CONTENTS

Pre	face			i	x
1	Classical Groups as Linear Algebraic Groups				
	1.1	Linear	r Algebraic Groups		1
		1.1.1	Definitions and Examples		
		1.1.2	Regular Functions		
		1.1.3	Representations		
		1.1.4	Connected Groups		
		1.1.5	Subgroups and Homomorphisms		
		1.1.6	Group Structures on Affine Varieties		
		1.1.7	Exercises		
	1.2	Lie Al	lgebra of an Algebraic Group	1	7
		1.2.1	Left-Invariant Vector Fields		
		1.2.2	Lie Algebras of the Classical Groups		
	•	1.2.3	Differential of a Representation		
		1.2.4	The Adjoint Representation		
		1.2.5	Exercises		
	1.3	Jordan	n Decomposition	34	4
		1.3.1	Nilpotent and Unipotent Matrices		
		1.3.2	Semisimple One-Parameter Groups		
		1.3.3	Jordan-Chevalley Decomposition		
		1.3.4	Exercises		
	1.4	Real F	Forms of Classical Groups	4	1
		1.4.1	Algebraic Groups as Lie Groups		
		1.4.2	Real Forms		
		1.4.3	Compact Forms		
		1.4.4	Quaternionic Unitary Group		
		1.4.5	Quaternionic General Linear Group		
		1.4.6	Exercises		
	1.5	Notes		49	9

Contents

2	Bas	ic Stru	cture of Classical Groups	50
	2.1	Semis	simple and Unipotent Elements	50
		2.1.1	Conjugacy of Maximal Tori	
		2.1.2	Unipotent Generators	
		2.1.3	Exercises	
	2.2	Irredu	icible Representations of SL(2, C)	62
		2.2.1	Representations of $\mathfrak{sl}(2,\mathbb{C})$	
		2.2.2	Representations of $SL(2, \mathbb{C})$	
		2.2.3	Exercises	
	2.3	The A	Adjoint Representation	67
		2.3.1	Roots with respect to a Maximal Torus	
		2.3.2	Commutation Relations of Root Spaces	
		2.3.3	Structure of Classical Root Systems	
		2.3.4	Irreducibility of the Adjoint Representation	
		2.3.5	Exercises	
	2.4	Reduc	ctivity of Classical Groups	84
		2.4.1	Reductive Groups	
		2.4.2	Casimir Operator	
			Algebraic Proof of Complete Reducibility	
		2.4.4	The Unitarian Trick	
		2.4.5	Exercises	
	2.5	Weyl	Group and Weight Lattice	92
		2.5.1	Weyl Group	
		2.5.2	Root Reflections	
		2.5.3	Weight Lattice	
			Fundamental Weights and Dominant Weights	
		2.5.5	Exercises	
	2.6	Notes		109
3	Alge	ebras a	and Representations	111
	3.1	Repre	sentations of Associative Algebras	111
		3.1.1	Definitions and Examples	
		3.1.2	Schur's Lemma	
		3.1.3	Burnside's Theorem	
		3.1.4	Complete Reducibility	
		3.1.5	Exercises	
	3.2	Simpl	e Associative Algebras	128
		3.2.1	Wedderburn's Theorem	
		3.2.2	Representations of $End(V)$	
		3.2.3	Exercises	
	3.3	Comn	nutants and Characters	133
		3.3.1	Representations of Semisimple Algebras	
		3.3.2	Double Commutant Theorem	

PERCO				* **

		3.3.3	Characters	
		3.3.4	Exercises	
	3.4	Group	Algebras of Finite Groups	147
		3.4.1	Structure of Group Algebras	
		3.4.2	Schur Orthogonality Relations	
		3.4.3	Fourier Inversion Formula	
		3.4.4	The Algebra of Central Functions	
		3.4.5	Exercises	
	3.5	Repres	sentations of Finite Groups	155
		3.5.1	Induced Representations	
		3.5.2	Characters of Induced Representations	
		3.5.3	Standard Representation of \mathfrak{S}_n	
			Representations of \mathfrak{S}_k on Tensors	
		3.5.5	Exercises	
	3.6	Notes		167
4	Poly	nomial	l and Tensor Invariants	168
	_		omial Invariants	169
			The Ring of Invariants	
			Invariant Polynomials for \mathfrak{S}_n	
			Exercises	
	4.2	Invaria	ants for Classical Groups	180
			First Fundamental Theorem	
		4.2.2	Proof of a Basic Case	
		4.2.3	Invariant Polynomials as Tensors	
			Exercises	
	4.3	Tensor	r Invariants	190
		4.3.1	Tensor Invariants for $GL(V)$	
			Tensor Invariants for $O(V)$ and $Sp(V)$	
			Exercises	
	4.4	Polyno	omial FFT for Classical Groups	198
		_	Proof of Polynomial FFT for $GL(V)$	
		4.4.2		
	4.5	Some	Applications of the FFT	200
		4.5.1	Skew Duality for Classical Groups	
		4.5.2	General Duality Theorem	
		4.5.3	A Duality Theorem for Weyl Algebras	
		4.5.4	GL(n) - GL(k) Howe Duality	
		4.5.5	$O(n) - \mathfrak{sp}(k)$ Howe Duality	
		4.5.6	Sp(n) - so(2k) Howe Duality	
		4.5.7	Capelli Identities	
	4.6	Notes	•	226

