Goal: Head toward Fenchel-Nielsen coordinates

Lecture 3: Hyperbolic Geometry

Conclusion: All hyperbolic geodesic surfaces of (Σ, ds^2) are invariant of the Riemann surface Σ / Γ. In particular, the length of the shortest geodesics are locally constant, i.e., $\ell_\Gamma : \mathcal{L}(\Sigma / \Gamma) \to \mathbb{R}$ is locally constant.

Definition: A geodesic $\gamma : [a, b] \to (\Sigma, ds^2)$ is locally constant, i.e., $\ell_\Gamma : \mathcal{L}(\Sigma / \Gamma) \to \mathbb{R}$ is locally constant.

Example: The hyperbolic annulus $X_\epsilon = \mathbb{H} / \Gamma \times \mathbb{R}$, where $\Gamma = \{ z \in \mathbb{H} : \text{Re}(z) < \epsilon \}$, has length $\log(\log(\pi/\epsilon))$.

What is the length of the shortest geodesic γ_{min} in Σ / Γ?

Solution:
What are the closed geodesics in X_ϵ?

Indeed, if γ is a closed geodesic in X_ϵ, then $\gamma \in \mathcal{H}$, i.e., γ is a geodesic in the hyperbolic plane \mathbb{H} invariant under \mathbb{H}/Γ.

\[\ell_\Gamma(\gamma) = \int_{x_0}^{x_1} \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx \]

Now, $i \sim i' \Rightarrow \text{distance log}_2 \Rightarrow \text{result.}$

Conclusion: If X_ϵ is biholomorphic to $X_{\epsilon'}$, $\epsilon, \epsilon' > 0 \Rightarrow \log(\log(\pi/\epsilon')) = \log(\log(\pi/\epsilon)) = 1 = \lambda$

Therefore, $\mu < d < 2 \Rightarrow \mu < d < 2 \Rightarrow \mu' < d' < 2 \Rightarrow \mu = \mu'$

\[\text{Mod}(1 < d < 2) \cong \mathbb{H} \cup \mathbb{H}, \text{ hyperbolic space.} \]

Goal: Understand Moduli space

Homework: Use Schwarz lemma to show that $f : \Sigma_1 \to \Sigma_2$ is analytic between two hyperbolic surfaces. Then f decreases hyperbolic distances.

Next goal: understand $\text{Mod}(\Sigma)$, Teichmüller space, use the use of Poincaré metric.

HW 1: Compute the length of a circle of radius 1 in hyperbolic space.

2. Show that a circle in (\mathbb{H}, ds^2) is a Euclidean circle in \mathbb{H}.

3. Show Gauss-Bonnet theorem

4. Show that the area of a hyperbolic triangle is less than the length of its edge.

(Gromov)

\[|\log(\text{Sigma}(\pi))| = \text{length of geodesic corresponding to } \pi. \]
Lecture 9. Basic geometry of geodesics

\((M, g)\) Riemannian manifold. \(\forall p \in M, \text{ the ball } B_r(p) = \{ x \in M \mid d(x, p) < r \}\)

Geodesic: \([a, b] \to M: \text{ locally the shortest path}\)

Key Fact: \(\forall p \in M, \exists 0 < r \to B_r(p) \text{ is convex and } \forall x_1, x_2 \in B_r(p), \exists! \text{ shortest geodesic } \gamma : [x_1, x_2] \to B_r(p) \text{ from } x_1 \text{ to } x_2\).

Furthermore: \(\exists a, b \in B_r(p), \lim_{x \to a} \gamma(x, y) = g(y, y) \quad \text{length}(\gamma(x, y)) \to \text{length}(\gamma(a, b))\).

Equi. True w.r.t \((H, ds^2)\) or \((\mathbb{D}, ds^2)\). \(\text{geodesics} \quad \text{are in}\)

Basic Thm. \((M, g)\) closed Riemannian manifold \(M \ni S^1 \to M\) so that \(d \not\equiv p\).

