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Abstract. In [8], we proved an Ld/2 energy gap for Yang–Mills connections on principal G-
bundles P over arbitrary, closed, Riemannian, smooth manifolds of dimension d ≥ 2. Our proof
relied in part on a result [26, Corollary 4.3] due to Uhlenbeck (we had attempted to reprove this
as [8, Theorem 5.1]) which asserted that the W 1,p-distance between the gauge-equivalence class
of a connection A and the moduli subspace of flat connections M(P ) on a principal G-bundle
P over a closed Riemannian manifold X of dimension d ≥ 2 is bounded by a constant times
the Lp norm of the curvature, ‖FA‖Lp(X), when G is a compact Lie group, FA is Lp-small, and
p > d/2. In [5], we proved that this estimate holds when the Yang–Mills energy function on the
quotient space of Sobolev connections is Morse–Bott along the moduli subspace M(P ) of flat
connections, but that it need not hold when the Yang–Mills energy function fails to be Morse–
Bott, such as at the product connection in the moduli space of flat SU(2) connections over a real
two-dimensional torus. However, in [5], we also proved that a useful modification of Uhlenbeck’s
estimate always holds provided one replaces ‖FA‖Lp(X) by a suitable power ‖FA‖λLp(X), where the

positive exponent λ reflects the structure of non-regular points in M(P ). As we explain in this

corrigendum, our Ld/2 energy gap for Yang–Mills connections still follows from this modification
of Uhlenbeck’s estimate.

Contents

1. Introduction 2
1.1. Outline 2
1.2. Acknowledgments 3
2. Connections with Ld/2-small curvature and a priori estimates for Yang–Mills

connections 3
2.1. Connections with Ld/2-small curvature 3
2.2. A priori estimate for the curvature of a Yang–Mills connection 4
3. Global existence of a flat connection and a Sobolev distance estimate 5
3.1. Uhlenbeck’s Corollary 4.3 5
3.2. A corrected Sobolev distance estimate 6
4. Flat SU(2) connections over a torus and Uhlenbeck’s Corollary 4.3 8
5. Error in the proof of the estimates in “Theorem” 3.1 9
6. The exceptional case of two-dimensional manifolds 11
7. Corrections to the proof of Theorem 1 11
References 14

Date: January 28, 2024. To appear in Advances in Mathematics.
2010 Mathematics Subject Classification. Primary 58E15, 57R57; secondary 37D15, 58D27, 70S15, 81T13.
Key words and phrases. Energy gaps, flat connections, flat bundles, gauge theory,  Lojasiewicz–Simon gradient

inequality, Morse theory on Banach manifolds, closed Riemannian manifolds, Yang–Mills connections.
Paul Feehan was partially supported by National Science Foundation grants DMS-1510064 and DMS-2104865.

1



2 PAUL M. N. FEEHAN

1. Introduction

The purpose of this corrigendum is to correct the proof that we gave in [8] to the following

Theorem 1 (Ld/2-energy gap for Yang–Mills connections). (See Feehan [8, Theorem 1].) Let
G be a compact Lie group and P be a principal G-bundle over a closed, smooth Riemannian
manifold (X, g) of dimension d ≥ 2. Then there is a positive constant1 ε = ε(g,G) ∈ (0, 1] with
the following significance. If A is a smooth Yang–Mills connection on P with respect to the metric
g and its curvature FA obeys

(1.1) ‖FA‖Ld/2(X) ≤ ε,
then A is a flat connection.

Our proof of Theorem 1 in [8] relied on a result [26, Corollary 4.3] due to Uhlenbeck, which
we had attempted to reprove as [8, Theorem 5.1] and which we quote in this corrigendum as
“Theorem” 3.1. This result asserts the existence of a flat connection Γ on P , given a connection
A on P with curvature FA obeying ‖FA‖Lp(X) ≤ ε for some p > d/2 and small enough ε =
ε(g,G, p) ∈ (0, 1], and a gauge transformation u ∈ Aut(P ) such that u(A) is in Coulomb gauge
with respect to Γ and

(1.2) ‖u(A)− Γ‖
W 1,p

Γ (X)
≤ C‖FA‖Lp(X),

for some constant C = C(g,G) ∈ [1,∞). The argument provided by Uhlenbeck in [26] was
very brief and that had prompted us to attempt a more detailed justification in [8]. In [5,
Theorems 1 and 9], we proved that the estimate (1.2) holds when the Yang–Mills energy function
on the quotient space of Sobolev connections is Morse–Bott along the moduli subspace M(P )
of flat connections. We also noted that the estimate (1.2) need not hold when the Yang–Mills
energy function fails to be Morse–Bott, such as at the product connection Θ, when X is the two-
dimensional torus, T2 = R2/2πZ2, and G = SU(2) and P = T2× SU(2) — an example suggested
to the author by Mrowka [19]. Nishinou gave similar examples in [20]. When X is the unit ball
in Rd, then the estimate (1.2) does, of course, hold by the local Coulomb gauge-fixing result due
to Uhlenbeck [24], quoted in this corrigendum as Theorem 2.1. The fact that (1.2) could be false
when X is not a simply-connected manifold was noticed by Fukaya in [13] and later by Nishinou
in [20], although neither Fukaya nor Nishinou appear to have been aware of [26, Corollary 4.3].

Fukaya proved a version [13, Proposition 3.1] of [26, Corollary 4.3], when d = 4 and A is
anti-self-dual, that essentially replaces ‖FA‖Lp(X) by ‖FA‖λLp(X), where λ = λ(g,G,Γ) ∈ (0, 1] is

a constant that depends on the geometry of the moduli space of flat connections near Γ. (Fukaya
uses a different system of norms.) He explained to us [12] that his proof should extend to allow
arbitrary dimensions d ≥ 2, connections A on P of Sobolev class W 1,p, and the system of Sobolev
norms in (1.2).

