(24) 7. True or false? If false, give an example to show that the implication is not true. If true, briefly explain why.
a) If $\left\{a_{k}\right\}$ is a sequence of real numbers so that $\left\{\left|a_{k}\right|\right\}$ converges, then $\left\{a_{k}\right\}$ must converge.
b) If $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ are sequences of real numbers and L is a real number so that $\lim _{k \rightarrow \infty} a_{k}=L$ and $\lim _{k \rightarrow \infty} b_{k}=L$, then $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=1$.
c) If $\left\{a_{k}\right\}$ is a sequence of real numbers and L is a real number so that $\lim _{k \rightarrow \infty} a_{k}=L$, then $\lim _{k \rightarrow \infty}\left(a_{k+1}-a_{k}\right)=0$.
d) If $\left\{a_{k}\right\}$ is a sequence of real numbers so that $\lim _{k \rightarrow \infty}\left(a_{k+1}-a_{k}\right)=0$, then $\left\{a_{k}\right\}$ must converge.

