Name

You may use any theorem you like!

Suppose $f(z)=\frac{e^{z}}{z(z-3)^{2}}$.

Problem \#1

Compute the integral $\int_{\alpha} f(z) d z$ where α is the closed curve shown: line segments from 2 to $1+i$ to i to -1 to $-i$ to 2 .

You may use any theorem you like!

Problem \#2

Compute the integral $\int_{\beta} f(z) d z$ where β is the closed curve shown: a circle of radius $\frac{3}{2}$ centered at $\frac{5}{2}$.

Answer \qquad

Problem \#3
You may use any
Compute the integral $\int_{\gamma} f(z) d z$ where γ is the closed curve shown: a ellipse centered at 1 with axes parallel to the coordinate axes, with vertical semiminor axis of length 1 and horizontal semimajor axis of length 2 .

Answer

