Rudin Chapter 5, problems 22 and 23

Amanda Hood

November 21, 2008

Suppose f is a real function on $(-\infty, \infty)$. We say x is a fixed point of f if $f(x) = x$.

a) If f is differentiable and $f'(t) \neq 1$ for every real t, prove that f has at most one fixed point.

Proof: Suppose that f satisfies the hypotheses, but, for distinct real numbers a and b with $a < b$, $f(a) = a$ and $f(b) = b$. Then, by the Mean Value Theorem, there exists $r \in (a, b)$ such that $f'(r) = \frac{f(b) - f(a)}{b - a} = \frac{b - a}{b - a} = 1$, contradiction. Hence, f has at most one fixed point.

b) Show that the function defined by

$$f(t) = t + (1 + e^t)^{-1}$$

has no fixed point, although $0 < f'(t) < 1$ for all real t.

First, $f'(t) = 1 - e^t(1 + e^t)^{-2}$. To see that $f'(t)$ is bounded between 0 and 1, consider the following implications:

$$0 < e^t \Rightarrow 1 < 1 + e^t \Rightarrow e^t < (1 + e^t)^2 \Rightarrow -1 < -e^t(1 + e^t)^{-2} < 0 \Rightarrow 0 < f'(t) < 1.$$

If f did have a fixed point, then $f(t) = t \Rightarrow (1 + e^t)^{-1} = 0$, which is a contradiction since the left-hand side is positive for all t.

This shows that boundedness of f' less than 1 does not guarantee a fixed point.

c) However, if there is a constant $A < 1$ such that $|f'(t)| \leq A$ for all real t, then a fixed point x of f exists, and $x = \lim x_n$, where x_1 is an arbitrary real number and $x_{n+1} = f(x_n)$ for $n \in \mathbb{N}$.

Lemma: If, in addition to the above hypotheses, $f(t) > t$ for all t, then $f(t) \leq g(t) = At + f(0)$ for all $t \geq 0$. Similarly, if $f(t) < t$ for all t, then $f(t) \geq h(t) = At + f(0)$ for all $t \leq 0$.

Proof of lemma: Note that $f(0) = g(0)$, and that g is a differentiable function with a constant derivative, namely A. Let $y \in (0, \infty)$ be arbitrary. Then, by
the Mean Value Theorem, there exists $r \in (0, y)$ such that $f'(r) = \frac{f(y) - f(0)}{y}$. Since $f'(r) \leq g'(r) = A$, we have $\frac{f(y) - f(0)}{y} \leq \frac{g(y) - g(0)}{y} \Rightarrow f(y) \leq g(y)$. Hence, $f(t) \leq g(t)$ for all $t \geq 0$.

Take an arbitrary $z \in (0, \infty)$. Then, by the Mean Value Theorem, there is a point $s \in (-z, 0)$ such that $f'(s) = \frac{f(0) - f(-z)}{z}$. As above, we find that $\frac{f(0) - f(-z)}{z} \leq \frac{h(0) - h(-z)}{z} \Rightarrow -f(-z) \leq -h(-z) \Rightarrow h(-z) \leq f(-z)$. Since z was arbitrarily chosen, $h(t) \leq f(t)$ for all $t \leq 0$.

This is an image of the function $f(t) = \log(t + 8) + 5$, for which $f'(t) \leq 1/8$ for $t \geq 0$. Clearly, it cannot always be bounded between t and $(1/8)t + f(0)$.

Proof of c): Recall that f can have at most one fixed point. Suppose f has none. Then, for all t, $f(t) > t$ or $f(t) < t$. If it is always the case that $f(t) > t$, then by the lemma we can conclude that $t < At + f(0)$ for all positive t; this is a contradiction, since $t = At + f(0)$ at $t = \frac{f(0)}{1-A}$. If $f(t) < t$ for all t, we have by the lemma that $At + f(0) < t$ for all negative t; again, this is a contradiction.

To see the following argument more clearly, we define $g(t) = f(t) - t$. We have assumed that $g(t) \neq 0$ for all t, and that neither $g(t) > 0$ or $g(t) < 0$ can hold for all t. Hence, there exist a and b with $a < b$ such that $g(a) > 0$ and $g(b) < 0$. By the Intermediate Value Theorem, there exists $r \in (a, b)$ such that $g(r) = 0$, contradicting that $g(t) \neq 0$ for all t. Hence, there is some point x such that $f(x) = x$.

Finally, we show that (x_n) converges to x. First, note that $|x - x_2| = |f(x) - f(x_1)|$. Then, by the Mean Value Theorem, there is some number r
between x and x_1 such that $|f'(r)| = \frac{|f(x) - f(x_1)|}{|x - x_1|}$. As $|f'(r)| \leq A$, $|x - x_2| = |f(x) - f(x_1)| \leq A|x - x_1|$. Suppose that for some natural number $n \geq 1$ that $|x - x_{n+1}| = |f(x) - f(x_n)| \leq A^n|x - x_1|$. Then, applying the Mean Value Theorem as we did in the case $n = 1$, we find that $|f(x) - f(x_{n_1})| \leq A|x - x_{n+1}| \leq A \cdot A^n|x - x_1| = A^{n+1}|x - x_1|$. So, for every n, $|x - x_n| \leq A^{n-1}|x - x_1|$. By Bernoulli’s inequality, $0 \leq \lim_{n \to \infty} |x - x_n| \leq \lim_{n \to \infty} A^{n-1}|x - x_1| = 0$, and therefore $x_n \to x$.

d) Here is a picture of the algorithm converging. The path $(x_1, x_2) \to (x_2, x_3) \to (x_3, x_4) \to \ldots$ is represented by the zig-zag lines. The function whose fixed point is being found is $-\sqrt{x} + 2$, and I chose $x_1 = 3$.

