Name

You may use any theorem you like!

Suppose
$$f(z) = \frac{e^z}{z(z-3)^2}$$
.

Problem #1

Compute the integral $\int_{\alpha} f(z) dz$ where α is the closed curve shown: line segments from 2 to 1 + i to i to -1 to -i to 2.

Answer

You may use any theorem you like!

Problem #2 Compute the integral $\int_{\beta} f(z) dz$ where β is the closed curve shown: a circle of radius $\frac{3}{2}$ centered at $\frac{5}{2}$. Answer ______ $-i^{|}$

Problem #3 Compute the integral $\int_{\gamma}^{You \max y \operatorname{use any}} f(z) dz$ where γ is the closed curve shown: a ellipse centered at 1 with axes parallel to the coordinate axes, with vertical semiminor axis of length 1 and horizontal semimajor axis of length 2.

Answer _____

