1. Evaluate \(\lim_{x \to 2^+} \frac{1}{(x-2)^3} \) and \(\lim_{x \to 2^-} \frac{1}{(x-2)^3} \). Use these to evaluate \(\lim_{x \to 2} \frac{1}{(x-2)^3} \).

Solution: As \(x \to 2 \) from the right \(x - 2 \) becomes a smaller and smaller *positive* number. So \((x-2)^3 \) is a smaller and smaller positive number and therefore \(1/(x-2)^3 \) becomes a large positive number. So \(\lim_{x \to 2^+} \frac{1}{(x-2)^3} = \infty \).

As \(x \to 2 \) from the left \(x - 2 \) becomes a smaller and smaller *negative* number. Therefore \(1/(x-2)^3 \) becomes a larger negative number. So \(\lim_{x \to 2^-} \frac{1}{(x-2)^3} = -\infty \).

Recall that a limit only exists if the right and left limits match. These limits do not match. So \(\lim_{x \to 2} \frac{1}{(x-2)^3} \) does not exist.

Notice that the power in the denominator, 3, is an odd number. Thus when we cubed \((x-2) \) when \(x \) approached from the left we were cubing a negative number and it stayed negative. What would happen if the power was even? For example, compute: \(\lim_{x \to 2} \frac{1}{(x-2)^4} \).

2. Evaluate \(\lim_{x \to 4} \frac{x^2 + x - 20}{(x-1)^2 - 9} \).

Solution: If we attempt to plug in \(x = 4 \) to the expression we get \(\frac{0}{0} \). This suggests we need to do some algebraic simplification and then try evaluating again. We can factor the numerator and denominator as

\[
\frac{x^2 + x - 20}{(x-1)^2 - 9} = \frac{x^2 + x - 20}{x^2 - 2x - 8} = \frac{(x-4)(x+5)}{(x-4)(x+2)} = \frac{x+5}{x+2}.
\]

Notice it is relatively easy to factor the numerator and denominator since we already know that 4 is a root of each polynomial so we know the factor \((x-4) \) will appear in both factorizations.

So we find \(\lim_{x \to 4} \frac{x^2 + x - 20}{(x-1)^2 - 9} = \lim_{x \to 4} \frac{x+5}{x+2} = \frac{4+5}{4+2} = \frac{9}{6} = \frac{3}{2} \).