640:251:22-24

## Answers to the Second Exam

Here are detailed answers to version A. Brief answers to version B are at the end.

(12) 1. Theoretical results imply that x + 3yz has a maximum and a minimum on the sphere  $x^2 + y^2 + z^2 = 1$ . Use Lagrange multipliers to find these maximum and minimum values.

Answer Suppose f(x, y, z) = x + 3yz and  $g(x, y, z) = x^2 + y^2 + z^2$ . Then  $\nabla f = \langle 1, 3z, 3y \rangle$  and  $\nabla g = \langle 2x, 2y, 2z \rangle$  so that the Lagrange multiplier equations are (including the constraint equation)  $1 = \lambda(2x)$ ,  $3z = \lambda(2y)$ ,  $3y = \lambda(2z)$ , and  $1 = x^2 + y^2 + z^2$ . Now we solve these equations. The first equation immediately tells us that neither x nor  $\lambda$  can be 0. The second and third equations imply if y = 0 then z = 0 (and vice versa). If both y and z are 0 then  $1 = x^2 + y^2 + z^2$  shows that  $x = \pm 1$  so the objective function x + 3yz is  $\pm 1$ . Can we do better (get larger and smaller values of the objective function)? If no variable is 0, the second and third equations can be rewritten as  $\frac{3z}{2y} = \lambda$  and  $\frac{3y}{2z} = \lambda$  so  $\frac{3z}{2y} = \frac{3y}{2z}$  and  $z^2 = y^2$ . Then  $\lambda$  must be  $\pm \frac{3}{2}$  itself since  $y = \pm z$ . So  $1 = \lambda(2x)$  implies that  $x = \pm \frac{1}{3}$  and  $1 = x^2 + y^2 + z^2$ 

gives  $1 = (\frac{1}{3})^2 + 2z^2$  and  $z = \pm \sqrt{\frac{4}{9}}$  and  $y = \pm \sqrt{\frac{4}{9}}$ . If  $\lambda > 0$ , then x > 0, and y and z have the same sign. If  $\lambda < 0$ , then x < 0, and y and z have opposite signs. With all + signs, x + 3yz becomes  $\frac{1}{3} + 3(\frac{4}{9}) = \frac{5}{3}$ . With - signs for x and y and + for z we get  $-\frac{5}{3}$ . These are the actual minimum and maximum values. To the right is a picture of the ball together with the surface  $x + 3yz = \frac{5}{3}$ . They do indeed seem to be tangent (and at two points, the other corresponding to minus signs on y and z) just as the Lagrange multiplier method suggests.

(12) 2. Suppose 
$$I = \int_0^2 \int_{x^2}^5 xy \, dy \, dx$$
.  
a) Compute  $I$ .

Answer  $\int_{0}^{2} \int_{x^{2}}^{5} xy \, dy \, dx = \int_{0}^{2} \frac{xy^{2}}{2} \Big|_{y=x^{2}}^{y=5} dx = \int_{0}^{2} \frac{25}{2}x - \frac{x^{5}}{2} \, dx = \frac{25}{4}x^{2} - \frac{x^{6}}{12} \Big|_{x=0}^{x=2} = 25 - \frac{2^{6}}{12} = 25 - \frac{16}{3} = \frac{59}{3}.$ 

b) Use the axes to the right to sketch the region of integration for  ${\cal I}.$ 

Answer Shown to the right.

c) Write I as a sum of one or more dx dy integrals. You do not need to compute the result! **Answer**  $\int_{4}^{5} \int_{0}^{2} xy \, dx \, dy + \int_{0}^{4} \int_{0}^{\sqrt{y}} xy \, dx \, dy$ .

(12) 3. The coordinates (x, y, z) of points in a solid object A in  $\mathbb{R}^3$  satisfy the inequalities  $0 \le z \le x - y^2$  and  $0 \le x \le 1$ . Compute the triple integral of 1 over the object A. (This is the volume of A.) Note Four views of the object were given.



