has a chain of ancestors of length at most
n. Now let m be the length of the longest chain of ancestors, that is, the
largest power of (A − λjI) so that (A − λjI)mEλj

is non-zero. Inside the
eigenspace Eλj

consider the subspaces

(A − λjI)mEλj
, (A − λjI)m−1Eλj

∩ Eλj
, . . . , Eλj

;

these are the subspaces with ancestor chains of length m, m−1 etc. Choose
a basis for Eλj

, first by choosing a basis for (A − λjI)mEλj
then (A −

λjI)m−1Eλj
∩ Eλj

etc. For each of these basis vectors choose a chain
of ancestors of maximal length. Putting all these vectors together gives
a linearly independent set v1, . . . , vl, which we claim has size n. Indeed,
extend this set to a basis v1, . . . , vn and let S be the matrix whose columns
are v1, . . . , vn. For the first l vectors, either (A − λj)vi = vi−1, if vi is an

ancestor of vi−1, or (A − λj)vi = 0, otherwise, the matrix SAS−1 is in
Jordan normal form in the first l columns, that is,

SAS−1 =

[

J B
0 C

]

for some Jordan matrix J and other matrices B, C.

We claim that C must have size zero, so that SAS−1 is in Jordan form.
Otherwise, C has at least one eigenvalue, say λi, and eigenvector, say v.
Then (A−λiI)v is a linear combination of vectors in Eλj

, j = 1, . . . , k, that
is,

v = v1 + . . . + vk.

For each vj , j 6= i choose a vector v′j so that (A − λiI)v′j = vj . Then

(A − λiI)(v −
∑

j 6=i

v′j) = vi.

But then v −∑j 6=i v′j ∈ Eλi
, which is a contradiction. �

Example 22.3. Find the Jordan normal form for A =





1 0 1
0 1 0
0 0 1



 . The

eigenvalue is 1 with algebraic multiplicity 3. The nullspaces are

E1 = nullspace(A − 1I) = nullspace





0 0 1
0 0 0
0 0 0



 = span





1
0
0



 ,





0
1
0



 .

E1 = nullspace(A − 1I)2 = nullspace(0) = R
3.

The vector





1
0
0



 has an ancestor, the vector





0
1
0



 does not. Thus our

basis is










1
0
0



 ,





0
0
1



 ,





0
1
0











.

The matrices S, J are

S =





1 0 0
0 0 1
0 1 0



 , J =





1 1 0
0 1 0
0 0 1



 .


