Here are detailed answers to version A. Brief answers to version B are at the end.

1. Theoretical results imply that $x+3 y z$ has a maximum and a minimum on the sphere $x^{2}+y^{2}+z^{2}=1$. Use Lagrange multipliers to find these maximum and minimum values.
Answer Suppose $f(x, y, z)=x+3 y z$ and $g(x, y, z)=x^{2}+y^{2}+z^{2}$. Then $\nabla f=\langle 1,3 z, 3 y\rangle$ and $\nabla g=$ $\langle 2 x, 2 y, 2 z\rangle$ so that the Lagrange multiplier equations are (including the constraint equation) $1=\lambda(2 x)$, $3 z=\lambda(2 y), 3 y=\lambda(2 z)$, and $1=x^{2}+y^{2}+z^{2}$. Now we solve these equations. The first equation immediately tells us that neither x nor λ can be 0 . The second and third equations imply if $y=0$ then $z=0$ (and vice versa). If both y and z are 0 then $1=x^{2}+y^{2}+z^{2}$ shows that $x= \pm 1$ so the objective function $x+3 y z$ is ± 1. Can we do better (get larger and smaller values of the objective function)? If no variable is 0 , the second and third equations can be rewritten as $\frac{3 z}{2 y}=\lambda$ and $\frac{3 y}{2 z}=\lambda$ so $\frac{3 z}{2 y}=\frac{3 y}{2 z}$ and $z^{2}=y^{2}$. Then λ must be $\pm \frac{3}{2}$ itself since $y= \pm z$. So $1=\lambda(2 x)$ implies that $x= \pm \frac{1}{3}$ and $1=x^{2}+y^{2}+z^{2}$ gives $1=\left(\frac{1}{3}\right)^{2}+2 z^{2}$ and $z= \pm \sqrt{\frac{4}{9}}$ and $y= \pm \sqrt{\frac{4}{9}}$. If $\lambda>0$, then $x>0$, and y and z have the same sign. If $\lambda<0$, then $x<0$, and y and z have opposite signs. With all + signs, $x+3 y z$ becomes $\frac{1}{3}+3\left(\frac{4}{9}\right)=\frac{5}{3}$. With - signs for x and y and + for z we get $-\frac{5}{3}$. These are the actual minimum and maximum values. To the right is a picture of the ball together with the surface $x+3 y z=\frac{5}{3}$. They do indeed seem to be tangent (and at two points, the other corresponding to minus
 signs on y and z) just as the Lagrange multiplier method suggests.
2. Suppose $I=\int_{0}^{2} \int_{x^{2}}^{5} x y d y d x$.
a) Compute I.

Answer $\int_{0}^{2} \int_{x^{2}}^{5} x y d y d x=\left.\int_{0}^{2} \frac{x y^{2}}{2}\right|_{y=x^{2}} ^{y=5} d x=\int_{0}^{2} \frac{25}{2} x-\frac{x^{5}}{2} d x=\frac{25}{4} x^{2}-\left.\frac{x^{6}}{12}\right|_{x=0} ^{x=2}=25-\frac{2^{6}}{12}=$ $25-\frac{16}{3}=\frac{59}{3}$.
b) Use the axes to the right to sketch the region of integration for I.

Answer Shown to the right.
c) Write I as a sum of one or more $d x d y$ integrals. You do not need to compute the result!

Answer $\int_{4}^{5} \int_{0}^{2} x y d x d y+\int_{0}^{4} \int_{0}^{\sqrt{y}} x y d x d y$.

3. The coordinates (x, y, z) of points in a solid object A in \mathbb{R}^{3} satisfy the inequalities $0 \leq z \leq x-y^{2}$ and $0 \leq x \leq 1$. Compute the triple integral of 1 over the object A. (This is the volume of A.) Note Four views of the object were given.

Answer A picture of a slice with z fixed is to the right, where $0<z<1$. The volume is $\frac{\int_{0}^{1} \int_{z}^{1} \int_{-\sqrt{x-z}}^{\sqrt{x-z}} 1 d y d x d z=\left.\int_{0}^{1} \int_{z}^{1} y\right|_{y=-\sqrt{x-z}} ^{y=\sqrt{x-z}} d x d z=\int_{0}^{1} \int_{z}^{1} 2 \sqrt{x-z} d x d z=}{\left.\int_{0}^{1} \frac{4}{3}(x-z)^{3 / 2}\right|_{x=z} ^{x=1} d z=\int_{0}^{1} \frac{4}{3}(1-z)^{3 / 2} d z=-\left.\frac{8}{15}(1-z)^{5 / 2}\right|_{z=0} ^{z=1}=\frac{8}{15} .}$.