(\(d\) continuous & cannot be extended to \(\mathbb{D}^2\)). Then \(\exists \alpha \text{ a geodesic closed } \beta : S^1 \to M\) so that \(\beta \equiv \alpha\). \(\forall t \in \text{ continuous } H : S^1 \times [0, 1] \to M\)

\(s.t. H(t, 0) = \alpha(t), H(t, 1) = \beta(t) \quad \forall t\).

Pf. Note if \(\alpha \equiv pt\), \(\beta = \text{ constant geodesic}\).

Pf.

Lemma 1. \(\exists \delta > 0 \text{ s.t. } \forall p \in M, \exists \text{ geodesics convex and } \text{ in } \mathbb{R}^2\).

Pf. Lebesgue lemma from point set topology \(G = \{ Br_p(p) \mid p \in M, p\}

the radius \(\ln \text{ key fact}\).

Lemma 2. If \(d_1, d_2 : S^1 \to M \text{ s.t } d(x_1(t), x_2(t)) \leq \delta/2 \forall t, \text{ then } d_1 \leq d_2\).

Pf. \(d_2(t) \in B_{\delta/2} (x_1(t))\). \(H(x, t) : \text{ the geodesic path, parameterized proportional to arc length } \left(\| \frac{d}{dt} H(x,t) \| = \text{ const}\right) \text{ from } x_1(t) \text{ to } x_2(t)\).

Continuity follows from the solution of ODE, depends on initial point. \(\square\)

Now the proof: Let \(L = \inf \frac{1}{2} \text{ length}(r) \mid r \in M \}

Then \(L \geq \delta/2\). Since \(L < \delta/2 \Rightarrow r \in B_{\delta/2}(p) \Rightarrow r \not\equiv pt \Rightarrow d(x, p)\)
Lecture 7. Basic geometry of geodesics

Let \(r_n \) be a seq. of piecewise smooth loops \(r_n \equiv a \), \(\lim_{n \to \infty} \text{length}(r_n) = L \) and \(\text{length}(r_n) \leq 2L \).

Modify \(r_n \) s.t.

1. \(\| r_n'(t) \| = \frac{\text{length}(r_n)}{2\pi} \) (reparametrization) (Each path \(y \to y(t) \| = 1 \))

 \[\Rightarrow \text{for } t, t' \in S^1 \]
 \[d(r_n(t), r_n(t')) \leq \frac{\text{length}(r_n[S^1])}{2\pi} \leq \frac{2L}{2\pi} = d(t, t') \]

2. Take \(N \gg 1 \) s.t. \(\frac{2L}{N} \leq \frac{\pi}{2} \), and \(t_i = \text{equal distance points of } S^1 \) w/ \(d(t_i, t_{i+1}) = \frac{2\pi}{N} \).

\[\Rightarrow d(r_n(t_i), r_n(t_{i+1})) \leq \frac{\pi}{2} \quad r_n[t_i, t_{i+1}] \subset B_{\frac{\pi}{2}}(r_n(t_i)) \]

3. Replace \(r_n \), making \(r_n[t_i, t_{i+1}] \) the shortest geodesic joining \(t_i \) to \(B_{\frac{\pi}{2}}(r_n(t_i)) \).

Now use key fact to define \(\beta: [t_i, t_{i+1}] \) to be \(\lim_{n \to \infty} r_n(t_i, t_{i+1}) \).

\[\Rightarrow \beta = \lim_{n \to \infty} r_n \text{ uniformly s.t. } \text{length}(\beta) = \lim_{n \to \infty} \text{length}(r_n) = L \]

We claim \(\beta \) is a closed geodesic s.t. \(\beta \equiv a \).

\[\exists N \gg 1 \text{ s.t. } d(\beta(t_i), r_n(t)) \leq \frac{\pi}{2} \quad \forall t \Rightarrow \beta \equiv r_n \equiv a. \]