(12) 4. Compute  $\int \int_D e^{-x^2 - y^2} dA$  where D is the region in the plane which is inside the unit circle (the circle with center at (0,0) and radius 1) and also inside the <u>upper</u> half plane (where  $y \ge 0$ ). **Answer** A picture of the region is to the right. It is *friendly* to polar coordinates. The integral is  $\int_0^{\pi} \int_0^1 e^{-r^2} r \, dr \, d\theta = \int_0^{\pi} -\frac{1}{2} e^{-r^2} \Big|_{r=0}^{r=1} d\theta = \int_0^{\pi} \left(-\frac{1}{2} e^{-1} + \frac{1}{2}\right) d\theta = \frac{\pi}{2} \left(1 - \frac{1}{e}\right).$ 





(12) 5. Express in cylindrical coordinates and evaluate:  $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{x^2+y^2}} z \, dz \, dy \, dx$ .

**Answer**  $z \, dz \, dy \, dx$  becomes  $zr \, dr \, d\theta \, dz$ . The boundary  $z = \sqrt{x^2 + y^2}$  becomes z = r. The boundary  $y = \sqrt{1 - x^2}$  along with the knowledge that x goes from 0 to 1 describes the part of the unit disc in the first quadrant (similar to the setup of the previous problem) because  $y = \sqrt{1 - x^2}$  is part of  $x^2 + y^2 = 1$ , and  $\sqrt{-1}$  is always *non-negative* square root. Since the z boundary description involves r, I will change the order from  $zr \, dr \, d\theta \, dz$  to  $zr \, dz \, d\theta \, dr$ . The triple integral becomes  $\int_0^1 \int_0^{\pi/2} \int_0^r zr \, dz \, d\theta \, dr = \int_0^1 \int_0^{\pi/2} \frac{r^2}{2} d\theta \, dr = \int_0^1 \frac{r^3}{2} \theta \Big|_{\theta=0}^{\theta=\pi/2} dr = \int_0^1 \frac{\pi r^3}{4} \, dr = \frac{\pi r^4}{16} \Big|_{r=0}^{r=1} = \frac{\pi}{16}$ 

(12) 6. Use spherical coordinates to calculate the triple integral of  $f(x, y, z) = x^2 + y^2 + z^2$  over the region  $1 \le x^2 + y^2 + z^2 \le 4$ . **Answer**  $\rho^2 = x^2 + y^2 + z^2$  so the region is just  $1 \le \rho \le 2$  with all  $\theta$ 's  $(0 \le \theta \le 2\pi)$  and all  $\phi$ 's  $(0 \le \phi \le \pi)$ . The integrand in spherical coordinates is  $\rho^2$ . So the desired triple integral is  $\int_0^{2\pi} \int_0^{\pi} \int_1^2 \rho^2 (\rho^2 \sin \phi) d\rho d\phi d\theta = \int_0^{2\pi} \int_0^{\pi} \int_1^2 \rho^4 (\sin \phi) d\rho d\phi d\theta = \int_0^{2\pi} \int_0^{\pi} \frac{\rho^5}{5} (\sin \phi) \Big|_{\rho=1}^{\rho=2} d\phi d\theta = \int_0^{2\pi} \int_0^{\pi} \frac{31}{5} (\sin \phi) d\phi d\theta = \int_0^{2\pi} \frac{31}{5} (-\cos \pi - (-\cos 0)) \Big|_{\phi=0}^{\phi=\pi} d\theta = \int_0^{2\pi} 2(\frac{31}{5}) d\theta = \frac{62}{5} \theta \Big|_{\theta=0}^{\theta=2\pi} = \frac{124\pi}{5}$ , although  $\frac{(2^5-1)4\pi}{5}$  is simpler.

(12) 7. This problem is about the transformation 
$$\begin{cases} x = e^{3u} \cos(2v) \\ y = e^{3u} \sin(2v) \end{cases}$$

a) Compute the Jacobian of this transformation. The result should be  $6e^{6u}$  but you must show the details of the computation. Answer We need det  $\begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix} = det \begin{pmatrix} 3e^{3u}\cos(2v) & -2e^{3u}\sin(2v) \\ 3e^{3u}\sin(2v) & 2e^{3u}\cos(2v) \end{pmatrix} = (3e^{3u}\cos(2v))(2e^{3u}\cos(2v)) - (-2e^{3u}\sin(2v))(3e^{3u}\sin(2v)) = (3e^{3u}\cos(2v))^2 + 6e^{6u}(\sin(2v))^2 = 6e^{6u}((\cos(2v))^2 + (\sin(2v))^2)$ 

and this is  $6e^{6u}$ .

b) Suppose R is the region in the uv-plane determined by u = 0,  $u = \frac{1}{3}$ , v = 0, and  $v = \frac{\pi}{2}$  as shown on the coordinate axes below and to the left. Sketch the image region using this transformation in the xy-plane below and to the right.

