D.
$\iint S_{x^{2}+y^{2} d V}$
$d V=\rho \sin \phi d \rho d \phi d \Theta$
To turn into spherical coordinates,
$f(x, y, z)=x^{2}+y^{2}=(\rho \cos \Theta \sin \phi)^{2}+(\rho \sin \Theta \sin \phi)^{2}$
$=(\rho \sin \phi)^{2}\left(\cos ^{2} \Theta+\sin ^{2} \Theta\right)=(\rho \sin \phi)^{2}$
Since we are integrating the unit ball, $0 \leq r \leq 1$ and $r=\rho$
Also, we are integrating only where $\mathrm{x} \geq 0$ so - $\mathrm{pi} / 2 \leq \Theta \leq \mathrm{pi} / 2$
Lastly, $0 \leq \phi \leq \mathrm{pi}$
$\boldsymbol{S}_{\theta=-\mathrm{pi} / 2}{ }^{\theta=-\mathrm{pi} / 2} \mathbf{S}_{\phi=0}{ }^{\phi=\mathrm{pi}} \boldsymbol{S}_{\rho=0}{ }^{\rho=1}(\rho \sin \phi)^{2}{ }^{*} \rho \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \Theta$
$\boldsymbol{S}_{\rho=0}{ }^{\rho=1} \rho^{3} \sin ^{3} \phi d \rho=\rho^{4} / 4 \sin ^{3} \phi$ from 0 to $1=1 / 4 \sin ^{3} \phi$
$1 / 4 \boldsymbol{S}_{\phi=0}{ }^{\phi=p i} \sin ^{3} \phi d \phi=1 / 4 \boldsymbol{S}_{\phi=0}{ }^{\phi=p i} \sin \phi\left(\sin ^{2} \phi\right) \mathrm{d} \phi$
$=1 / 4 \mathbf{S}_{\phi=0}{ }^{\phi=\mathrm{pi}} \sin \phi\left(1-\cos ^{2} \phi\right) \mathrm{d} \phi \quad$ let $\mathrm{u}=\cos \phi \mathrm{dx}=\mathrm{du} /-\sin$ ϕ
$=-1 / 4 \boldsymbol{S}_{\phi=0}{ }^{\phi=p i}\left(1-u^{2}\right) \mathrm{du}=-1 / 4\left(\cos \phi-\cos ^{3} \phi / 3\right)$ from 0 to pi
$=-1 / 4(-1+1 / 3)+1 / 4(1-1 / 3)=1 / 3$

And then integrating the last integral, $=1 / 3 \Theta$ from $-\mathrm{pi} / 2$ to $\mathrm{pi} / 2$, the answer becomes $\mathrm{pi} / 3$

