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(18) 1. Compute
∫∫

R
2x+y dA if R is the region in R

2 shown

to the right. The boundary of R is four line segments
meeting at (0, 0), (−1,−1), (0,−2), and (2,−2).

(20) 2. Suppose P is the point (2, 1, 6) in R
3.

Suppose f is the function from R
3 to R defined by f(x, y, z) = (z − x2)e3xy−z.

Suppose C is the curve in R
3 defined by C(t) = (3 − t2,− cos(πt), 3 + 3t).

a) Verify by computation that P is on the level surface f(x, y, z) = 2. Verify by computa-
tion that C(1) is P .

b) Compute ∇f and evaluate it at P . Compute C′(t) and evaluate it when t = 1.

c) Find an equation for the plane tangent to f(x, y, z) = 2 at the point P . Find parametric
equations for the line tangent to the curve C(t) when t = 1.

d) The plane and line found in c) intersect at P . Are they perpendicular? Give a reason
for your answer.

(14) 3. Suppose that G(u, v) is a differentiable function of two variables and that g(x, y) =
G
(

x
y
, y

x

)

. Show that xgx(x, y) + ygy(x, y) = 0.

Comment Your work must refer to a general function, G. Using one specific G or a few
specific G’s earns no credit.

(16) 4. Compute
∫∫

Q
1

(x2+y2+1)3
dA where Q is the region in the first quadrant outside the unit

circle.

(20) 5. A solid hemisphere (half of a solid sphere) of radius R has variable density δ proportional
to the distance from the center of the hemisphere squared. Find its mass. (Be sure that you
set up the problem correctly. Define clearly any constants you use, and describe clearly,
using a picture if you like, where the hemisphere is located in your coordinate system.)

(20) 6. Suppose F(x, y, z) =
(

y2z
)

i+(2xyz) j+
(

xy2 + 4z
)

k, a vector field defined and contin-
uously differentiable throughout R

3.

a) Determine whether there is a scalar function P (x, y, z) defined everywhere in R
3 such

that ∇P = F. If there is such a P , find it; if there is not, explain why not.

b) Compute the integral
∫

C
F · ds, where C is the elliptical helix whose position vector is

given by R(t) = (3 cos t) i + (2 sin t) j + 5tk for 0 ≤ t ≤ 2π. Use information gotten from
your answer to a) to help if you wish. Some methods are easier than others.

(16) 7. Find all critical points of f(x, y) =
(

x2 + y2
)

ex−y. Describe (as well as you can) the
type of each critical point. Explain your conclusions.
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(20) 8. Suppose f(x, y, z) = e2z.

a) Compute
∫ 1

0

∫ x

0

∫ y

0
e2z dz dy dx .

b) Write the integral in a) as a sum of one or more iterated integrals in dx dy dz order.
You are not asked to evaluate your answer, only to set it up.

(16) 9. The two-dimensional parametric curve C is defined by the equations

{

x =sin(t2)

y =cos(t2)
.

a) Compute the curvature of C and please simplify your result. Use the formulas supplied
if you wish.

b) Explain geometrically the answer to a) which should be quite simple.

(20) 10. Suppose Q is the oriented boundary of the parallelogram in R
3 with

corners at A = (0, 0, 0), B = (4, 1, 5), C = (4, 0, 7), and D = (0,−1, 2).
The orientation of Q is from A to B to C to D and then back to A. A la-
beled Maple picture of Q is shown. Suppose F is the vector field defined

by F(x, y, z) =
(

e(x3) + 7y
)

i +
(

5x + arctan(y2)
)

j +
(

z17 + 3y
)

k .

Compute
∫

Q
F · ds. Some methods are easier than others.

(12) 11. Suppose F is the vector field defined by F (x, y, z) = 〈y7+x2, cos(x3 +z5)+y, e77x +z〉
and S is the boundary surface of the unit cube in R

3, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 and
0 ≤ z ≤ 1, with outward normal orientation. Find the total flux of F through S. Some
methods are easier than others.

(8) 12. Suppose f(x, y) = xy2. On the axes supplied below [TO
THE RIGHT], sketch the level curve which goes through
P = (1, 2). Label the curve with the appropriate function
value. Also sketch on the same axes the gradient vector ∇f

at P .
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Just a few formulas for the final exam in Math 251, fall 2008

Curvature κ is all of the following:
∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

=
‖T′(t)‖

‖r′(t)‖
=

‖r′(t) × r′′(t)‖

‖r′(t)‖3

2 dim
=

|y′′(t)x′ (t) − x′′(t)y′(t)|

(x′(t)2 + y′(t)2)3/2

y=f(x)
=

|f ′′(x)|

(1 + (f ′(x))2)3/2

Second derivative test for differentiable functions in R
2

Suppose fx(a, b) = 0 and fy(a, b) = 0. Let H = H(a, b) = fxx(a, b)fyy(a, b)− [fxy(a, b)]2.

a) If H > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.

b) If H > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.

c) If H < 0, then f(a, b) is not a local maximum or minimum (f has a saddle point).

If H = 0, no information.

Polar coordinates dA = r dr dθ

Spherical coordinates dV = ρ2 sin φ dρ dθ dφ

Change of variables in 2 dimensions
∫ ∫

Rxy

f(x, y) dA =

∫ ∫

R̃uv

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv where the Jacobian,
∂(x, y)

∂(u, v)

is det

(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

.

Green’s Theorem
∫

C

P dx + Q dy =

∫ ∫

R

(

∂Q

∂x
−

∂P

∂y

)

dA

If ∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k and F is a vector field then

{

curl F = ∇×F, a vector field.

div F = ∇ · F, a function.

Stokes’ Theorem

S is a surface with boundary curve C. As you “walk” along C, S is to the left and N, the
surface normal, is up.
[

∫ ∫

S

(curl F) · N dS =

]

∫ ∫

S

(∇× F) · dS =

∫

C

F · ds

[

=

∫

C

P dx + Q dy + R dz

]

Divergence Theorem

W is a region in R
3 with boundary surface S. The boundary S is oriented so its normal

vectors point outward.
∫ ∫

S

F · dS =

∫ ∫ ∫

E

div F dV

[

=

∫ ∫ ∫

E

∂P

∂x
+

∂Q

∂y
+

∂R

∂z
dV

]
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Final Exam for Math 251, sections 22–24

December 15, 2008

NAME

Do all problems, in any order.

Show your work. An answer alone may not receive full credit.

No notes and no calculators may be used on this exam.

A sheet with some formulas is the last page of the exam

“Simplification” of answers is not necessary unless otherwise

stated, but standard values of traditional functions such as e0

and sin
(

π
2

)

should be given.

Problem Possible Points
Number Points Earned:

1 18

2 20

3 14

4 16

5 20

6 20

7 16

8 20

9 16

10 20

11 12

12 8

Total Points Earned:

A A


