Homework 22

1. Solve the following linear systems of equations

> (a) $\left\{\begin{aligned} x_{1}-x_{2}+x_{3} & =2 \\ 2 x_{1}-x_{2}-x_{3} & =2 \\ -x_{1}-3 x_{2}+x_{3} & =-4\end{aligned}\right.$
> (b) $\left\{\begin{aligned} x_{1}-x_{2}+x_{3} & =1 \\ 2 x_{1}-x_{2}-x_{3} & =0 \\ 5 x_{1}-3 x_{2}-x_{3} & =2\end{aligned}\right.$
> (c) $\left\{\begin{aligned} x_{1}-x_{2}+x_{3} & =1 \\ 2 x_{1}-x_{2}-x_{3} & =0 \\ 5 x_{1}-3 x_{2}-x_{3} & =1\end{aligned}\right.$
> (d) $\left\{\begin{aligned} x_{1}-x_{2}+x_{3} & =1 \\ 2 x_{1}-2 x_{2}+2 x_{3} & =2 \\ -5 x_{1}+5 x_{2}-5 x_{3} & =-5\end{aligned}\right.$
2. Determine whether the members of the given set of vectors are linearly independent. If they are linearly dependent, find a linear relation among them.
(a) $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
(b) $\overrightarrow{v_{1}}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$.
(c) $\overrightarrow{v_{1}}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.
(d) $\overrightarrow{v_{1}}=\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right], \overrightarrow{v_{4}}=\left[\begin{array}{c}4 \\ 3 \\ -2\end{array}\right]$.
3. Find the eigenvalues and eigenvectors of the following matrices
(a) $\left[\begin{array}{cc}5 & -1 \\ 3 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}2 & -1 \\ 5 & 4\end{array}\right]$
(c) $\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right]$