Next \(\beta \) is geodesic except possibly at \(\beta(t_i)'s \)

Since otherwise \(\Rightarrow \beta = \beta_i \text{ s.t. } \text{length}(\beta_i) < L \).

\[\square \]

Homework: Write down carefully the proof of: for any complete Riemannian \((M, g) \) and \(d:(C^0, \o, \cdot, a) \to (M, R^2), \exists \) a geodesic path \((\beta, C^0, \o, a) \to (M, R^2) \) s.t. \(d \equiv \beta \text{ relative to } \o. \)
lecture 9. Basic Geodesics

Where do you use the completeness?

RM1 The geodesic β may not be unique: $S^1 \times S^1$ flat torus $\mathbb{R}^2 / \mathbb{Z} \times \mathbb{Z}$.

RM2 If M is not compact, even (M, g) is complete, β may not exist.

$$\Sigma = \mathbb{H} / \langle z \rightarrow z + 1 \rangle \cong \mathbb{D} \text{-fol} \text{ hyperbolic} \times \text{the quasiflats } \mathcal{Q}(t) = e^{it}, 0 \leq t \leq 1.$$

First, $l = 0$ now since $d(M_i, M_i + 1) = \frac{1}{n} \to 0$.

Next, Σ contains NO closed geodesics at all. Indeed if $q: S^1 \to \Sigma$ is a closed geodesic then $\tilde{q}(t) = q$ is a geodesic if H invariant under $Z \to Z + 1$. But there is no such. (Not shown)

Proposition. If (Σ, g) is hyperbolic and $\alpha \neq \beta$ are two homotopic closed geodesics, then $\alpha = \beta$ (contradiction of \neq). (True also for neg curv)

Proof. We need the basic information. Easy proof (left to do).

\neg Theorem. If β be the positive geodesic in H. Then for any $r > 0$

$$N_r(\beta) = \{ x \in H / d(x, \beta) \leq r \} = \{ x \in H / r - 0 \leq \text{Arg}(z) \leq 2 \}$$

where $\text{Arg}(z) = \theta$,

$$d(x, \beta) = \sqrt{\text{atan}^2 (r) + \text{atan}^2 (\theta - r)}$$

Proof The isometry $z \mapsto z$ leaves β invariant $\forall \lambda > 0 \Rightarrow$

$$N_r(\beta) \text{ is invariant under } z \mapsto \lambda z \Rightarrow N_r(\beta) = \{ \frac{1}{\lambda} z : \text{Arg}(z) \leq \theta \}$$

The actual calculation is homework. $x(t) = (\text{cost}, \text{sipt})$

$$\gamma = \sqrt{\frac{1}{2} - \frac{\text{sipt}^2}{\text{cost}^2}} \Rightarrow \ln \text{tangent} \frac{\theta}{2} = \ln \text{tangent} \frac{\pi}{2} - \theta \Rightarrow$$
Lecture 9. Basic Geodesics

Corollary: (1) For any geodesic \(\gamma \in H \cup D^2 \), for any \(y \). \(N_y(\gamma) \) is

\[\text{tg}(y) = 5 \sinh(r) \]

\(y \) s.t. \(\exists N_y(\gamma) \) circles, union of two circular arcs

(2) if \(\gamma_1, \gamma_2 \) are two geodesics s.t. \(\gamma_1 \subset N_y(\gamma_2) \) for some \(y \Rightarrow \gamma_1 = \gamma_2 \)

Now the proof of uniqueness \(H/\Gamma \)

Suppose \(\alpha, \beta : S^1 \to \Sigma \) two homotopic geodesics s.t. \(H : S^1 \times I \to \Sigma \)

is the smooth homotopy. Define \(F : \mathbb{R} \times [0, 1] \to \Sigma \) by

\[F(x, t) = H(e^{2\pi i x}, t) \quad s.t \ F(0, 0), F(0, 1) \text{ are geodesics} \]

Lifting Thm: If \(\pi : X \to Y \) is a covering map (i.e. \(\pi, H \to H/\Gamma \)) and \(f : A \to Y \) is a continuous map from a simply connected

manifold, then \(\exists \) a continuous \(\tilde{f} : A \to X \) s.t. \(\pi \circ \tilde{f} = f \)

(\(\tilde{f} \) is called a lift of \(f \)).