1.1. Outline. In Section 2, we give minor corrections of our statements in [8] of results due to
Uhlenbeck [25, 24]. Those corrections primarily concern the case of base manifolds of dimension
d = 2 and the fact that when p = 1, standard a priori Lp elliptic estimates do not hold. In Section
3, we recall our version [8, Theorem 5.1] of the statement of [26, Corollary 4.3] due to Uhlenbeck
as “Theorem” 3.1 and recall our correction [5, Theorems 1 and 9] to that result as Theorem 3.2.
in Section 4, we describe a counterexample to the estimates stated in [8, Theorem 5.1] and [26,
Corollary 4.3], based on an observation due to Mrowka [19]. In Section 5, we describe the error

1The indicated dependence of the constant ε(g,G) on G includes the dependence on a choice of G-invariant
inner product on the Lie algebra g of G; see Feehan [8, Section 2, second paragraph] for further discussion.
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in our proof of “Theorem” 3.1 (our version of [26, Corollary 4.3]) that we provided in [8, Section
6]. In Section 6, we describe a result, Lemma 6.1, that provides an a priori estimate which is
adequate for the purposes of our proof of Theorem 1 in the case d = 2, when Theorem 2.7 does
not apply. In Section 7, we correct the proof of Theorem 1 that we had provided in [8, Section
7]. The changes are minor and involve treatment of the exceptional case d = 2 and a replacement
of the role of “Theorem” 3.1 by that of Theorem 3.2. Lastly, we take the opportunity to correct
other minor typographical errors in [8]. We refer to our published article [8] for the necessary
background, conventions, and notation.

1.2. Acknowledgments. I am very grateful to Tom Mrowka for his description of a counterex-
ample [19] to exponential convergence (implied by our [6, Theorem 2 and Remark 1.8], where
our [6] is a preliminary version of our published article [10]) for Yang–Mills gradient flow near
the moduli space of flat connections and that serves also as a counterexample to the estimates
claimed in [8, Theorem 5.1] and [26, Corollary 4.3]. I thank Changyou Wang for alerting me to
subtleties particular to dimension two. Last but not least, I am extraordinarily grateful to the
referee for providing corrections and helpful suggestions. The author was partially supported by
National Science Foundation grants DMS-1510064 and DMS-2104865 during the preparation of
this article.

2. Connections with Ld/2-small curvature and a priori estimates for Yang–Mills
connections

In this section, we give minor corrections to our statements in [8] of results due to Uhlenbeck
[25, 24]. These corrections primarily concern the case of base manifolds of dimension d = 2 and
the fact that when p = 1, standard a priori Lp elliptic estimates, such as those in Gilbarg and
Trudinger [14, Chapter 9] for the Laplace operator, do not hold.

2.1. Connections with Ld/2-small curvature. We recall a statement of Uhlenbeck’s Theorem
[24] on existence of local Coulomb gauges (with a clarification due to Wehrheim [27]), together
with two extensions proved by the author in [10].

Theorem 2.1 (Existence of a local Coulomb gauge and a priori estimate for a Sobolev connection

with Ld/2-small curvature). (Correction to our quotation [8, Theorem 4.1] of Uhlenbeck’s [24,
Theorem 1.3 or Theorem 2.1 and Corollary 2.2]; compare Wehrheim [27, Theorem 6.1].) Let
d ≥ 2, and G be a compact Lie group, and p ∈ (1,∞) be a constant obeying d/2 ≤ p < d. Choose
s0 = d/2 when d ≥ 3 and s0 > 1 when d = 2. Then there are constants, ε = ε(d,G, p, s0) ∈ (0, 1]
and C = C(d,G, p, s0) ∈ [1,∞), with the following significance. For q ∈ [p,∞), let A be a W 1,q

connection on B ×G such that

(2.1) ‖FA‖Ls0 (B) ≤ ε,

where B ⊂ Rd is the unit ball with center at the origin. Then there is a W 2,q gauge transformation,
u : B → G, such that the following holds. If A = Θ + a, where Θ is the product connection on
B ×G, and u(A) = Θ + u−1au+ u−1du, then

d∗(u(A)−Θ) = 0 a.e. on B,(2.2)

(u(A)−Θ)(~n) = 0 on ∂B,(2.3)

where ~n is the outward-pointing unit normal vector field on ∂B, and

(2.4) ‖u(A)−Θ‖W 1,p(B) ≤ C‖FA‖Lp(B).
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Remark 2.2 (Restriction of p to the range 1 < p < ∞). (See Feehan [10, Remark 2.4].) The
restriction p ∈ (1,∞) should be included in the statements of [24, Theorem 1.3 or Theorem
2.1 and Corollary 2.2] since the bound (2.4) ultimately follows from an a priori Lp estimate for
an elliptic system that is apparently only valid when 1 < p < ∞. Wehrheim makes a similar
observation in her [27, Remark 6.2 (d)]. This is also the reason that when d = 2, we require
s0 > 1 in (2.1).

Remark 2.3 (Construction of a W k+1,q transformation to Coulomb gauge). (See Feehan [8, Re-
mark 4.3].) We note that if A is of class W k,q, for an integer k ≥ 1 and q ≥ 2, then the gauge
transformation, u, in Theorem 2.1 is of class W k+1,q; see [24, page 32], the proof of [24, Lemma
2.7] via the Implicit Function Theorem for smooth functions on Banach spaces, and our proof of
[7, Theorem 1.1] — a global version of Theorem 2.1.

Remark 2.4 (Non-flat Riemannian metrics). (See Feehan [10, Remark 2.7].) Theorem 2.1 contin-
ues to hold for geodesic unit balls in a manifold X endowed with a non-flat Riemannian metric
g. The only difference in this more general situation is that the constants C and ε will depend
on bounds on the Riemann curvature tensor, Riem. See Wehrheim [27, Theorem 6.1].

We now recall an extension (and corollary of the proof) of Theorem 2.1 to include the range
1 < p < d/2 when d ≥ 3.

Corollary 2.5 (Existence of a local Coulomb gauge and a priori W 1,p estimate for a Sobolev

connection with Ld/2-small curvature when p < d/2). (See Feehan [10, Corollary 2.8].) Assume
the hypotheses of Theorem 2.1, but assume d ≥ 3 and allow 1 < p < d/2. Then the estimate (2.4)
holds.

For completeness, we also recall the following extension (and corollary of the proof) of Theorem
2.1 (and slight improvement of our [8, Corollary 4.4]) to include the range d ≤ p <∞.

