1. Use Lagrange multipliers to find the maximum value of \(f(x, y, z) = xyz \) subject to the condition \(x + 2y + 3z = 9 \).

Solution: The question is misworded. There is no maximum value. To see this, we will intersect the constraint (a plane) with another plane: \(y = z \). Substituting, \(y = z \) in the equation of the plane we find \(x + 5y = 9 \) and so \(x = 9 - 5y \). So we can parameterize this line as \((9-5y, y, y) \). Now we can evaluate \(f \) on this line, \(f(9-5y, y, y) = y^3(9-5y) = -5y^3 + 9y^2 \). Now note that \(\lim_{y \to -\infty} -5y^3 + 9y^2 = \infty \). So \(f \) increases without bound along this line which satisfies the constraint. So \(f \) has no maximum.

Now, we can use Lagrange multipliers to try to find a local extremum. So we let \(g(x, y, z) = x + 2y + 3z - 9 \) and seek a point such that \(\nabla f = \lambda \nabla g \). Computing the partial derivatives we have \((yz, xz, xy) = \lambda (1, 2, 3) \). So we have the equations

\[
\begin{align*}
yz &= \lambda \\
xz &= 2\lambda \\
xy &= 3\lambda.
\end{align*}
\]

Now we consider two cases. Case one is that \(\lambda = 0 \). In this case we see from the first equation that \(yz = 0 \) and so at any such point \(f(x, y, z) = xyz = 0 \). The second case is that \(\lambda \neq 0 \). Then we can divide the second equation by the first above to obtain \(x/y = 2 \) and thus \(x = 2y \). Dividing the third equation by the second we find \(y/z = 3/2 \) and thus \(z = \frac{2}{3} y \). Having solved for \(x \) and \(z \) both in terms of \(y \) we can substitute into our constraint and obtain \(2y + 2y + 3 \cdot \frac{2}{3} y = 9 \), thus \(y = 3/2 \). Then \(x = 3 \) and \(z = 1 \). So we obtain the point \((3, 3/2, 1) \). The value of \(f \) at this point is \(f(3, 3/2, 1) = 3 \cdot \frac{3}{2} \cdot 1 = 9/2 \). If we had add the further constraint that \(x, y \) and \(z \) are all non-negative then this is the maximum value of \(f \). Think about why!