![Graph of $f(x) = \frac{x^3 + 1}{3}$](image)

As an example of how this can be applied, consider the function

$$f(x) = \frac{x^3 + 1}{3}$$

which has three fixed points. The fixed points α, β, and γ satisfy

$$-2 < \alpha < -1, \quad 0 < \beta < 1, \quad 1 < \gamma < 2$$

Suppose that we have a sequence defined as in 22c.

a) If $x_1 < \alpha$, then $x_n \to -\infty$ as $n \to \infty$.

If $x_n < \alpha$, then $x_{n+1} = \frac{x_n^3 + 1}{3} < \alpha$. Hence, $x_n \in (-\infty, \alpha)$ for all n. It follows that $f'(x_n) > f'(\alpha) = \alpha^2 > 1$ for each n. By the Mean Value Theorem, for each n there exists a point $c_n \in (x_n, \alpha)$ such that $f'(c_n) = \frac{f(\alpha) - f(x_n)}{\alpha - x_n}$.
Hence, \(|\alpha - x_{n+1}| = |f(\alpha) - f(x_n)| = f'(c_n) |\alpha - x_n| > \alpha^2 |\alpha - x_n| \). Since \(|\alpha - x_2| > \alpha^2 |\alpha - x_1| \), the relation \(|\alpha - x_n| > \alpha^{2(n-1)} |\alpha - x_1| \) holds for all \(n \geq 2 \).

Since \(\lim_{n \to \infty} \alpha^{2(n-1)} |\alpha - x_1| = \infty \), \(\lim_{n \to \infty} |\alpha - x_n| = \infty \). Thus, \(x_n \to -\infty \).

b) If \(\alpha < x_1 < \gamma \), then \(x_n \to \beta \) as \(n \to \infty \). [Note: \(f'(x) = x^2 \).]

The cases we consider are \(x_1 \in (\alpha, -1) \), \(x_1 \in [-1, -1/2) \), \(x_1 \in [-1/2, 1/2] \), \(x_1 \in (1/2, 1) \), and \(x_1 \in (1, \gamma) \).

Case 1: First, suppose \(x_1 \in [-1, -1/2) \). Take \(t \in [-1/2, 1/2] \), \(f'(t) \leq 1/4 < 1 \). Then, \(|\beta - x_2| = |f(\beta) - f(x_1)| \leq (1/4)|\beta - x_1| \). Since \(x_2 \) is closer to \(\beta \) than \(x_1 \), \(x_2 \in [-1/2, 1/2] \). It can be shown by an argument similar to the one given in 22c that \(x_n \to \beta \).

Case 2: Next, suppose that \(x_1 \in [-1, -1/2) \). Since \(-1 \leq x_1 < -1/2 \), \(-1 \leq x_1^3 < (1/2)^3 \) \(\Rightarrow 0 \leq \frac{2x_1^3}{3} = x_2 < 7/24 < 1/2 \). Thus, \(x_2 \in [-1/2, 1/2] \), and it follows from case 1 that \(x_n \to \beta \).

Case 3: It is easy to see that if \(x_n \in (\alpha, -1) \) then \(x_{n+1} \leq 0 \), and therefore \(x_{n+1} \not\in (1/2, \gamma) \). Thus, \(x_{n+1} \in [-1, 1/2] \), in which case convergence to \(\beta \) follows, or \(x_{n+1} \in (\alpha, -1) \).

So, suppose that \(x_n \in (\alpha, -1) \) for all \(n \). If \(x_1 \in (\alpha, -1) \), then \(\alpha < x_1 \Rightarrow \alpha < \frac{x_1^3 + 1}{3} = x_2 \). An inductive argument shows that \(x_n > \alpha \) for all \(n \).

Notice that for \(t \in (\alpha, -1) \) we have that \(f'(t) > 1 \). Consider \(|\alpha - x_{n+1}| = |f(\alpha) - f(x_n)| \). By the Mean Value Theorem, there exists \(c_n \in (\alpha, x_n) \) such that \(f'(c_n) = \frac{f(\alpha) - f(x_n)}{\alpha - x_n} \). Thus, \(|\alpha - x_{n+1}| > |\alpha - x_n| \) for all \(n \). Therefore, \((x_n) \) is monotonically increasing, and is bounded above by \(-1 \). Hence, \((x_n) \) must converge to some number \(x \in (\alpha, -1) \). From continuity of \(f \) and the fact that \((x_n) \) and \((f(x_n)) \) have the same limit, it follows that \(f(x) = x \), so \(x \) is a fixed point. But this is a contradiction, since there is no fixed point in \((\alpha, -1) \). Hence, the sequence is not bounded above by \(-1 \), and therefore \(x_n \to \beta \).

Case 4: The argument for when \(x_1 \in (1/2, 1] \) is similar to case 2.

Case 5: The argument for when \(x_1 \in (1, \gamma) \) is similar to case 3.

c) If \(\gamma < x_1 \), then \(x_n \to \infty \) as \(n \to \infty \).

The result follows from the same argument used in part a).

Here is an image of the fixed point iteration algorithm converging to \(\beta \). I chose \(x_1 = -3/2 \).
\(\frac{x^3 + 1}{3} \)