Homework \#2 Math 503 September 13, 2004
 Due Wednesday, September 22, 2004

Please read $\S 1.2(\mathrm{pp} .10-22)$ in $\mathbf{N}^{\mathbf{2}}$.
Problem 1: Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences of non-negative real numbers and $\left\{c_{n}\right\}$ is the sequence defined by $c_{n}=a_{n} b_{n}$. Let $A=\lim \sup a_{n}, B=\lim \sup b_{n}$ and $C=\lim \sup c_{n}$. If $\left\{a_{n}\right\}$ converges, prove that $C=A B$. Show by example that if we do not assume $\left\{a_{n}\right\}$ converges, then C and $A B$ may not be equal. What relationship must hold between C and $A B$ whether or not convergence is assumed, and why?

Problem 2: Show that the series

$$
\frac{1}{1+|z|}-\frac{1}{2+|z|}+\frac{1}{3+|z|}-\frac{1}{4+|z|}+\cdots+\frac{(-1)^{n-1}}{n+|z|}+\cdots
$$

is not absolutely convergent but is uniformly convergent in the whole complex plane.
From Classical Complex Analysis by Liang-sin Hahn and Bernard Epstein.
Problem 3: Suppose that $\varphi(r)$ is a function defined for $r \geq 0$ which is bounded in every finite interval and tends to ∞ as $r \rightarrow \infty$. Prove that there is an entire function*, F, which is real on \mathbb{R} so that $F(r) \geq \varphi(r)$ for all real $r \geq 0$.
Hint You may consider an everywhere convergent power series $\sum_{n=1}^{\infty}\left(\frac{z}{n}\right)^{\lambda_{n}}$ for a "sufficiently rapidly increasing sequence of positive integers", $\left\{\lambda_{n}\right\}$.

From Analytic Functions by Stanisław Saks and Antoni Zygmund, and attributed to Poincaré.
Problem 4: Prove that if $|z|<1$ then

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{1-z^{n}}=\sum_{m=1}^{\infty} d(m) z^{m}
$$

where $d(m)$ is the number of divisors of the positive integer m. Also, prove that both series converge uniformly on compact subsets of $D(0,1)$, the unit disc.

The generating function of $\{d(m)\}$, Sequence A000005 in Sloane's On-Line Encyclopedia of Integer Sequences.
Problem 5: Show that the power series

$$
\frac{z^{3}}{1}-\frac{z^{2 \cdot 3}}{1}+\frac{z^{3^{2}}}{2}-\frac{z^{2 \cdot 3^{2}}}{2}+\cdots+\frac{z^{3^{n}}}{n}-\frac{z^{2 \cdot 3^{n}}}{n}+\cdots
$$

has radius of convergence 1 , and that the points of convergence and those of divergence of this series each form sets which are everywhere dense in $\partial D(0,1)$.
Hint Take points of the form $z=\exp \left(\frac{\pi i k}{3^{N}}\right)$ and consider the case of k odd and k even.
From Analytic Functions by Stanisław Saks and Antoni Zygmund, and attributed to Vijayaraghavan.
OVER

* $\overline{\mathrm{A} \text { function which is holomorphic in all of } \mathbb{C} \text { is called entire. }}$

Problem 6: Do Exercise 48 of $\boldsymbol{N}^{\mathbf{2}}$, which follows.
For each function $f: \Omega \rightarrow \mathbb{C}$ holomorphic on a connected open set $\Omega \subseteq \mathbb{C}$ prove the following statements.
(48.1) If $f^{\prime}(z)=0$ for every $z \in \Omega$, then f is constant.
(48.2) If there exists $c \in \mathbb{C}$ such that $f(z)=c \cdot \overline{f(z)}$ for every $z \in \Omega$, then f is constant.
(48.3) If $f(\Omega) \subseteq \mathbb{R}$, then f is constant.
(48.4) If $|f|$ is constant, then f is constant.
(48.5) If $g: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic and $g \circ f$ is constant, then f or g is constant.
(48.6) If $f_{1}, f_{2}, \ldots, f_{N}$ are holomorphic in Ω and if $\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+\left.\cdots| | f_{n}\right|^{2}$ is constant, then each f_{j} is constant.