Corollary 2.6 (Existence of a local Coulomb gauge and a priori W 1,p estimate for a Sobolev
connection one-form with Lp̄-small curvature when p ≥ d). (See Feehan [10, Corollary 2.9].)
Assume the hypotheses of Theorem 2.1, but consider d ≤ p <∞ and strengthen (2.1) to2

(2.5) ‖FA‖Lp̄(B) ≤ ε,
where p̄ = dp/(d + p) when p > d and p̄ > d/2 when p = d. Then the estimate (2.4) holds for
d ≤ p <∞ and constant C = C(d, p, p̄, G) ∈ [1,∞).

Taken together, Corollaries 2.5 and 2.6 correct and replace our our [8, Corollary 4.4] (which
should have included the restriction p > 1 when d = 2). However, neither Theorem 2.1 nor
Corollaries 2.5 and 2.6 play a direct role in our corrected proof of Theorem 1 in this corrigendum.

2.2. A priori estimate for the curvature of a Yang–Mills connection. The forthcoming
Theorem 2.7 corrects our quotation [8, Theorem 4.5] of Uhlenbeck’s [25, Theorem 3.5] by explicitly
adding the restriction d ≥ 3 that is implicit in her proof. (See, for example, her proofs of [25,
Lemma 3.3 and 3.4], results that she uses to prove [25, Theorem 3.5]. The following result corrects
our quotation [8, Theorem 4.5] of Uhlenbeck’s [25, Theorem 3.5].

Theorem 2.7 (A priori interior estimate for the curvature of a Yang–Mills connection). (See
Uhlenbeck [25, Theorem 3.5].) If d ≥ 3 is an integer, then there are constants, K0 = K0(d) ∈
[1,∞) and ε0 = ε0(d) ∈ (0, 1], with the following significance. Let G be a compact Lie group,
ρ > 0 be a constant, and A be a Yang–Mills connection with respect to the standard Euclidean

2In [8, Corollary 4.4], we assumed the still stronger condition, ‖FA‖Lp(B) ≤ ε.
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metric on B2ρ(0) × G, where Br(x0) ⊂ Rd is the open ball with center at x0 ∈ Rd and radius
r > 0. If

(2.6) ‖FA‖Ld/2(B2ρ(0)) ≤ ε0,

then, for all Br(x0) ⊂ Bρ(0),

(2.7) |FA|(x0) ≤ K0r
−d/2‖FA‖L2(Br(x0)).

Theorem 2.7 may be improved with the aid of the monotonicity formula due to Price [21]. The
following global version of Theorem 2.7 corrects our [8, Corollary 4.6] by adding the restriction
d ≥ 3 inherited from Theorem 2.7.

Corollary 2.8 (A priori estimate for the curvature of a Yang–Mills connection over a closed
manifold). (Correction to Feehan [8, Corollary 4.6].) Let X be a closed, smooth manifold of
dimension d ≥ 3 and endowed with a Riemannian metric, g. Then there are constants, K =
K(g) ∈ [1,∞) and ε = ε(g) ∈ (0, 1], with the following significance. Let G be a compact Lie group
and A be a smooth Yang–Mills connection with respect to the metric, g, on a smooth principal
G-bundle P over X. If

(2.8) ‖FA‖Ld/2(X) ≤ ε,
then

(2.9) ‖FA‖L∞(X) ≤ K‖FA‖L2(X).

As noted earlier, the restriction d ≥ 3 in Theorem 2.7 (and hence Corollary 2.8) was not
explicitly stated by Uhlenbeck in her [25, Theorem 3.5] (although it does appear in her [25,
Corollary 2.9]). However, the condition d ≥ 3 can be inferred from Uhlenbeck’s proof of [25,
Theorem 3.5], in particular through her proof of the required [25, Lemma 3.3], where the exponent
ν = 2d/(d − 2) is undefined when d = 2. The restriction d ≥ 3 also appears in Sibner’s proof of
her a priori L∞ estimate for |FA| in [22, Proposition 1.1], where the necessity of the condition
appears in her definition [22, p. 94] of the positive constant γ1 := (2d − 4)/(d2Cd), with Cd
denoting a Sobolev embedding constant in dimension d. When d = 2, a simple argument based
on the Kato Inequality yields stronger conclusions than those of Theorem 2.7 and Corollary 2.8:
see Lemma 6.1 and Corollary 6.2.

3. Global existence of a flat connection and a Sobolev distance estimate

In this section, we quote our version [8, Theorem 5.1] of the statement of [26, Corollary 4.3]
due to Uhlenbeck as the forthcoming “Theorem” 3.1 below. The estimates in Items (1) and (3)
do not hold in general — they are contradicted by the example discussed in Section 4. In Section
3.2, we quote our correction [5, Theorems 1 and 9] as the forthcoming Theorem 3.2.

3.1. Uhlenbeck’s Corollary 4.3. We recall from [8] the following version of [26, Corollary 4.3]:

“Theorem” 3.1 (Existence of a nearby W 1,p flat connection on a principal bundle supporting
a W 1,p connection with Lp-small curvature). (See Feehan [8, Theorem 5.1] and Uhlenbeck [26,
Corollary 4.3].) Let X be a closed, smooth manifold of dimension d ≥ 2 and endowed with
a Riemannian metric, g, and G be a compact Lie group, and p ∈ (d/2,∞). Then there are
constants, ε = ε(d, g,G, p) ∈ (0, 1] and C = C(d, g,G, p) ∈ [1,∞), with the following significance.
Let A be a W 1,p connection on a principal G-bundle P over X. If

(3.1) ‖FA‖Lp(X) ≤ ε,
then the following hold:
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(1) (Existence of a flat connection) There exists a W 1,p flat connection, Γ, on P obeying

‖A− Γ‖
W 1,p

Γ (X)
≤ C‖FA‖Lp(X),

‖A− Γ‖
W

1,d/2
Γ (X)

≤ C‖FA‖Ld/2(X);

(2) (Existence of a global Coulomb gauge transformation) There exists a W 2,p gauge trans-
formation, u ∈ Aut(P ), such that

(3.2) d∗Γ(u(A)− Γ) = 0 a.e. on X;

(3) (Estimate of Sobolev distance to the flat connection) One has

‖u(A)− Γ‖
W 1,p

Γ (X)
≤ C‖FA‖Lp(X),(3.3a)

‖u(A)− Γ‖
W

1,d/2
Γ (X)

≤ C‖FA‖Ld/2(X).(3.3b)

Our statement of “Theorem” 3.1 slightly modified that of [26, Corollary 4.3]. First, Item (2)
was implied by Uhlenbeck’s proof of [26, Corollary 4.3], but was not explicitly stated. Second,
Uhlenbeck did not draw the distinction that we do here between the estimates obeyed by A
in Item (1) and that obeyed by u(A) in Item (3). Third, Uhlenbeck did not assert the W 1,d/2

estimates obeyed by A in Item (1) and by u(A) in Item (3).