V 111			Contonts	
5	Hig	hest W	eight Theory	228
	5.1		icible Representations of Classical Groups	228
		5.1.1	Extreme Vectors and Highest Weights	
		5.1.2	Commuting Algebra and n-Invariant Vectors	
		5.1.3	Fundamental Representations	
		5.1.4	Cartan Product	
		5.1.5	Weights of Irreducible Representations	
		5.1.6	Lowest Weights and Dual Representations	
		5.1.7	Symplectic and Orthogonal Representations	
		5.1.8	Exercises	
	5.2	Some	Applications	248
		5.2.1	Irreducible Representations of $GL(V)$	
		5.2.2	Irreducible Representations of $O(V)$	
		5.2.3	Spherical Harmonics	
		5.2.4	GL(k) - GL(n) Duality	
		5.2.5		
		5.2.6		
		5.2.7	Second Fundamental Theorems	
		5.2.8	Exercises	
	5.3	Notes		268
6	Spir	iors		269
	6.1	Cliffo	rd Algebras	269
		6.1.1	Construction of $Cliff(V)$	
		6.1.2	Spaces of Spinors	
		6.1.3	Structure of $Cliff(V)$	
		6.1.4	Exercises	
	6.2	Spin I	Representations of Orthogonal Lie Algebras	279
		6.2.1	Embedding $\mathfrak{so}(V)$ in $Cliff(V)$	
		6.2.2	Spin Representations	
		6.2.3	Exercises	
	6.3	Spin (Groups	284
		6.3.1		
		6.3.2	Algebraically Simply Connected Groups	
		6.3.3	Exercises	
	6.4		Forms of $Spin(n, \mathbb{C})$	291
			Real Forms of Vector Spaces and Algebras	
			Real Forms of Clifford Algebras	
			Real Forms of $Pin(n)$ and $Spin(n)$	
		6.4.4	Exercises	

6.5 Notes

			Contents	
7	Coh	omolo	gy and Characters	296
	7.1	Chara	acter and Dimension Formulas	296
		7.1.1	Weyl Character Formula	
		7.1.2	Weyl Dimension Formula	
		7.1.3	Commutant Character Formulas	
		7.1.4	Exercises	
	7.2	Lie A	lgebra Cohomology	309
		7.2.1	Cochain Complex	
		7.2.2	Cohomology Spaces	
		7.2.3	Cohomology Exact Sequences	
		7.2.4	The Koszul Complex	
		7.2.5	Cohomology of Enveloping Algebras	
		7.2.6	Exercises	
	7.3	Algeb	oraic Approach to Weyl Character Formula	324
		7.3.1	Casimir Identity on Cohomology	
		7.3.2	Weyl Group and Sets of Positive Roots	
		7.3.3	Expansion of an Invariant	
		7.3.4	Kostant's Lemma	
		7.3.5	Kostant's Theorem	
		7.3.6	Algebraic Proof of Weyl Character Formula	
		7.3.7	Exercises	
	7.4	Analy	tic Approach to Weyl Character Formula	337
		7.4.1	Semisimple Conjugacy Classes	
		7.4.2	Maximal Compact Torus	
			Weyl Integral Formula	
		7.4.4	Fourier Expansions of Skew Functions	
		7.4.5	그는 그	
		7.4.6	Exercises	
	7.5	Notes		347
8	Bra	nching	Laws	349
	8.1	Branc	hing for Classical Groups	349
		8.1.1	Statement of Branching Laws	
		8.1.2	Branching Patterns and Weight Multiplicities	
		8.1.3	Exercises	
	8.2	Branc	hing Laws from Weyl Character Formula	356
		8.2.1	Partition Functions	
		8.2.2	Kostant Multiplicity Formulas	