Let \(\tilde{F} : \mathbb{R} \times [0, 1] \to H \) be a lifting of \(F \), s.t \(\tilde{F}(0, 0), \tilde{F}(0, 1) \)

are two geodesics \(\alpha, \beta \) in \(H \).

Projecting down to \(\alpha, \beta \). \[\text{max} \{ \text{length}(H(x, t)) \} = \text{compactness} \]

Now let \(\gamma = \max \{ \text{length}(H(x, t)) \mid x \in S^1 \} \)

\[d(\tilde{\alpha}(s), \tilde{\beta}(s)) \leq \text{length}(H(e^{2\pi i s}, t)) \leq \gamma \]

\[\Rightarrow \gamma \leq 1 \leq N_y(\gamma) \Rightarrow \tilde{a} = \tilde{\beta} \] by the corollary

\[\Rightarrow d(\tilde{a}, \tilde{\beta}) = 0 \]

\[\Rightarrow d = \beta. \]
Corollary: Suppose α is an essential loop in a closed hyperbolic surface Σ and homotopic to the closed geodesic β. If $\tilde{\beta}$ is a lift of β to $\tilde{\Sigma}$, then there exists a lift $\tilde{\alpha}$ of α such that $\tilde{\alpha} \cap N_r(\tilde{\beta})$ for some $r > 0$.

Thm: If α is a simple essential loop homotopic to a closed geodesic $\beta \in \pi_1(\Sigma)$, then β is simple.

Proof: If β is not simple, then \exists two lifts $\tilde{\beta}_1, \tilde{\beta}_2$ of β such that $\tilde{\beta}_1, \tilde{\beta}_2$ are not distinct. Let $\tilde{\alpha}_i$ be the lift of α such that $\tilde{\alpha}_i \subseteq N_r(\tilde{\beta}_i)$. Then $\tilde{\alpha}_1 \cap \tilde{\alpha}_2 \neq \emptyset$, contradicting simplicity. Thus, α is not simple.

RM: The same argument shows that if α_1, α_2 are two disjoint simple essential loops homotopic to geodesics β_1, β_2, then $\beta_1 \cap \beta_2 = \emptyset$.

Let us produce F-N coordinates. Now

Mention Priyan's Thm

Open Question: Does \exists constant $c > 0$ such that, if a closed geodesic $\alpha \in (\Sigma, g) = \pi_1(\Sigma)$ has a lift to a simple closed geodesic $\tilde{\alpha}$ at most cπ1 that covers Σ?

May be some fundamental domain.
Lemma 10. The Fenchel Nielsen Coordinates of Teichmüller Space.

All surfaces are assumed to be orientable.

Thm Suppose \((\Sigma, g)\) closed orientable hyperbolic surface and \((s_1, \ldots, s_{g_s-3})\) as a topological decomposition of \(\Sigma\) into 3-holed sphere \(s_i\) essential loops. Then their geodesic representative \(\gamma_{s_1, \ldots, s_{g_s-3}}\) is also a 3-holed sphere decomposition.

Why \(3g_s-3 = 3g-2k+1\)?

\[\begin{array}{ccc}
E \\
| s_i | s_i \quad \vdash \quad s_i \quad \vdash \quad s_i \\
\end{array} \]

Proof Each \(s_i^*\) is simple since \(s_i\) is. Also \(s_0^* \cap s_j^* = \emptyset\) since \(s_i \cap s_j = \emptyset\). Furthermore \(s_i^* \neq s_j^*\) \(\Rightarrow\) topological reason that each component \(X\) of \(\Sigma - U s_i^* \approx \Sigma_{a, 3}\) (Homework why?)

