1. Find all eigenvalues and one eigenvector of the matrix $A = \begin{pmatrix} -4 & -9 \\ 2 & -5 \end{pmatrix}$. Note: the eigenvalues are small integers.

Eigenvalues:

$\begin{vmatrix} -4 & -9 \\ 2 & -5 \end{vmatrix} = (5-\lambda)(-4-\lambda) + 18$

$= -20 + 5\lambda + 4\lambda + \lambda^2 + 18$

$= \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1) = 0$

$\lambda = 2, -1$

$\lambda = -1$: $\begin{pmatrix} -4 & -9 \\ 2 & -6 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & -9 \\ 2 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & -9 \\ 2 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$, $x_1 + 3x_2 = 0$

We want solutions to $\begin{pmatrix} -3 & -9 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Eigenvector: $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$

$\lambda = 2$: $\begin{pmatrix} -4 & -9 \\ 2 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} -6 & -9 \\ 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -6 & -9 \\ 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$, $x_1 + \frac{3}{2}x_2 = 0$

Eigenvector: $\begin{pmatrix} -3/2 \\ 1 \end{pmatrix}$

Note: the question only asked you to compute one eigenvector.

2. Suppose that A is a 20×20 with rank(A) = 19. Identify each of the statements about A given below as true (T) or false (F) by circling the appropriate letter; if you are unsure, you may leave the statement unmarked. **Note:** Grading will be +1/2 point for each correct answer, -1/2 point for each incorrect answer, and 0 points for each unmarked statement (but not fewer than 0 points for this problem).

- T (F) The system $Ax = b$ has a solution for every b.
- T F For some vector b the system $Ax = b$ will have infinitely many solutions.
- T F The columns of A are linearly dependent.
- T F The homogeneous system $Ax = 0$ has a solution which is not the zero vector.
- T F A has an inverse matrix A^{-1} satisfying $AA^{-1} = A^{-1}A = I$.
- T F The reduced row-echelon form of A is the identity matrix I.
- T F For some vector b the system $Ax = b$ will have exactly two different solutions.
- T F The determinant of A is zero.

See next page for explanations.
1. \(Ax = b \) will not have a solution if \(\text{Rank}(A|b) > \text{Rank}(A) \). In particular, if \(b \) has a non-zero 20th (last) component, the final row will correspond to the equation \(0x_1 + 0x_2 + \ldots + 0x_{20} \neq 0 \), which can never be satisfied.

2. For some vector \(b \), \(Ax = b \) will have infinitely many solutions. Since \(\text{rank}(A) = 19 \), RREF \((A) \) has 19 pivots. \(A \) has 20 columns, so one column must correspond to a free parameter. Every value of that parameter will yield a different solution, so we’ll have infinitely many solutions.

3. The columns of \(A \) are linearly dependent. Principle 5 in the online notes states that the columns are linearly dependent when \(Ax = 0 \) has a non-trivial solution. Since there is a solution to \(Ax = 0 \), and we will have a free parameter (see #2), there is a non-trivial solution.

4. The system \(Ax = 0 \) has a non-trivial solution. Note that this is equivalent to #3. Because there is a free parameter, there will be infinitely many solutions. There is only one all-zero solution, the rest must be non-trivial.

5. A does not have an inverse. The RREF of \(A \) only has 19 pivots, so \(\text{RREF}(A) \) is not \(I_{20} \). It follows that \(A \) has no inverse (we can see this from how we compute \(A^{-1} \)). We also know that because \(A \) does not have full rank, \(\det(A) = 0 \), so no inverse (see section 7.2).

6. \(\text{RREF}(A) \) is not \(I_{20} \). Note that this is equivalent to #5. \(\text{RREF}(A) \) has 19 non-zero rows, and one row of all zeros. But \(I_{20} \) has new all-zero rows.

7. For some vector \(b \), \(Ax = b \) does not have exactly 2 solutions. In fact, there are no vectors or matrices where this is true. There can be no solutions, one solution, or a solution with a free parameter (and \(\infty \) many solutions).

8. The determinant of \(A \) is zero. From the notes online, we see that we are in case 2. This only happens when \(\det(A) = 0 \). It also follows from #3: since the columns are linearly dependent, we know \(\det(A) \) must be 0. (see section 7.3).