3.2. A corrected Sobolev distance estimate. In the forthcoming Theorem 3.2, we quote
from [5] a corrected statement of “Theorem” 3.1 which effectively replaces the term ‖FA‖Lp(X)

on the right-hand side with ‖FA‖νLp(X) for some ν = ν(g,G, [Γ]) ∈ (0, 1].

Theorem 3.2 (Existence of a nearby W 1,p flat connection on a principal bundle supporting
a W 1,p connection with Lp-small curvature). (See Feehan [5, Theorems 1 and 9] for a more
general statement.) Let (X, g) be a closed, smooth Riemannian manifold of dimension d ≥ 2,
and G be a compact Lie group, and p ∈ (d/2,∞) be a constant. Then there are a constant
ε = ε(g,G, p) ∈ (0, 1] and, for any r ∈ (1, p], a constant C = C(g,G, r) ∈ [1,∞) with the
following significance. Let A be a W 1,p connection on a principal G-bundle P over X. If

(3.4) ‖FA‖Lp(X) ≤ ε,

then there are a W 1,p flat connection Γ on P , a constant ν = ν(g,G, [Γ]) ∈ (0, 1], and a W 2,p

gauge transformation u ∈ Aut(P ) such that

d∗Γ(u(A)− Γ) = 0 a.e. on X,(3.5)

‖u(A)− Γ‖
W 1,r

Γ (X)
≤ C‖FA‖νLr(X).(3.6)

Moreover, if d ≥ 3 or d = 2 and p > 4/3, then we may assume that Γ is C∞.

The main difference between Theorem 3.2 and “Theorem” 3.1 is that we only assert that the
estimate (3.6) holds for some ν(g,G, [Γ]) ∈ (0, 1] and not necessarily for ν = 1. In [8, Appendix
A.2], we gave a proof that (3.6) holds with ν = 1 in the special case where Ker ∆Γ∩Ω1(X; adP ) =
{0}, where we assumed that Γ was C∞ for simplicity. More generally (see [5, Theorem 9]), if the
Yang–Mills energy function

(3.7) E (A) :=
1

2

∫
X
|FA|2 d volg,

is Morse–Bott at the point [Γ] in the moduli space of flat connections M(P ) in the sense that

UΓ(δ) := Γ +
{
a ∈ Ker d∗Γ ∩ Ω1(X; adP ) : ‖a‖

W 1,p
Γ (X)

< δ and FΓ+a = 0
}
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is a smooth manifold for small enough δ = (g,G, p,Γ) ∈ (0, 1] and

TΓUΓ(δ) = Ker E ′′(Γ),

where E ′′(Γ) = Ker ∆Γ is the Hessian operator on Ω1(X; adP ), then (3.6) also holds with ν = 1.
Donaldson and Kronheimer [3, Proposition 4.4.11] employ the local Coulomb gauge estimate

(2.4) and a patching argument to prove that (3.6) holds with ν = 1 when X is strongly simply
connected and p = 2 and d = 2, 3 and Γ = Θ but remark [3, p. 163] that their result extends
to d = 4 and p > 2. In [3, Proposition 4.4.11], it is not claimed that d∗Θ(u(A) − Θ) = 0. Recall
that X is strongly simply connected [3, p. 161] if it can be covered by smoothly embedded balls
B1, . . . , Bm such that for any 2 ≤ r ≤ m, the intersection Br ∩ (B1 ∪ · · · ∪Br−1) is connected; the
condition implies that X is simply connected.

Fukaya [13, Proposition 3.1] proved that a version of (3.6) holds when d = 4, and X is a
compact manifold with boundary, and A is anti-self-dual. Fukaya’s proof of [13, Proposition 3.1]
uses the local Coulomb gauge estimate (2.4) and difficult patching argument. In [13, Proposition
3.1], it is not claimed that d∗Γ(u(A) − Γ) = 0. It is likely [12] that his argument extends to
allow arbitrary dimensions d ≥ 2, connections A ∈ A 1,p(P ), and the system of Sobolev norms
in (3.6). If X is a compact manifold without boundary and A is anti-self-dual and ‖FA‖L2(X) is
smaller than a constant that depends at most on G, then the Chern–Weil Theorem (see Milnor
and Stasheff [18, Appendix C]) would imply that A is necessarily flat.

Nishinou [20] proved that a version of (3.6) holds when X = T2 (the real two-dimensional
torus) and P = T2 × SU(2) and and Γ is the product connection and ν = 1/2.

In Section 4, we describe an example due to Mrowka [19] which shows that (3.6) cannot hold
for ν > 1/2 when At, for t ∈ (−δ, δ), is a certain family of smooth connections on T2 × SU(2) in
Coulomb gauge with respect to the product connection Θ. There is no other flat connection Γ
on T2 × SU(2) that is in Coulomb gauge with respect to Θ and closer in the W 1,p norm to At,
for t ∈ (−δ, δ), and that is no gauge transformation u ∈ Aut(P ) that can be used to improve the
estimate (3.6) by replacing At by u(At).

The argument provided by Uhlenbeck in her proof of [26, Corollary 4.3] was very brief and that
had prompted us to attempt a more detailed justification in [8, 4] using the local Coulomb-gauge
estimate (2.4) in Theorem 2.1 and a patching argument. We shall explain why our argument was
incorrect in Section 5.

