Here are answers that would earn full credit. Other methods may also be valid.

1. Suppose \mathcal{R} is the region bounded by $y=e^{x}, x=0, x=2$, and $y=0$.
a) Find the volume of the solid that results from rotating \mathcal{R} around the x-axis.

Answer $\left.\pi \int_{0}^{2}\left(e^{x}\right)^{2} d x=\pi \int_{0}^{2} e^{2 x} d x=\frac{\pi}{2} e^{2 x}\right]_{0}^{2}=\frac{\pi}{2} e^{4}-\frac{\pi}{2}$.
b) Find the volume of the solid that results from rotating \mathcal{R} around the y-axis.

Answer The volume is $2 \pi \int_{0}^{2} x e^{x} d x$. An antiderivative of $x e^{x}$ can be obtained using integration by parts. If $u=x$ and $d v=e^{x} d x$, then $d u=d x$ and $v=e^{x}$ so $u v-v d u$ is $x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C$. Therefore the volume is $\left.\left.2 \pi\left(x e^{x}-e^{x}\right)\right]_{0}^{2}=2 \pi\left(2 e^{2}-e^{2}\right)-2 \pi(-1)\right)=2 \pi\left(e^{2}+1\right)$.
2. Compute $\int_{1}^{\infty} \frac{\ln x}{x^{3}} d x$.

Answer Use integration by parts to get an antiderivative of $\frac{\ln x}{x^{3}}$. Here $u=\ln x$ and $d v=\frac{1}{x^{3}} d x$ so $d u=\frac{1}{x} d x$ and $v=-\frac{1}{2 x^{2}}$. Then $u v-v d u$ is $-\frac{\ln x}{2 x^{2}}-\int-\frac{1}{2 x^{3}} d x=-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}+C$ (three -'s are "built into" the last -!). Then (for A positive) $\left.\int_{1}^{A} \frac{\ln x}{x^{3}} d x=-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}\right]_{1}^{A}=-\frac{\ln A}{2 A^{2}}-\frac{1}{4 A^{2}}-\left(-\frac{\ln 1}{2 \cdot 1^{2}}-\frac{1}{4 \cdot 1^{2}}\right)$. Now as $A \rightarrow \infty$, certainly $\frac{1}{4 A^{2}} \rightarrow 0$. The limit of $\frac{\ln A}{2 A^{2}}$ needs L'H since both $\ln A$ and A^{2} go to ∞. But $\lim _{A \rightarrow \infty} \frac{\ln A}{2 A^{2}} \stackrel{L^{\prime} H}{=} \lim _{A \rightarrow \infty} \frac{\frac{1}{A}}{4 A}=\lim _{A \rightarrow \infty} \frac{1}{4 A^{2}}=0$. So the limit of $\int_{1}^{A} \frac{\ln x}{x^{3}} d x$ as $A \rightarrow \infty$ is $-\left(-\frac{\ln 1}{2 \cdot 1^{2}}-\frac{1}{4 \cdot 1^{2}}\right)$ which is $\frac{1}{4}$.
3. Verify that $\int_{1}^{2} \frac{5 x^{2}+11 x+4}{x(x+1)(x+2)} d x=\ln (12)$.

Answer Use partial fractions. The bottom is factored, and therefore we write $\frac{5 x^{2}+11 x+4}{x(x+1)(x+2)}=\frac{A}{x}+\frac{B}{x+1}+\frac{C}{x+2}=$ $\frac{A(x+1)(x+2)+B x(x+2)+C x(x+1)}{x(x+1)(x+2)}$ for some constants A, B, and C. Then $5 x^{2}+11 x+4=A(x+1)(x+2)+$ $B x(x+2)+C x(x+1)$. If $x=0,4=2 A$ so $\underline{A=2}$. If $x=-1,5(-1)^{2}+11(-1)+4=B(-1)(1)$, so $\underline{B=2}$. If $x=-2,5(-2)^{2}+11(-2)+4=C(-2)(-1)$ so $\underline{C=1}$. Therefore $\int \frac{5 x^{2}+11 x+4}{x(x+1)(x+2)} d x=\int \frac{2}{x}+\frac{2}{x+1}+$ $\frac{1}{x+2} d x=2 \ln (x)+2 \ln (x+1)+\ln (x+2)+C$. The definite integral is $\left.2 \ln (x)+2 \ln (x+1)+\ln (x+2)\right]_{1}^{2}=$ $(2 \ln (2)+2 \ln (3)+\ln (4))-(2 \ln (1)+2 \ln (2)+\ln (3))=2 \ln (2)+\ln (3)=\ln (12)$.
4. Verify that $\int_{0}^{1} x \arctan (x) d x=\frac{1}{4} \pi-\frac{1}{2}$.