Hint: Euler characteristic + classification. \(X(X) = -1\)

Def A hyperbolic pants, hyperbolic merini on \(\Sigma_{a,3}\) with geodesic boundary

How to understand them?

Key lemma \(\forall b_1, b_2, b_3 > 0, \exists!\) right-angled hyperbolic hexagon \(P\) whose three non-pairwise adjacent edges have lengths \(b_1, b_2, b_3\)

Proof Existence

Uniqueness: from the above proof.
Corollary: \(\forall \ a_1, a_2, a_3 > 0 \ \exists \ \text{a hyperbolic part where boundary } \gamma_{a_i} \text{ lengths } a_1, a_2, a_3. \)

Proof: Existence, two two copies of hexagons + double \(\Delta \)

Uniqueness: Suppose \(X \) is a hyperbolic part of geodesic boundary components \(B_1, B_2, B_3 \) let \(c_i \) be the shortest path (geodesic) from \(B_{i+1} \) to \(B_{i+2} \) \((B_1=B_4, B_2=B_3) \). Then

1. \(c_i \perp B_j \) \(j \neq i \) (Shortest)
2. \(c_i \cap c_j = \emptyset \) \(i \neq j \)

Indeed if so, there will exist a hyperbolic triangle of inner angle \(\frac{\pi}{3} \frac{a_i}{a_j} \).

Thus (Gauss-Bonnet) If \(\Delta \) is a hyperbolic triangle \(\Delta \) \(\Gamma \) of inner angles \(a_1, a_2, a_3 \), then area(\(\Delta \)) = \(\pi - a_1 - a_2 - a_3 \). In particular \(a_1 + a_2 + a_3 < \pi \).

Proof: Let

\[
\text{Area}(\Delta) = \int_{\Delta} \frac{\partial x \partial y}{y^2} = \int_{\Delta} \left(\int_{\Delta} \frac{d(\partial x)}{y} \right)
\]

Stacks this

\[
\int_{\Delta} \frac{dx}{y} = \sum_{i=1}^{3} \int_{B_i} \frac{dx}{y}
\]

Now \(B_i \) part of a circle \(\perp x \)-axis:

Equation \(\begin{cases} x = r \cos t + a \\ y = r \sin t \end{cases} \) \(\frac{dx}{y} = -\frac{r \sin t dt}{rt} = -dt \)

So \(\int_{B_i} \frac{dx}{y} = \theta - \varphi \). Now you homewrk to finish \(\square \).
Lecture 10: Fenchel-Nielsen

RM. After a PSL(2,R), always may assume:
It is better to calculate.

Corollary. Suppose \((\Sigma, P)\) is a closed topological surface with a pants decomposition. Then all hyperbolic metrics on \((\Sigma, P)\) are obtained by isometric gluing of hyperbolic pants along their boundaries.

Proof (1). For a hyperbolic metric \(g\) on \(\Sigma\)

\[\Rightarrow \text{Maximizing all } \partial P \text{ geodesic} \Rightarrow \text{done} \]

(2) If each pants hyperbolic, gluing isometry \(\Rightarrow\) hyperbolic metric.

The Fenchel-Nielsen coordinate for Teichmüller space.

By the uniformization theorem, for a closed surface \(\Sigma\) by \(X(\Sigma) \cong \mathbb{H}^2\) the Teichmüller space \(T(\Sigma) = \{ [g(\Sigma, g)] \} \) of hyperbolic metrics \((\Sigma, g), \sim (\Sigma, g') \) if there exists an isometry \(h : (\Sigma, g) \to (\Sigma, g')\) such that \(h \circ id \) is homotopic to \(id\).

F.N. coordinate. Fix a pants decomposition by \(3g-3\) loops, then

\[T(\Sigma) \cong \mathbb{R}^{6g-6} = (\mathbb{R}^3 \times \mathbb{R})^{3g-3} \]