The proof of the estimate (3.6) stated in Theorem 3.2 is quite involved and occupies the
majority of our article [5]. Readers familiar with the results of  Lojasiewicz will notice that the
estimate (3.6) resembles a  Lojasiewicz distance inequality :

Theorem 3.3 ( Lojasiewicz distance inequality for analytic functions on Euclidean space). (See
 Lojasiewicz3 [17, Theorem 2, p. 85 (62)].) Let n ≥ 1 be an integer, U ⊂ Rn be an open
neighborhood of the origin, and f : U → [0,∞) be an analytic function. If f(0) = 0 and f ′(0) = 0,
then there are constants C ∈ [1,∞), and σ ∈ (0, 1], and δ ∈ (0, σ/4], and β ∈ [1,∞) such that

(3.8) f(x) ≥ C dist(x,Bσ ∩ Zero f)β, ∀x ∈ Bδ,
where Zero f := f−1(0) and dist(x, Z) := inf{‖x − z‖ : z ∈ Z} for any Z ⊂ Rn and Br := {x ∈
Rn : ‖x‖ < r} for r ∈ (0,∞).

We refer the reader to Feehan [9, Theorem 1 and Corollary 4] for a simpler proof of Theorem
3.3 which is partly inspired by that of Bierstone and Milman [2, Theorem 2.8]. This resemblance

3The first page number refers to the version of  Lojasiewicz’s original manuscript mimeographed by IHES while
the page number in parentheses refers to the cited LaTeX version of his manuscript prepared by M. Coste and
available on the Internet.
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between the inequalities (3.6) and (3.8) can be made a little closer when r = 2 in (3.6) and f in
Theorem 3.3 is replaced by the Yang–Mills energy function E in (3.7). Of course, this replacement
requires us to consider analogues in infinite dimensions of the arguments in finite dimensions that
we used in [9] to prove Theorem 3.3 and, in infinite dimensions, those arguments unfortunately
become far more involved. As described in our article [9], Theorem 3.3 is proved with the aid
of gradient flow for the analytic function f ; its analogue for the Yang–Mills energy function E
is also proved using gradient flow, a task that is necessarily far more involved as researchers in
gauge theory are aware. We refer readers who seek a better understanding of how Theorem 3.2
is established to read our proof of Theorem 3.3 for the essential idea.

4. Flat SU(2) connections over a torus and Uhlenbeck’s Corollary 4.3

In this section, we describe a counterexample to the estimates stated in [8, Theorem 5.1] and
[26, Corollary 4.3], based on an observation due to Mrowka [19]. We give a far more detailed
analysis of this example in [5, Appendix A] and so we shall only highlight the main ideas here.

Example 4.1 (Estimate for distance to moduli subspace of flat SU(2) connections over a two-di-
mensional torus). In the notation of “Theorem” 3.1, choose

G = SU(2), X = T2 = R2/Z2, P = T2 × SU(2),

identify connection one-forms on P with su(2)-valued one-forms on T2, where su(2) denotes the
Lie algebra of SU(2), and equip T2 with its flat Riemannian metric. For a pair of matrices
ξ, η ∈ su(2), consider the connection one-form

A = ξ ⊗ dx+ η ⊗ dy ∈ Ω1(T2; su(2)).

We have

FA = dA+
1

2
[A,A] =

1

2
[ξ, η]dx ∧ dy ∈ Ω2(T2; su(2)),

and thus FA = 0 ⇐⇒ [ξ, η] = 0. Using d∗ = (−1)d(p+1)+1 ? d? on Ωp(X;R), we note that

d∗A = − ? d ? A = − ? d(ξ ⊗ dy + η ⊗ dx) = 0,

since d2x = 0 = d2y, and thus A is in Coulomb gauge with respect to the product connection Θ
on P . Recall that su(2) has basis

(4.1) I =

(
0 i
i 0

)
, J =

(
0 −1
1 0

)
, K =

(
i 0
0 −i

)
,

with relations [I, J ] = 2K, and [J,K] = 2I, and [K, I] = 2J . For the Lie algebra su(2), one can
take B(ξ, η) = tr(ξη) to be the Killing form, giving B(I, I) = B(J, J) = B(K,K) = −2, and
choose 〈ξ, η〉 := −1

2B(ξ, η) to be an Ad SU(2)-invariant inner product on su(2), with respect to
which the basis {I, J,K} is orthonormal.

If ξ = tI and η = tJ , for a constant t ∈ R, and we write At for the resulting one-parameter
family of connections, then

FAt =
1

2
t2[I, J ]dx ∧ dy = t2Kdx ∧ dy,

and so |At| ∝ |t| and |FAt | ∝ |t|2. Consequently, for any p ∈ (1,∞),

(4.2) ‖At‖W 1,p(T2) ≤ C‖FAt‖
1/2
Lp(T2)

, ∀ t ∈ R,

where C = C(p) ∈ [1,∞) is a constant. �
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For the family A of connections parameterized by su(2)× su(2) in Example 4.1, we also have
dA = 0 and so

A ∈ H1
Θ(T2; su(2)) := Ker(d+ d∗) ∩ Ω1(T2; su(2)) ∼= H1(T2;R)⊗ su(2) ∼= R2 ⊗ su(2),

where H1
Θ(T2; su(2)) is the Zariski tangent space at Θ to M(T2,SU(2)), and by dimension-

counting every element of H1
Θ(T2; su(2)) has this form. Furthermore, [Θ] is not a regular point

of M(T2, SU(2) because

H2
Θ(T2; adP ) := Ker(d+ d∗) ∩ Ω2(T2; adP ) ∼= H2(T2;R)⊗ su(2) ∼= su(2)

and, in particular, H2
Θ(T2; adP ) is non-zero.

As an aside, we note that the virtual dimension s of M(T2, SU(2)) is equal to zero since

s := Index
(
d+ d∗ : Ω1(T2; su(2))→ Ω2(T2; su(2))⊕ Ω0(T2; su(2))

)
= dimH1

Θ(T2; adP )− dimH2
Θ(T2; adP )− dimH0

Θ(T2; adP ) = 6− 3− 3 = 0.

Regarding Example 4.1, one might further ask if the estimate (4.2) for At could be improved

in the sense of replacing ‖FAt‖
1/2
Lp(T2)

by ‖FAt‖Lp(T2) by finding a flat connection Γ such that

‖At − Γ‖W 1,p(T2) ≤ C‖At‖W 1,p(T2).
However, we shall explain in the following paragraph that such a strategy cannot be used to

improve the estimate (4.2). If such an improvement were possible, then one might expect that a
relatively minor modification of the statement of “Theorem” 3.1 would continue hold.