(16) 8. a) Compute  $\int_C x \, dx + y^2 \, dy$  if C is a quarter circle centered at (0,0) from (1,0) to (0,1) followed by a line segment from (0,1) to (3,1). C is shown in a diagram to the right. You may need more than one integral! **Answer** From (0,0) to (0,1) use  $x = \cos t$  and  $y = \sin t$  so  $dx = -\sin t \, dt$ ,  $dy = \cos t \, dt$ ,  $\mathbf{0} = \mathbf{1} = 2$ and  $0 \le t \le \frac{\pi}{2}$ . The integral over that portion of the curve is  $\int_0^{\pi/2} -(\cos t)(\sin t) + (\sin t)^2(\cos t) \, dt = -\frac{(\sin t)^2}{2} + \frac{(\sin t)^3}{3} \Big|_0^{\pi/2} = -\frac{1}{2} + \frac{1}{3} = -\frac{1}{6}$ . For the line segment, x = t and y = 1 so dx = dt and  $dy = 0 \, dt$ , and  $0 \le t \le 3$ . So this integral is  $\int_0^3 t \, dt = \frac{9}{2}$ . The total integral is therefore  $\frac{9}{2} - \frac{1}{6} = \frac{13}{3}$ . **Another method**  $\varphi(x, y) = \frac{x^2}{2} + \frac{y^3}{3}$  is a potential for  $x\mathbf{i} + y^2\mathbf{j}$  (verify this by checking  $\varphi$  using partial

differentiation). Then the integral is  $\varphi(\text{The end}) - \varphi(\text{The start}) = \varphi(3,1) - \varphi(1,0) = \left(\frac{3^2}{2} + \frac{1}{3}\right) - \frac{1}{2} = \frac{13}{3}$ . b) Suppose **F** is the vector field  $(x + 5y^2)\mathbf{i} + (Axy)\mathbf{j}$ , where A is a constant. There is one value of A for which this vector field is a gradient vector field. Find that value of A. Then find all potentials of **F**, using that value of A. **Answer**  $\frac{\partial}{\partial y}$  of  $x + 5y^2$  is 10y, and  $\frac{\partial}{\partial x}$  of Axy is Ay, so the desired value of A is 10. Now  $\int x + 5y^2 dx = \frac{x^2}{2} + 5xy^2 + C_1(y)$  and  $\int 10xy dy = 5xy^2 + C_2(x)$  where  $C_1(y)$  and  $C_2(x)$  are unknown functions. But inspection of the two descriptions of the potential tells me that the most general potential of **F** is  $\frac{x^2}{2} + 5xy^2 + C$  for any constant C.

## Brief answers to version B

1. x+5yz has answer  $\pm \frac{13}{5}$ . 2.  $I=\int_0^2 \int_{x^3}^{y^3} xy \, dy \, dx=65$ . The first partial integration has answer  $\frac{81x}{2}-\frac{x^7}{2}$ . The graph is similar, and c)'s answer is  $\int_8^9 \int_0^2 xy \, dx \, dy + \int_0^8 \int_0^{y^{1/3}} xy \, dx \, dy$ . 3. The same. 4.  $\int_{\pi}^{2\pi} \int_0^1 e^{-r^2} r \, dr \, d\theta$  with the same answer. 5. The same. 6. The answer is  $\frac{(3^5-1)4\pi}{5}=\frac{968\pi}{5}$ . 7. a) A similar computation gives the stated answer. The graph in b) is the same. 8. a) Much the same parameterizations can be used. The answer is  $\frac{16}{2}-\frac{1}{6}=8-\frac{1}{6}=\frac{47}{6}$ . In b), A=6 and the potential is  $\frac{x^2}{2}+3xy^2+C$  for any constant C.