8.2.3 Exercises

8.3 Proofs of Classical Branching Laws

8.3.1 Restriction from GL(n) to GL(n-1)

		8.3.2	Restriction from $Spin(2n + 1)$ to $Spin(2n)$	
		8.3.3		
		8.3.4	Restriction from $Sp(n)$ to $Sp(n-1)$	
	8.4	Notes		370
9	Ten	sor Rej	presentations of GL(V)	372
	9.1	Schur	Duality	372
		9.1.1	Duality between $GL(n)$ and \mathfrak{S}_k	
		9.1.2	Characters of \mathfrak{S}_k	
		9.1.3	Frobenius Formula	
		9.1.4	Exercises	
	9.2	Dual l	Reductive Pairs	384
		9.2.1	Seesaw Pairs	
		9.2.2	Reciprocity Laws	
		9.2.3	Schur Duality and $GL(k)$ – $GL(n)$ Duality	
		9.2.4	Exercises	
	9.3	Young	Symmetrizers and Weyl Modules	392
		9.3.1	Tableaux and Symmetrizers	
		9.3.2	Weyl Modules	
		9.3.3	Standard Tableaux	
		9.3.4	Projections onto Isotypic Components	
		9.3.5	Exercises	
	9.4	Notes		404
10	Tens	sor Rep	presentations of $O(V)$ and $Sp(V)$	406
	10.1	Comm	nuting Algebras on Tensor Spaces	406
		10.1.1	Centralizer Algebra	
		10.1.2	Generators and Relations	
		10.1.3	Exercises	
	10.2	Decon	nposition of Harmonic Tensors	416
		10.2.1	Harmonic Tensors	
		10.2.2	Harmonic Extreme Tensors	
		10.2.3	Decomposition of Harmonics for Sp(V)	
		10.2.4	Decomposition of Harmonics for $O(2l + 1)$	
		10.2.5	Decomposition of Harmonics for $O(2l)$	
		10.2.6	Exercises	
	10.3	Decon	nposition of Tensor Spaces	433
		10.3.1	Partially Harmonic Tensors	
		10.3.2	Proof of Partial Harmonic Decomposition	
			Decomposition in the Stable Range	
		10.3.4	Exercises	
	10.4	Invaria	ant Theory and Knot Polynomials	446
			The Braid Relations	

Contents		

	10.4.2 Orthogonal Invariants and the Yang-Baxter Equation	
	10.4.3 The Braid Group	
	10.4.4 The Jones Polynomial	
	10.4.5 Exercises	
	10.5 Notes	461
11	Algebraic Groups and Homogeneous Spaces	464
	11.1 Structure of Algebraic Groups	465
	11.1.1 Quotient Groups	
	11.1.2 Commutative Algebraic Groups	
	11.1.3 Solvable and Semisimple Lie Algebras	
	11.1.4 Levi Decomposition of Lie Algebras	
	11.1.5 Unipotent Radical	
	11.1.6 Connected Algebraic Groups and Lie Groups	
	11.2 Homogeneous Spaces	481
	11.2.1 G-Spaces and Orbits	
	11.2.2 Flag Manifolds	
	11.2.3 Involutions and Symmetric Spaces	
	11.2.4 Involutions of Classical Groups	
	11.2.5 Classical Symmetric Spaces	
	11.2.6 Exercises	
	11.3 Borel Subgroups	499
	11.3.1 Solvable Groups	
	11.3.2 Lie-Kolchin Theorem	
	11.3.3 Structure of Connected Solvable Groups	
	11.3.4 Conjugacy of Borel Subgroups	
	11.3.5 Centralizer of a Torus	
	11.3.6 Exercises	
	11.4 Further Properties of Real Forms	506
	11.4.1 Groups with a Compact Real Form	
	11.4.2 Polar Decomposition by a Compact Form	
	11.5 Gauss Decomposition	512
	11.5.1 Gauss Decomposition of $GL(n, \mathbb{C})$	
	11.5.2 Gauss Decomposition of an Algebraic Group	
	11.5.3 Gauss Decomposition for Real Forms	
	11.5.4 Exercises	
	11.6 Notes	517
12	Representations on Spaces of Regular Functions	518
	12.1 Some General Results	518
	12.1.1 Isotypic Decomposition of $Aff(X)$	
	12.1.2 Decomposition of $Aff(G)$	
	12.1.3 Frobenius Reciprocity	

