Homework 16

1. A mass weighing 2 lb stretches a spring 6 in . Assuming there's no damping in the system. If the mass is pulled down an additional 3 in and then released, meanwhile is acted on by an additional oscillating force with amplitude 1 lb and phase 0 . Find out the frequency of the force such that resonance happen, and determine the position at any time t by solving the system.
2. With all the data as above, suppose for now the system is subject to a damping force that is as strong as 2 lb when the velocity of the mass is $4 \mathrm{ft} / \mathrm{s}$. Find the transient solution and the steady-state solution.
3. Find the general solution to the following ODEs

> (a) $y^{\prime \prime}+y=\tan t$
> (b) $4 y^{\prime \prime}+y=2 \sec (t / 2)$
> (c) $x^{2} y^{\prime \prime}-2 y=3 x^{2}-1, x>0$
4. Knowing y_{1} is a solution to the homogeneous ODE, find the general solution to the following ODEs
(a) $y_{1}=x, x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y(x)=2 x^{2}, x>0$
(b) $y_{1}=e^{x},(1-x) y^{\prime \prime}+x y^{\prime}-y=2(1-x)$
5. (Bonus) Apply the variation of parameters to the first order linear ODE

$$
y^{\prime}+p(t) y=g(t)
$$

to obtain the formula of the general solution. (Hint: Solve the homogeneous ODE $y^{\prime}+p(t) y=0$ first to get the complementary solution $C y_{1}$. Then set $Y(t)=u(t) y_{1}(t)$ and put in the ODE to find Y. So the general solution would then be $C y_{1}+Y$.

