Homework \#4 Math 503 ${ }^{\triangleright}$ October 6, 2004

Due Wednesday, October 20, 2004

Please finish reading $\S 1.4$ and $\S 1.5(\mathrm{pp} .32-43)$ in $\boldsymbol{N}^{\mathbf{2}}$. Then we should begin chapter 2. Problem 1: Suppose that f is holomorphic in $D(0,1)$ and that for all sufficiently large integers, $n,\left|f\left(\frac{1}{n}\right)\right| \leq \frac{1}{n!}$. Prove that f is the zero function.
Problem 2: a) An entire function is of exponential type if there are $A>0$ and $C>0$ so that for all $z \in \mathbb{C}$ with $|z|>C,|f(z)| \leq C e^{A|z|}$. Prove that the collection of entire functions of exponential type is closed under differentiation. In fact, if f is of exponential type, so is f^{\prime}, with the same A but with a possibly different C.
b) Show that an analogous statement for C^{∞} functions on \mathbb{R} is false. That is, define a C^{∞} real-valued function g on \mathbb{R} to be of exponential type if there are $A>0$ and $C>0$ so that for all $x \in \mathbb{R}$ with $|x|>C,|f(x)| \leq C e^{A|x|}$. Give an example of a C^{∞} function on \mathbb{R} of exponential type whose derivative is not of exponential type for any choices of C and $A . \diamond$
Problem 3: Suppose U is open in \mathbb{R}. A function $f: U \rightarrow \mathbb{R}$ is real analytic or C^{ω} if, for every $a \in U$, there is $\delta>0$ with $(a-\delta, a+\delta) \subseteq U$ and there is a sequence of real numbers $\left\{c_{n}\right\}$ so that $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ for all $x \in(a-\delta, a+\delta): f$ is real analytic if f is locally the sum of a real power series.
a) Suppose $F: \Omega \rightarrow \mathbb{C}$ is holomorphic and $F(\Omega \cap \mathbb{R}) \subseteq \mathbb{R}$. If $U=\Omega \cap \mathbb{R}$ and $f=\left.F\right|_{U}$, prove that $f: U \rightarrow \mathbb{R}$ is real analytic.
b) Suppose $f: U \rightarrow \mathbb{R}$ is real analytic with U open and connected in \mathbb{R}. Prove that there is an open and connected subset Ω of \mathbb{C} and a complex analytic function $F: \Omega \rightarrow \mathbb{C}$ so that $U=\Omega \cap \mathbb{R}$ and $f=\left.F\right|_{U}{ }^{*}$
c) Find an f which is C^{∞} on \mathbb{R} but not real analytic on $\mathbb{R} . \diamond$
d) Find an f which is real analytic on \mathbb{R} whose Taylor series at 0 has finite radius of convergence. \diamond
e) Liouville's Theorem is false for real analytic functions: find an f which is real analytic on \mathbb{R}, non-constant, and bounded. \diamond Why does such an example exist?
f) An "entire" real analytic function may not have a complexification with domain \mathbb{C}. If $\varepsilon>0$ define $S_{\varepsilon} \subset \mathbb{C}$ by $S_{\varepsilon}=\{z \in \mathbb{C}:|\operatorname{Im} z|<\varepsilon\}$. Construct a real analytic function $f: \mathbb{R} \rightarrow \mathbb{R}$ so that there is no holomorphic F_{ε} defined on S_{ε} with $\left.F_{\varepsilon}\right|_{\mathbb{R}}=f$ for any $\varepsilon>0 . \diamond$ Problem 4: a) Read a version of the Weierstrass Approximation Theorem. The theorem statement should begin: "If f is continuous and real-valued on $[a, b] \subset \mathbb{R}$ and if $\varepsilon>0$, then there is $P(x) \in \mathbb{R}[x]$ so that \ldots "
b) If $P(z) \in \mathbb{C}[z]$, prove that $\sup \left\{\left|\frac{1}{z}-P(z)\right|: z \in \partial D(0,1)\right\} \geq 1$.

OVER
\bigcirc Thanks to Mr. Nguyen for suggesting these wonderful footnote characters.

* F is called a complexification of f.
\diamond Easy examples are better than complicated examples. I think there are easy examples for 2 b), 3 c), 3d), 3e), and 5b). Maybe there's an easy example for 3 f) also. I would like that.

Problem 5: A holomorphic function f has a holomorphic log if there is g, holomorphic in f 's domain, so that $e^{g}=f$. A holomorphic function f has a holomorphic square root if there is g, holomorphic in f^{\prime} 's domain, so that $g^{2}=f$. Let $D^{*}=\{z \in \mathbb{C}: 0<|z|<1\}$.
a) If f is holomorphic and has a holomorphic \log, then f has a holomorphic square root.
b) Give an example of a non-zero holomorphic function defined on D^{*} which has a square root but does not have a log. \diamond Previous page!
c) Prove that that z has no holomorphic square root in D^{*}. ${ }^{\boldsymbol{\omega}}$

Problem 6: a) Use what we've done so far in the course to find a biholomorphic mapping of the first quadrant to the unit disc. What is the image of the half line $\{y=x\} \cap\{x>0\}$? What is the image of the quarter circle $\{|z|=1\} \cap\left\{0<\arg z<\frac{\pi}{2}\right\}$?
b) Use what we've done so far in the course to find a biholomorphic mapping of the strip $\{z \in \mathbb{C}: 0<\operatorname{Re} z<1\}$ to the unit disc. What is the image of the line segment $\{0<\operatorname{Re} z<1\} \cap\{\operatorname{Im} z=0\}$? What is the image of the line $\left\{\operatorname{Re} z=\frac{1}{2}\right\}$?

* We did verify that z has no \log in D^{*} (if it did, then the log's derivative is $\frac{1}{z}$ which has no primitive in D^{*}). But because of b), a simple converse to a) is not likely!