Our [5, Theorem A.9] describes the stratified-space structure of the moduli space of flat SU(2)
connections over T2 as the well-known two-dimensional pillowcase (see Hedden, Herald, and
Kirk [15, Sections 3.1 and 3.2] and Kirk [16, Section 1.2]), where [Θ] represents one corner of
the pillowcase (see [5, Figure A.3]). The connections At in Example 4.1 are closest to Θ, with
‖At−Γ‖W 1,p(T2) ≥ ‖At‖W 1,p(T2) for any [Γ] ∈M(T2,SU(2)) obeying d∗Γ = 0, and so (4.2) cannot
be improved by the suggested strategy. Indeed, the parameterization due to Kirk [16, Section
1.2] (see also [5, Equation (A.18)]) of the pillowcase Hom(π1(T2), SU(2))/ SU(2) and [5, Theorem
A.9] show that the family of flat connections

Γ(α, β) :=

(
iα 0
0 −iα

)
dx+

(
iβ 0
0 −iβ

)
dy

= αKdx+ βKdy ∈ Ker d∗ ∩ Ω1(T2; su(2)), ∀ (α, β) ∈ [0, π]× [0, 2π]

is a parameterization of M(T2, SU(2)). But then

|At − Γ(α, β)| = |(tI − αK)dx+ (tJ − βK)dy|

=
(
t2 + α2 + β2

)1/2
,

and so |At − Γ(α, β)| ≥ |At|, with equality if and only (α, β) = (0, 0) and Γ(0, 0) = Θ.

5. Error in the proof of the estimates in “Theorem” 3.1

In this section, we describe a subtle error in our proof of “Theorem” 3.1 (our version of [26,
Corollary 4.3]) that we provided in [8, Section 6], referring the reader to that article for a further
explanation of notation. In [8, Section 6.3], we assumed that the local gauge transformations
ρα : Uα → G defined in [8, Equation (6.14)] (and provided by Theorem 2.1) that take local
sections σ0

α : Uα → P (with respect to which (σ0
α)∗Γ = 0 on Uα) to local sections σα : Uα → P

(with respect to which dσ∗αA = 0 on Uα) necessarily obey the estimates in [8, Equation (6.4)] on
Vα ⊂ Uα provided by [8, Corollary 6.4].
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We proved [8, Corollary 6.4] by explicitly constructing of a collection of maps ρ̃α : Uα → G,
given two collections of transition functions (denoted by gαβ and hαβ in the statement of [8,
Corollary 6.4]) that are C0-close. Our proof of [8, Corollary 6.4] assumed that one could choose
ρ1 = 1 ∈ G on V1 = U1; however, that assumption will not necessarily hold for the collection of
maps ρα : Uα → G provided by Theorem 2.1. We explain this issue and its consequences further
in the remainder of this section.

In Uhlenbeck’s local Coulomb gauge-fixing result, Theorem 2.1, the Neumann boundary con-
dition (2.3) for u(A)−Θ on ∂B is invariant under the replacement of ρ : B → G by ρg : B → G,
for any g ∈ G4. The crucial estimate (2.4) for the W 1,p norm u(A)−Θ in terms of the Lp norm
of FA is a consequence of the a priori estimate (with p ∈ (1,∞) and C = C(d,G, p) ∈ [1,∞))

‖a‖W 1,p(B) ≤ C‖(d+ d∗)a‖Lp(B),

for the first-order elliptic operator

d+ d∗ : Ω1(B; g)→ Ω2(B; g)⊗ Ω0(B; g)

and Neumann boundary condition a(~n) = 0 on ∂B. With this boundary condition, the operator
d+d∗ has trivial kernel. See Uhlenbeck [24, Lemma 2.5] or Wehrheim [27, Theorem 5.1] for details.
If the operator d + d∗ had nontrivial kernel, an additional term ‖a‖Lp(B) would be present on
the right-hand side of the preceding estimate. Moreover, unless d∗a = 0 on B (as one has by the
Coulomb gauge-fixing condition (2.2) for the choice u(A) − Θ), one cannot expect an a priori
estimate of the form

‖a‖W 1,p(B) ≤ C‖da‖Lp(B),

due to the nontrivial (in fact, infinite-dimensional) kernel of d : Ω1(B; g) → Ω2(B; g) in the
absence of a suitable boundary condition for a on ∂B. Hence, for a0

α = (σ0
α)∗(A − Γ) = (σ0

α)∗A
and (σ0

α)∗FA = da0
α + 1

2 [a0
α, a

0
α], one cannot expect the estimate

‖a0
α‖W 1,p(Vα) ≤ C‖FA‖Lp(Uα)

to hold as we had stated on [8, p. 575].
We recall from our proofs of [5, Theorems 1 and 9] that the need for  Lojasiewicz exponents ν ∈

(0, 1] rather than the optimal ν = 1 in [26, Corollary 4.3] can arise when the kernel Ker(dΓ +d∗Γ)∩
Ω1(X; adP ) is nontrivial. That issue can be mitigated when Crit E ∩{Γ+Ker d∗Γ∩Ω1(X; adP )} is
a smooth manifold near Γ of dimension equal to that of Ker(dΓ +d∗Γ)∩Ω1(X; adP ), that is, when
the Yang–Mills energy function E is Morse–Bott at [Γ] ∈M(P ) in the sense of [5, Definition 7.6].
However, at the product connection [Θ] ∈ M(T2, SU(2)), the Yang–Mills energy function E is
not Morse–Bott.

We can use the example of [Θ] ∈ M(T2, SU(2)) and the family At for t ∈ (−δ, δ) to further
clarify our error in [8, Section 6.3]. The local gauge transformations ρα : Uα → SU(2) take the
a0
α = (σ0

α)∗At to Coulomb-gauge local connection one-forms aα = ρ−1
α a0

αρα + ρ−1
α dρα that obey

the Neumann boundary condition aα(~n) = 0 on ∂Uα. Now At already obeys d∗At = 0 and thus
d∗a0

α = 0, so the main purpose of the ρα here will be to ensure that the Neumann boundary
conditions are obeyed over each Uα and so

‖aα‖W 1,p(Uα) ≤ C‖daα‖Lp(Uα).