Answer Use integration by parts. Here $u=\arctan (x)$ and $d v=x d x$ so that $d u=\frac{1}{1+x^{2}} d x$ and $v=$ $\frac{1}{2} x^{2}$. Therefore $\int x \arctan (x) d x=\frac{1}{2} x^{2} \arctan (x)-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} d x$. But $\frac{x^{2}}{1+x^{2}}=1-\frac{1}{1+x^{2}}$ so $\int \frac{x^{2}}{1+x^{2}} d x=$ $x-\arctan x+C$ and $\int x \arctan (x) d x=\frac{1}{2} x^{2} \arctan (x)-\frac{1}{2}(x-\arctan x)+C$. And the definite integral: $\left.\frac{1}{2} x^{2} \arctan (x)-\frac{1}{2}(x-\arctan x)\right]_{0}^{1}=\left(\frac{1}{2} 1^{2} \arctan (1)-\frac{1}{2}(1-\arctan 1)\right)-\left(\frac{1}{2} 0^{2} \arctan (0)-\frac{1}{2}(0-\arctan 0)\right)=$ $\frac{1}{2}\left(\frac{\pi}{4}\right)-\frac{1}{2}\left(1-\frac{\pi}{4}\right)=\frac{\pi}{4}-\frac{1}{2}$.
5. Compute $\int_{0}^{1}(\sqrt{x}-1)^{6} d x$.

Answer If $u=\sqrt{x}-1$ then $u+1=\sqrt{x}$ and $(u+1)^{2}=x$. So $2(u+1) d u=d x$. Then $\int(\sqrt{x}-1)^{6} d x=$ $\int\left(u^{6}\right) 2(u+1) d u=2 \int\left(u^{7}+u^{6}\right) d u=2\left(\frac{u^{8}}{8}+\frac{u^{7}}{7}\right)+C=2\left(\frac{(\sqrt{x}-1)^{8}}{8}+\frac{(\sqrt{x}-1)^{7}}{7}\right)+C$. And the definite integral: $\left.2\left(\frac{(\sqrt{x}-1)^{8}}{8}+\frac{(\sqrt{x}-1)^{7}}{7}\right)\right]_{0}^{1}=2(0)-\left(\frac{(-1)^{8}}{8}+\frac{(-1)^{7}}{7}\right)=\frac{2}{56}=\frac{1}{28}$.
6. a) Write the Simpson's Rule estimate for $\int_{0}^{3} \cos \left(x^{3}\right) d x$ with $n=6$ subintervals.

Answer $\frac{\frac{1}{2}}{3}\left(1 \cos \left(0^{3}\right)+4 \cos \left((.5)^{3}\right)+2 \cos \left(1^{3}\right)+4 \cos \left((1.5)^{3}\right)+2 \cos \left(2^{3}\right)+4 \cos \left((2.5)^{3}\right)+1 \cos \left(3^{3}\right)\right)$.
b) Below are graphs of $y=\cos \left(x^{3}\right)$ and of the second and fourth derivatives of this function on the interval $[0,3]$. Assume that these graphs are correct. You may use information from these graphs to answer the following question. How many subdivisions are needed to estimate $\int_{0}^{3} \cos \left(x^{3}\right) d x$ with the Trapezoidal Rule to an accuracy of 10^{-10} ?

