Homework \#3 Math 503 September 27, 2004

Due Wednesday, October 6, 2004
Please read $\S 1.3$ and $1.4(\mathrm{pp} .22-36)$ in $\mathbf{N}^{\mathbf{2}}$.
Problem 1: Do Exercise 73 of $\boldsymbol{N}^{\mathbf{2}}$, which follows:
One of the definitions of the dilogarithm $L i_{2}$ is the series $L i_{2}(z) ;=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$.
(73.1) Determine its radius of convergence, R.
(73.2) Determine whether the series converges on the closure $\overline{D(0, R)}$.
(73.3) For each real $\varepsilon>0$, determine an integer n_{ε} such that for every integer $m \geq n_{\varepsilon}$ and for every $z \in D(0, R),\left|\sum_{n>m} \frac{z^{n}}{n^{2}}\right|<\varepsilon$.
(73.4) Show that inside the topological interior of the disc of convergence the complex dilogarithm satisfies a second-order linear ordinary differential equation with rational coefficients.

Problem 2: Suppose μ is a compactly supported measure in \mathbb{C}. Define F_{μ}, the Cauchy transform of μ, by $F_{\mu}(z)=\int_{\mathbb{C}} \frac{1}{w-z} d \mu_{w}$ for $z \notin \operatorname{supp} \mu$.
a) Prove that F_{μ} is holomorphic in $\mathbb{C} \backslash \operatorname{supp} \mu$ and that $\lim _{z \rightarrow \infty} F_{\mu}(z)=0^{*}$.
b) Suppose that μ is Lebesgue measure on the boundary of the unit circle. What is F_{μ} ?
c) Suppose that μ is Lebesgue measure on the unit interval, $[0,1]$, of \mathbb{R}. What is F_{μ} ?

Problem 3: Show that the series $\sum_{n=1}^{\infty} \frac{z}{(1+|z|)^{n}}$ converges (absolutely) pointwise but not locally uniformly on \mathbb{C}.

The following two problems are from Theory of Complex Functions by Reinhold Remmert. Problem 4: Using the Cauchy integral formula calculate
a) $\int_{\partial D(0,2)} \frac{e^{z} d z}{(z+1)(z-3)^{2}}$
b) $\int_{\partial D(0,2)} \frac{\sin z}{z+i} d z$
$\left(\sin (z)\right.$ is $\frac{e^{i z}-e^{-i z}}{2 i}$ or anything convenient.)
c) $\int_{\partial D(-2 i, 2)} \frac{d z}{z^{2}+1}$
d) $\int_{\partial D(0,1)} \frac{e^{z} d z}{(z-2)^{3}} d z$

Problem 5: Let f be holomorphic in $D(0, R), R>1$. Calculate the integrals $\int_{\partial D(0,1)}\left(2 \pm\left(\zeta+\zeta^{-1}\right)\right) \frac{f(\zeta)}{\zeta} d \zeta$ two different ways and thereby deduce that $\pi^{-1} \int_{0}^{2 \pi} f\left(e^{i t}\right) \cos ^{2}\left(\frac{1}{2} t\right) d t=f(0)+\frac{1}{2} f^{\prime}(0)$ and $\pi^{-1} \int_{0}^{2 \pi} f\left(e^{i t}\right) \sin ^{2}\left(\frac{1}{2} t\right) d t=f(0)-\frac{1}{2} f^{\prime}(0)$.

[^0]
[^0]: * Given $\varepsilon>0$, there is $M>0$ so that if $|z|>M$ then $F_{\mu}(z)$ is defined and $\left|F_{\mu}(z)\right|<\varepsilon$.