A picture of a slice with x fixed is to the left, where $0<x<1$ so another answer is $\underline{\int_{0}^{1} \int_{-\sqrt{x}}^{\sqrt{x}} \int_{0}^{x-y^{2}} 1 d z d y d x}$.

$\frac{\int_{-1}^{1} \int_{0}^{1-y^{2}} \int_{z+y^{2}}^{1} 1 d x d z d y \text { is }}{\text { another answer. A slice with }}$ y fixed is shown to the left, where $-1<y<1$.
4. Compute $\iint_{D} e^{-x^{2}-y^{2}} d A$ where D is the region in the plane which is inside the unit circle (the circle with center at (0,0) and radius 1) and also inside the upper half plane (where $y \geq 0$).
Answer A picture of the region is to the right. It is friendly to polar coordinates. The integral is $\int_{0}^{\pi} \int_{0}^{1} e^{-r^{2}} r d r d \theta=\int_{0}^{\pi}-\left.\frac{1}{2} e^{-r^{2}}\right|_{r=0} ^{r=1} d \theta=\int_{0}^{\pi}\left(-\frac{1}{2} e^{-1}+\frac{1}{2}\right) d \theta=\frac{\pi}{2}\left(1-\frac{1}{e}\right)$.

5. Express in cylindrical coordinates and evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} z d z d y d x$.

Answer $z d z d y d x$ becomes $z r d r d \theta d z$. The boundary $z=\sqrt{x^{2}+y^{2}}$ becomes $z=r$. The boundary $y=\sqrt{1-x^{2}}$ along with the knowledge that x goes from 0 to 1 describes the part of the unit disc in the first quadrant (similar to the setup of the previous problem) because $y=\sqrt{1-x^{2}}$ is part of $x^{2}+y^{2}=1$, and $\sqrt{ }$ is always non-negative square root. Since the z boundary description involves r, I will change the order from $z r d r d \theta d z$ to $z r d z d \theta d r$. The triple integral becomes $\int_{0}^{1} \int_{0}^{\pi / 2} \int_{0}^{r} z r d z d \theta d r=\left.\int_{0}^{1} \int_{0}^{\pi / 2} \frac{r z^{2}}{2}\right|_{z=0} ^{z=r} d \theta d r=$ $\int_{0}^{1} \int_{0}^{\pi / 2} \frac{r^{3}}{2} d \theta d r=\left.\int_{0}^{1} \frac{r^{3}}{2} \theta\right|_{\theta=0} ^{\theta=\pi / 2} d r=\int_{0}^{1} \frac{\pi r^{3}}{4} d r=\left.\frac{\pi r^{4}}{16}\right|_{r=0} ^{r=1}=\frac{\pi}{16}$
6. Use spherical coordinates to calculate the triple integral of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ over the region $1 \leq x^{2}+y^{2}+z^{2} \leq 4$.
Answer $\rho^{2}=x^{2}+y^{2}+z^{2}$ so the region is just $1 \leq \rho \leq 2$ with all θ 's $(0 \leq \theta \leq 2 \pi)$ and all ϕ 's $(0 \leq \phi \leq \pi$. The integrand in spherical coordinates is ρ^{2}. So the desired triple integral is $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{2} \rho^{2}\left(\rho^{2} \sin \phi\right) d \rho d \phi d \theta=$ $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{2} \rho^{4}(\sin \phi) d \rho d \phi d \theta=\left.\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\rho^{5}}{5}(\sin \phi)\right|_{\rho=1} ^{\rho=2} d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{31}{5}(\sin \phi) d \phi d \theta=\left.\int_{0}^{2 \pi} \frac{31}{5}(-\cos \phi)\right|_{\phi=0} ^{\phi=\pi} d \theta$ $=\left.\int_{0}^{2 \pi} \frac{31}{5}(-\cos \pi-(-\cos 0))\right|_{\phi=0} ^{\phi=\pi} d \theta=\int_{0}^{2 \pi} 2\left(\frac{31}{5}\right) d \theta=\left.\frac{62}{5} \theta\right|_{\theta=0} ^{\theta=2 \pi}=\frac{124 \pi}{5}$, although $\frac{\left(2^{5}-1\right) 4 \pi}{5}$ is simpler.
7. This problem is about the transformation $\left\{\begin{array}{l}x=e^{3 u} \cos (2 v) \\ y=e^{3 u} \sin (2 v)\end{array}\right.$.
a) Compute the Jacobian of this transformation. The result should be $6 e^{6 u}$ but you must show the details of the computation. Answer We need det $\left(\begin{array}{ll}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}3 e^{3 u} \cos (2 v) & -2 e^{3 u} \sin (2 v) \\ 3 e^{3 u} \sin (2 v) & 2 e^{3 u} \cos (2 v)\end{array}\right)=$
$\left(3 e^{3 u} \cos (2 v)\right)\left(2 e^{3 u} \cos (2 v)\right)-\left(-2 e^{3 u} \sin (2 v)\right)\left(3 e^{3 u} \sin (2 v)\right)=$ $6 e^{6 u}(\cos (2 v))^{2}+6 e^{6 u}(\sin (2 v))^{2}=6 e^{6 u}\left((\cos (2 v))^{2}+(\sin (2 v))^{2}\right)$ and this is $6 e^{6 u}$.
b) Suppose R is the region in the $u v$-plane determined by $u=0$, $u=\frac{1}{3}, v=0$, and $v=\frac{\pi}{2}$ as shown on the coordinate axes below and to the left. Sketch the image region using this transformation in the $x y$-plane below and to the right.