Answer Use the middle graph above to get an overestimate of the absolute value of the second derivative of $\cos \left(x^{3}\right)$ on [0, 3]: 750. Then the formula sheet states that the error for the Trapezoidal Rule will be less than $\frac{K(b-a)^{3}}{12 n^{2}}$. Take $K=750$ and $b-a=3-0=3$. Then the error estimate becomes $\frac{750\left(3^{3}\right)}{12 n^{2}}$. This will be less than 10^{-10} if $\frac{750\left(3^{3}\right)}{12 n^{2}}<10^{-10}$ (notice the direction of the inequality!) so n should be an integer greater than $\sqrt{\frac{750\left(3^{3}\right) 10^{10}}{12}}$. (This is $\approx 4,100,000$. If I had asked for Simpson's Rule with the same error, even though a huge fourth derivative bound of 480,000 would be used, n would be $\approx 9,000$, a much smaller number!)
7. a) Suppose A is a positive real number and let m_{A} be the average value of $(\sin (A x))^{3}$ on the interval $[0,2]$. Compute m_{A}.
Answer We need $\int(\sin (A x))^{3} d x=\int(\sin (A x))^{2} \sin (A x) d x$. If $u=\cos (A x)$, then $(\sin (A x))^{2}=1-$ $(\cos (A x))^{2}=1-u^{2}$ and $d u=-A \sin (A x) d x$. Therefore $\int(\sin (A x))^{3} d x=-\frac{1}{A} \int\left(1-u^{2}\right) d u=-\frac{1}{A}\left(u-\frac{u^{3}}{3}\right)+$ $C=-\frac{1}{A}\left(\cos (A x)-\frac{(\cos (A x))^{3}}{3}\right)+C$. The definite integral is not nice: $\left.-\frac{1}{A}\left(\cos (A x)-\frac{(\cos (A x))^{3}}{3}\right)\right]_{0}^{2}=$ $-\frac{1}{A}\left(\cos (2 A)-\frac{(\cos (2 A))^{3}}{3}\right)+\frac{1}{A}\left(1-\frac{1}{3}\right) . m_{A}$ is the value of the definite integral divided by the interval's length: $\frac{-\frac{1}{A}\left(\cos (2 A)-\frac{(\cos (2 A))^{3}}{3}\right)+\frac{1}{A}\left(1-\frac{1}{3}\right)}{2}$.
b) What is $\lim _{A \rightarrow \infty} m_{A}$?

Answer The limit is 0 . The limit of $\frac{1}{A}\left(1-\frac{1}{3}\right)$ is easy. The other part, $-\frac{1}{A}\left(\cos (2 A)-\frac{\left(\cos (2 A)^{3}\right.}{3}\right)$, has limit 0 because the bottom, A, goes to ∞ and the top is bounded since cosine's values vary between -1 and +1 . To the right is a graph when $A=30$. Observe that there's much cancellation (area above and below the x-axis). More cancellation occurs as A increases. The net area is at most one increasingly narrow bump.

(14)
8. Find $\int \frac{1}{x^{2} \sqrt{x^{2}-3}} d x$.

Answer Try $x=\sqrt{3} \sec (\theta)$. Then $x^{2}-3=3(\sec (\theta))^{2}-3=3(\tan (\theta))^{2}$ so $\sqrt{x^{2}-3}=\sqrt{3} \tan (\theta)$. Also $d x=\sqrt{3} \sec (\theta) \tan (\theta) d \theta$. So: $\int \frac{1}{x^{2} \sqrt{x^{2}-3}} d x=\int \frac{1}{(\sqrt{3} \sec (\theta))^{2} \sqrt{3} \tan (\theta)} \sqrt{3} \sec (\theta) \tan (\theta) d \theta=\frac{1}{3} \int \frac{1}{\sec (\theta)} d \theta=$ $\frac{1}{3} \int \cos (\theta) d \theta=\frac{1}{3} \sin (\theta)+C$. Since $\sec (\theta)=\frac{x}{\sqrt{3}}, \cos (\theta)=\frac{\sqrt{3}}{x}$ and $\sin (\theta)=\sqrt{1-(\cos (\theta))^{2}}=\sqrt{1-\left(\frac{\sqrt{3}}{x}\right)^{2}}$ so the indefinite integral is $\frac{1}{3} \sqrt{1-\left(\frac{\sqrt{3}}{x}\right)^{2}}+C$.

Another advertisement, done by a computer in one-fiftieth (.02) of a second:
$>\operatorname{int}\left(1 /\left(x^{\wedge} 2 * \operatorname{sqrt}\left(x^{\wedge} 2-3\right)\right), x\right)$;
${(x-3)^{1 / 2}}_{3 x}^{---------1}$