We do not know and cannot expect that any of these ρα will be constant. In particular, we
cannot assume, as we did at the beginning of our proof of [8, Corollary 6.4], that ρ1 = 1 on the

4Each element g ∈ G can be viewed as a constant gauge transformation and element of the stabilizer in Aut(B,P )
of the product connection Θ on P .
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geodesic ball V1 = U1 and hence that the estimates in [8, Equation (6.4)] for the Lp(Vα) norms
of ∇ρα and ∇2ρα are all bounded by a constant times η ∈ (0, 1]. Their bounds in terms of a
constant times ‖FA‖Lp(Uα) come from the Lp(Uα ∩ Uβ) estimates for dgαβ in [8, Equation (6.3)]
in terms of a constant times η ∈ (0, 1], where the transition functions gαβ intertwine σα and σβ,
and from the Lp(Uα∩Uβ) estimates in [8, Equation (6.11a)] for dgαβ in terms of a constant times
‖FA‖Lp(Uα∩Uβ), and from the choice η = ‖FA‖Lp(Uα∩Uβ).

6. The exceptional case of two-dimensional manifolds

As we noted in Section 2.2, Theorem 2.7 does not cover the case d = 2, but the forthcoming
Lemma 6.1 provides an a priori estimate that is adequate for the purposes of our proof of
Theorem 1 in the case d = 2. Recall from Uhlenbeck [24, p. 33] or Wehrheim [27, Theorem 9.4
(i)] that if A is a W 1,p Yang–Mills connection (for p ∈ (d/2,∞) and p ≥ 2 if d = 2, 3), then A is
gauge-equivalent to a smooth Yang–Mills connection.

Lemma 6.1 (A priori estimate for the curvature of a Yang–Mills connection in dimension two).
Let G be a compact Lie group and A be a smooth Yang–Mills connection with respect to the
standard Euclidean metric on Br × G, where Br ⊂ R2 is the open ball with center at the origin
in R2 and radius r > 0. If FA ∈ L1(Br; Λ2 ⊗ g), then

(6.1) ‖FA‖L∞(Br) = Vol(Br)
−1‖FA‖L1(Br).

Proof. We adapt the proof of [23, Theorem 4.1] due to P. Smith. Noting that ∗FA ∈ Ω0(Br; g)
when d = 2, the Kato Inequality [11, Equation (6.20)] and the Yang–Mills equation for A imply
that

(6.2) |d|FA|| = |d| ∗ FA|| ≤ |dA ∗ FA| = |d∗AFA| = 0 on Br.

Thus, |FA| is constant on Br and the conclusion follows. �

Lemma 6.1 serves as a replacement for Theorem 2.7 when d = 2 and in our proof of Theorem
1 in that case, we use the following immediate corollary of the proof of Lemma 6.1 (just replace
the ball Br ⊂ R2 by a two-dimensional manifold X) and analogue of Corollary 2.8.

Corollary 6.2 (A priori estimate for the curvature of a Yang–Mills connection over a closed
two-dimensional manifold). Let X be a closed, smooth, two-dimensional manifold endowed with a
Riemannian metric, g. Let G be a compact Lie group and A be a smooth Yang–Mills connection
with respect to the metric, g, on a smooth principal G-bundle P over X. Then

(6.3) ‖FA‖L∞(X) = Volg(X)−1‖FA‖L1(X).

7. Corrections to the proof of Theorem 1

In this section, we correct the proof of Theorem 1 that we had provided in [8, Section 7]. The
changes are minor but involve special handling for the exceptional case d = 2 and a replacement
of the role of “Theorem” 3.1 by that of Theorem 3.2 and an application of the following version
of the  Lojasiewicz gradient inequality:

Corollary 7.1 ( Lojasiewicz–Simon gradient inequality for the Yang–Mills energy function near
flat connections). (See Feehan [8, Corollary 3.3].) Let X be a closed, smooth manifold of dimen-
sion d and endowed with a Riemannian metric, g, and G be a compact Lie group. Assume that
d ≥ 2 and p ∈ [2,∞) obeys p ≥ d/2. Then there are positive constants c, σ, and θ ∈ [1/2, 1),
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depending on g, G, and p with the following significance. If A is a connection of class W 1,q on a
principal G-bundle, P , over X, with q ∈ [2,∞) obeying q > d/2 and q ≥ p, such that

(7.1) ‖A− Γ‖
W 1,p

Γ (X)
< σ,

for some flat connection, Γ, of class W 1,q on P , then

(7.2) ‖d∗AFA‖W−1,p
Γ (X)

≥ c|E (A)|θ.

In particular, if A in Corollary 7.1 is a Yang–Mills connection, then (7.2) implies that A is
necessarily flat. Rather than attempt to indicate the line-by-line changes to [8, Section 7], we
give the modifications here in full. We begin with the

Corollary 7.2 (Existence of a nearby flat connection on a principal bundle supporting a C∞

Yang–Mills connection with Ld/2-small curvature). (Correction to Feehan [8, Corollary 7.1].) Let
X be a closed, smooth manifold of dimension d ≥ 2 and endowed with a Riemannian metric,
g, and G be a compact Lie group. Then there are a constant ε = ε(g,G) ∈ (0, 1] and, for any
r ∈ (1,∞), a constant C = C(g,G, r) ∈ [1,∞) with the following significance. Let A be a C∞

Yang–Mills connection on a C∞ principal G-bundle P over X. If the curvature FA obeys (1.1),
that is,

‖FA‖Ld/2(X) ≤ ε,
then there are a C∞ flat connection Γ on P , a constant ν = ν(g,G, [Γ]) ∈ (0, 1], and a C∞ gauge
transformation u ∈ Aut(P ) such that

d∗Γ(u(A)− Γ) = 0 a.e. on X,(7.3)

‖u(A)− Γ‖
W 1,r

Γ (X)
≤ C‖FA‖νLr(X).(7.4)

Proof. The estimate (2.9) in Corollary 2.8, for any d ≥ 3 and p ∈ [1,∞], and the equality (6.3)
in Corollary 6.2, for d = 2, yield

‖FA‖Lp(X) ≤ (Volg(X))1/p ‖FA‖L∞(X) ≤ K (Volg(X))1/p ‖FA‖L2(X) (d ≥ 3),(7.5a)

‖FA‖L∞(X) = (Volg(X))−1 ‖FA‖L1(X) = (Volg(X))−1 ‖FA‖Ld/2(X) (d = 2),(7.5b)

for K = K(g) ∈ [1,∞). If d ≥ 4, then (writing 1/2 = (d− 4)/(2d) + 2/d)

(7.6) ‖FA‖L2(X) ≤ (Volg(X))(d−4)/2d ‖FA‖Ld/2(X), ∀ d ≥ 4.

