Since $\exp z=e^{\operatorname{Re} z}(\cos (\operatorname{Im} z)+i \sin (\operatorname{Im} z))$, we see that $\exp (1+i)$ must be $e^{1}((\cos 1)+i(\sin 1))$. Numerical approximations of the numbers are not expected.

The complex z 's which have $\exp z$ real are just those z 's with $\sin (\operatorname{Im} z)=0$. Of course those are the z 's with $\operatorname{Im} z=$ (an integer multiple of πi): an infinite number of horizontal lines. The values of exp are alternately positive and negative real numbers on these lines. Parts of several of the lines are shown.

\log

Since $\log z=\ln |z|+i \arg z$ for $z \neq 0$, we see that $\log (1+i)$ must be $\ln \sqrt{2}+i \arg (1+i)$ which is $\ln \sqrt{2}+i\left(\frac{\pi}{4}\right)+2 \pi i$ (any integer). Further numerical approximations are not expected.

The complex z 's which have some value of $\log z$ real are just those z 's for which $\arg z$ can be 0 . Those z 's are the positive real numbers.