		12.1.4	Models for Irreducible Representations on Function Spaces				
		12.1.5	Exercises				
	12.2	Multip	plicity-Free Spaces	526			
		12.2.1	Multiplicity and B-Orbits				
		12.2.2	B-Eigenfunctions for Linear Actions				
		12.2.3	Branching from $GL(n)$ to $GL(n-1)$				
		12.2.4	Exercises				
	12.3	12.3 Regular Functions on Symmetric Spaces					
		12.3.1	Iwasawa Decomposition for Symmetric Spaces				
		12.3.2	Examples of Iwasawa Decompositions				
		12.3.3	Spherical Representations				
		12.3.4	Exercises				
	12.4 Separation of Variables for Isotropy Representations						
		12.4.1	A Theorem of Kostant and Rallis				
		12.4.2	Some Theorems of Chevalley				
		12.4.3	Classical Examples				
		12.4.4	Some Results from Algebraic Geometry				
			Proof of the Kostant-Rallis Theorem				
		12.4.6	Some Remarks on the Proof				
		12.4.7	Exercises				
	12.5	Notes		576			
A	Algebraic Geometry						
	A.1	Affine	Algebraic Sets	579			
		A.1.1	Basic Properties				
			Zariski Topology				
		A.1.3	Products of Affine Sets				
		A.1.4	Principal Open Sets				
		A.1.5	Irreducible Components				
		A.1.6	Transcendence Degree and Dimension				
		A.1.7	Exercises				
	A.2	Maps	of Algebraic Sets	591			
		A.2.1	Rational Maps				
		A.2.2	Extensions of Homomorphisms				
		A.2.3	Image of a Dominant Map				
		A.2.4	Factorization of a Regular Map				
		A.2.5	Exercises				
	A.3 Tangent Spaces						
		A.3.1	Tangent Space and Differentials of Maps				
		A.3.2	Vector Fields				
		A.3.3	Dimension				

			Contents	All	
		A.3.4	Differential Criterion for Dominance		
		A.3.5	Exercises		
	A.4	Projec	ctive and Quasiprojective Sets	604	
		A.4.1	Basic Definitions		
		A.4.2	Products of Projective Sets		
		A.4.3	Regular Functions and Maps		
В	Linear and Multilinear Algebra				
	B.1	Jordar	Decomposition	612	
		B.1.1	Primary Projections		
		B.1.2	Additive Jordan Decomposition		
		B.1.3	Multiplicative Jordan Decomposition		
	B.2	Multil	inear Algebra	615	
		B.2.1	Bilinear Forms		
		B.2.2	Tensor Products		
		B.2.3	Symmetric Tensors		
			Alternating Tensors		
		B.2.5	Determinants and Gauss Decomposition		
		B.2.6	Pfaffians and Skew-Symmetric Matrices		
		B.2.7	Irreducibility of Determinants and Pfaffians		
C	A cc.	ociative	Algebras and Lie Algebras	632	
•			Associative Algebras	632	
	0.1		Filtered and Graded Algebras		
			Tensor Algebra		
			Symmetric Algebra		
			Exterior Algebra		
			Exercises		
	C.2 Universal Enveloping Algebras				
	C.2		Lie Algebras	639	
			Universal Cyclic Module		
			Poincaré—Birkhoff—Witt Theorem		
			Adjoint Representation of Enveloping Algebra		
			Exercises		
		0.2.3	ZACIOSOS .		
D	Manifolds and Lie Groups				
	D.1	D.1 C^{∞} Manifolds			
			Basic Definitions		
			Tangent Space		
			Differential Forms and Integration		
		D.1.4	Exercises		

		Contents	
D.2	Lie Gr	roups	660
	D.2.1	Basic Definitions	
	D.2.2	Lie Algebra of a Lie Group	
	D.2.3	Homogeneous Spaces	
	D.2.4	Integration on Lie Groups and Homogeneous Spaces	
	D.2.5	Exercises	
Bibliography			
		D.2.1 D.2.2 D.2.3 D.2.4 D.2.5	D.2 Lie Groups D.2.1 Basic Definitions D.2.2 Lie Algebra of a Lie Group D.2.3 Homogeneous Spaces D.2.4 Integration on Lie Groups and Homogeneous Spaces D.2.5 Exercises

Index

679