If d = 3, then interpolation [14, Equation (7.9)] implies that

‖FA‖L2(X) ≤ ‖FA‖λL3/2(X)
‖FA‖1−λLt(X),

where the exponent t obeys 2 < t ≤ ∞ and the constant λ ∈ (0, 1) is defined by 1/2 = λ/(3/2) +
(1− λ)/t. We may choose t =∞ and thus λ = 3/4 to give

‖FA‖L2(X) ≤ ‖FA‖
3/4

L3/2(X)
‖FA‖1/4L∞(X)

≤ ‖FA‖3/4L3/2(X)

(
K‖FA‖L2(X)

)1/4
(by Corollary 2.8),

and thus

(7.7) ‖FA‖L2(X) ≤ K(4−d)/d‖FA‖Ld/2(X) (d = 3).

Therefore, by combining (7.5) (for d ≥ 2), (7.6) (for d ≥ 4), and (7.7) (for d = 3), we obtain

(7.8) ‖FA‖Lp(X) ≤ C1‖FA‖Ld/2(X), ∀ d ≥ 2 and p ≥ 1,
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for C1 = C1(g, p) ∈ [1,∞). Hence, the preceding inequality and the hypothesis (1.1), namely
‖FA‖Ld/2(X) ≤ ε, of Corollary (7.2) ensure that the hypothesis (3.4) of Theorem 3.2 applies for

small enough ε = ε(g,G) ∈ (0, 1] by taking p = (d + 1)/2 in (3.4). The conclusions now follow
from Theorem 3.2 and Remark 2.3 for smoothness of u. �

We can now finally give the corrections to our proof of Theorem 1. The changes to [8, Proof
of Theorem 1, p. 577] are minor since they only involve a replacement of the role of [8, Corollary
7.1] by its corrected version, Corollary 7.2 (allowing an exponent ν ∈ (0, 1] rather than assuming
ν = 1 in the third line of [8, Proof of Theorem 1, p. 577]) and a slight adjustment for the case
d = 2 (tenth line of [8, Proof of Theorem 1, p. 577]), but for clarity we give the proof in full.

Proof of Theorem 1. For small enough ε = ε(g,G) ∈ (0, 1], Corollary 7.2 provides a smooth flat
connection Γ on P , a constant ν = ν(g,G, [Γ]) ∈ (0, 1], and a smooth gauge transformation
u ∈ Aut(P ), and the estimate

‖u(A)− Γ‖
W 1,p

Γ (X)
≤ C0‖FA‖νLp(X),

for p ∈ (d/2,∞) obeying p ≥ 2 and C0 = C0(g,G) ∈ [1,∞). The preceding inequality ensures
that the hypothesis (7.1) holds for the  Lojasiewicz gradient inequality (7.2) for the Yang–Mills
energy function (3.7) near the flat connection Γ,

‖u(A)− Γ‖
W 1,p

Γ (X)
< σ,

provided, for example, ‖FA‖Lp(X) ≤ (σ/(2C0))1/ν . The latter condition is ensured in turn by the
hypothesis (1.1), namely ‖FA‖Ld/2(X) ≤ ε, of Theorem 1 for small enough ε = ε(g,G) ∈ (0, 1],

since (7.5b) and (7.7) give

‖FA‖L2(X) ≤ C1‖FA‖Ld/2(X), for d = 2, 3,

for C1 = C1(g) ∈ [1,∞). Indeed, the constant

ε :=

{
σ/(2C0) for d ≥ 4,

σ/(2C0C1) for d = 2, 3,

will suffice. If p′ = p/(p − 1) ∈ (1, 2] is the Hölder exponent dual to p ∈ [2,∞), then the

Sobolev Embedding [1, Theorem 4.12] (for d ≥ 2) implies that W 1,p′(X) ⊂ Lr(X) is a continuous
embedding if (i) 1 < p′ < d and 1 < r = (p′)∗ := dp′/(d− p′) ∈ (1,∞), or (ii) p′ = d and 1 < r <
∞, or (iii) d < p′ <∞ and r =∞. Since d ≥ 2 by hypothesis, only the first two cases can occur

and by duality and density, we obtain a continuous Sobolev embedding, Lr
′
(X) ⊂ W−1,p(X),

where r′ = r/(r−1) ∈ (1,∞) is the Hölder exponent dual to r ∈ (1,∞). The Kato Inequality [11,

Equation (6.20)] implies that the norm of the induced Sobolev embedding, W 1,p′

Γ (X; Λ1⊗adP ) ⊂
Lr(X; Λ1 ⊗ adP ), is independent of Γ, and hence the norm, κ = κ(g, p) ∈ [1,∞) of the dual

Sobolev embedding, Lr
′
(X; Λ1 ⊗ adP ) ⊂ W−1,p

Γ (X; Λ1 ⊗ adP ), is also independent of Γ. The
preceding embedding and the  Lojasiewicz–Simon gradient inequality (7.2) applied to u(A), now
yield

‖d∗u(A)Fu(A)‖Lr′ (X) ≥ κ
−1c|E (u(A))|θ,

and thus
‖d∗AFA‖Lr′ (X) ≥ κ

−1c|E (A)|θ,
noting that each side of the gradient inequality remains unchanged when u(A) is interchanged
with A. But A is a Yang–Mills connection, so d∗AFA = 0 on X and E (A) = 1

2‖FA‖L2(X) = 0 by
(3.7) and thus A must be a flat connection. �
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