8. a) Compute $\int_{C} x d x+y^{2} d y$ if C is a quarter circle centered at $(0,0)$ from $(1,0)$ to $(0,1)$ followed by a line segment from $(0,1)$ to $(3,1)$. C is shown in a diagram to the right. You may need more than one integral!
Answer From $(0,0)$ to $(0,1)$ use $x=\cos t$ and $y=\sin t$ so $d x=-\sin t d t, d y=\cos t d t$,
 and $0 \leq t \leq \frac{\pi}{2}$. The integral over that portion of the curve is $\int_{0}^{\pi / 2}-(\cos t)(\sin t)+(\sin t)^{2}(\cos t) d t=$ $-\frac{(\sin t)^{2}}{2}+\left.\frac{(\sin t)^{3}}{3}\right|_{0} ^{\pi / 2}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}$. For the line segment, $x=t$ and $y=1$ so $d x=d t$ and $d y=0 d t$, and $0 \leq t \leq 3$. So this integral is $\int_{0}^{3} t d t=\frac{9}{2}$. The total integral is therefore $\frac{9}{2}-\frac{1}{6}=\frac{13}{3}$.
Another method $\varphi(x, y)=\frac{x^{2}}{2}+\frac{y^{3}}{3}$ is a potential for $x \mathbf{i}+y^{2} \mathbf{j}$ (verify this by checking φ using partial differentiation). Then the integral is φ (The end) $-\varphi($ The start $)=\varphi(3,1)-\varphi(1,0)=\left(\frac{3^{2}}{2}+\frac{1}{3}\right)-\frac{1}{2}=\frac{13}{3}$.
b) Suppose \mathbf{F} is the vector field $\left(x+5 y^{2}\right) \mathbf{i}+(A x y) \mathbf{j}$, where A is a constant. There is one value of A for which this vector field is a gradient vector field. Find that value of A. Then find all potentials of \mathbf{F}, using that value of A. Answer $\frac{\partial}{\partial y}$ of $x+5 y^{2}$ is $10 y$, and $\frac{\partial}{\partial x}$ of $A x y$ is $A y$, so the desired value of A is 10 . Now $\int x+5 y^{2} d x=\frac{x^{2}}{2}+5 x y^{2}+C_{1}(y)$ and $\int 10 x y d y=5 x y^{2}+C_{2}(x)$ where $C_{1}(y)$ and $C_{2}(x)$ are unknown functions. But inspection of the two descriptions of the potential tells me that the most general potential of \mathbf{F} is $\frac{x^{2}}{2}+5 x y^{2}+C$ for any constant C.

Brief answers to version B

1. $x+5 y z$ has answer $\pm \frac{13}{5}$. 2. $I=\int_{0}^{2} \int_{x^{3}}^{9} x y d y d x=65$. The first partial integration has answer $\frac{81 x}{2}-\frac{x^{7}}{2}$. The graph is similar, and c)'s answer is $\int_{8}^{9} \int_{0}^{2} x y d x d y+\int_{0}^{8} \int_{0}^{y^{1 / 3}} x y d x d y$. 3. The same. 4. $\int_{\pi}^{2 \pi} \int_{0}^{1} e^{-r^{2}} r d r d \theta$ with the same answer. 5. The same. 6. The answer is $\frac{\left(3^{5}-1\right) 4 \pi}{5}=\frac{968 \pi}{5}$. 7. a) A similar computation gives the stated answer. The graph in b) is the same. 8. a) Much the same parameterizations can be used. The answer is $\frac{16}{2}-\frac{1}{6}=8-\frac{1}{6}=\frac{47}{6}$. In b), $A=6$ and the potential is $\frac{x^{2}}{2}+3 x y^{2}+C$ for any constant C.
