We consider the approximation of the initial value problem:
\[
\beta \cdot \nabla u + \sigma u = f, \quad \text{in } \Omega, \quad u = g \quad \text{on } \Gamma_{in}(\Omega),
\]
where \(\beta \) is a unit vector, \(\sigma \geq c > 0 \) and
\[
\Gamma_{in}(\Omega) = \{ x \in \partial \Omega : \beta \cdot n < 0 \},
\]
where \(n \) is the unit outward normal to \(\Omega \). We shall assume that \(\Omega \) is a polygon and \(T_h \) is a triangulation of \(\Omega \). Then it is possible to order the triangles triangle by triangle.

Within a layer, \(u_h \in P_n(T) \) such that \(u_h^- = g_h \) on \(\Gamma_{in}(\Omega) \) and satisfies
\[
(\beta \cdot \nabla u_h + \sigma u_h, v)_T - \int_{\Gamma_{in}(T)} (u_h^+ - u_h^-) v \beta \cdot n \, ds = (f, v)_T, \quad v \in P_n(T),
\]
where for \(x \in \Gamma_{in}(T) \), \(u_h^+(x) = \lim_{\epsilon \to 0} u_h(x \pm \epsilon \beta) \). If we solve these equations using the ordering discussed above, then \(u_h^- \) is known at the time it is needed to compute the solution on triangle \(T \). On each triangle, we need to solve a simple square linear system of equations. Note that the solution produced is a piecewise polynomial, but one that is discontinuous across triangle edges. The key to the analysis of this method is the following identity.

Lemma 9. Assume that \(\beta \) is a constant vector. Then
\[
(\beta \cdot \nabla u, u)_T - \int_{\Gamma_{in}(T)} (u^+ - u^-) u^+ \beta \cdot n \, ds = \frac{1}{2} \int_{\Gamma_{out}(T)} (u^-)^2 |\beta \cdot n| \, ds + \frac{1}{2} \int_{\Gamma_{in}(T)} (u^+ - u^-)^2 |\beta \cdot n| \, ds - \frac{1}{2} \int_{\Gamma_{in}(T)} (u^-)^2 |\beta \cdot n| \, ds.
\]

One important implication of this identity is that it easily follows that the linear system on each triangle has a unique solution for \(\sigma > 0 \). To see this, we need only show that if \(f = 0 \) and \(u_h^- = 0 \), then \(u_h = 0 \). Choosing \(v = u_h^+ \) and using the above identity, we get
\[
\frac{1}{2} \int_{\Gamma_{out}(T)} (u^-)^2 |\beta \cdot n| \, ds + \frac{1}{2} \int_{\Gamma_{in}(T)} (u^+ - u^-)^2 |\beta \cdot n| \, ds + \sigma \| u_h \|^2_T = 0,
\]
and so \(u_h = 0 \).

In analyzing this problem, it is helpful to think of \(u_h \) as evolving in layers \(S_i \), defined by
\[
S_0 = \emptyset, \quad S_i = \{ T \in T_h : \Gamma_{in}(T) \subset \Gamma_{in}(\Omega - \cup_{j<i} S_j) \}, \quad j = 1, 2, \cdots.
\]
Within a layer, \(u_h \) can be developed in parallel. We can also define a sequence of fronts \(F_i \), to which \(u_h \) has advanced after it has been computed in \(\Omega_i = \cup_{j \leq i} S_j \).
In the case when \(f = 0 \), we also have a very simple stability analysis that can be expressed in the above terms.

Theorem 16.

$$\frac{1}{2}|u_h^-|_{F_i}^2 + \sigma \|u_h\|_{\Omega_i}^2 \leq \frac{1}{2}|u_h^-|_{\Gamma_{in}(\Omega)}^2.$$

Proof. Applying our identity with \(f = 0 \), we obtain

$$\frac{1}{2} \int_{\Gamma_{out}(T)} (u^-)^2 |\beta \cdot n| \, ds + \frac{1}{2} \int_{\Gamma_{in}(T)} (u^+ - u^-)^2 |\beta \cdot n| \, ds + \sigma \|u_h\|_{T}^2 = \frac{1}{2} \int_{\Gamma_{in}(T)} (u^-)^2 |\beta \cdot n| \, ds.$$

Summing over all the triangles in the layer \(S_i \) and omitting the positive jump terms, we get

$$\frac{1}{2}|u_h^-|_{F_i}^2 + \sigma \sum_{T \in S_i} \|u_h\|_{T}^2 \leq \frac{1}{2}|u_h^-|_{F_{i-1}}^2.$$

The theorem follows by iterating this inequality. \(\square \)

Also using this key identity, we are able to show that

$$\|u - u_h\|_{L^2(\Omega)} \leq C h^{n+1/2} \|u\|_{n+1}.$$

Note that this is not an optimal order error estimate, since the best approximation by polynomials of degree \(\leq n \), would be \(O(h^{n+1}) \).

15. **The finite volume method for elliptic problems**

We consider the approximation of the problem

$$- \text{div}(a \nabla u) = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega.$$

Finite volume methods are based on an approximation of the balance equation

$$- \int_{\partial b} a \nabla u \cdot n \, ds = \int_{b} f \, dx,$$

valid for any subdomain \(b \subset \Omega \), where \(n \) denotes the unit outward normal to the boundary of \(b \). Note this equation can be obtained by integrating the partial differential equation over the subdomain \(b \) and applying the divergence theorem. One approach to the finite volume method, and the one we will discuss, uses a finite element partition of \(\Omega \), where the approximate solution space consists of piecewise linear functions, a collection of vertex-centered control volumes, and a test space consisting of piecewise constant functions over the control volumes.

More precisely, we begin with a family of triangulations \(\{T_h\} \) of the domain \(\Omega \) and let

$$X_h = \{ v \in H_0^1(\Omega) : v|_T \in P_1, \quad \forall T \in T_h \}.$$

To construct the control volumes, we let \(z_T \) denote the barycenter of \(T \) and connect \(z_T \) to the midpoints of the edges of \(T \) with line segments. This partitions each triangle \(T \) into three quadrilaterals. We use the notation \(K_{z,T} \) to denote the quadrilateral in \(T \) which shares the vertex \(z \) of the triangle \(T \). To each vertex \(z \) of the triangulation, we associate a control
volume b_z consisting of the union of the quadrilaterals $K_{z,T}$, where the union is taken over all triangles T containing the vertex z.

The finite volume method is then to find $u_h \in X_h$ such that

$$- \int_{\partial b_z} a \nabla u_h \cdot n \, ds = \int_{b_z} f \, dx,$$

for all $z \in Z^0_h$, where Z^0_h denotes the set of interior vertices of the mesh T_h.