

Homework \#7 Math 503 November 29, 2004

Due Monday, December 13, 2004

The following three problems are from Remmert's Theory of Complex Functions.
Problem 1: For $a>1$ show that $\int_{0}^{2 \pi} \frac{d \phi}{a+\sin \phi}=\frac{2 \pi}{\sqrt{a^{2}-1}}$.
Problem 2: Prove the identity $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{4}+a^{4}\right)^{2}}=\frac{3}{8} \frac{\sqrt{2}}{a^{7}} \pi$ for $a>0$.
Problem 3: Prove that $\int_{0}^{\infty} \frac{\sqrt{x}}{x^{2}+a^{2}} d x=\frac{\pi}{\sqrt{2 a}}$.
The following problem is Exercise 239 in $\mathbf{N}^{\mathbf{2}}$. Similar problems are found on written qualifying exams of many universities.
Problem 4: For each positive integer n, and for each real $\lambda>1$, prove that the equation

$$
z^{n}=e^{z-\lambda}
$$

has no solutions with $|z|=1$, and exactly n simple solutions with $|z|<1$.
A continuous function is proper if and only if the inverse image of every compact set is compact. The following problem is Exercise 297 in $\boldsymbol{N}^{\mathbf{2}}$.

Problem 5: Prove that there is no proper holomorphic map from the open unit disc into the complex plane.

The following problem is from Conway's Functions of One Complex Variable.
Problem 6: Does there exist a holomorphic function $f: D(0,1) \rightarrow D(0,1)$ with $f\left(\frac{1}{2}\right)=\frac{3}{4}$ and $f^{\prime}\left(\frac{1}{2}\right)=\frac{2}{3}$?

The following problem is from Remmert's Theory of Complex Functions. Here H is the open upper halfplane, so $H=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$.

Problem 7: Let $f: D(0,1) \rightarrow H$ be holomorphic with $f(0)=i$. If $f(0)=i$, prove that
a) $\frac{1-|z|}{1+|z|} \leq|f(z)| \leq \frac{1+|z|}{1-|z|}$ for $z \in D(0,1)$.
b) $\left|f^{\prime}(0)\right| \leq 2$.

Problem 8: Let f be a holomorphic function which maps the unit disk into the unit disk. Show that $|f(z)+f(-z)| \leq 2|z|^{2}$ for all z in the unit disk, and if the equality holds for some z, then $f(z)=e^{i \theta} z^{2}$ for some real θ.
\dagger This semester I've worked with a study group of grad students who are preparing for our written exams. We looked at this problem. At the urging of the VERY KIND students in the study group, I advise you that the problem statement, copied directly from the Johns Hopkins exam, is incorrect. Please do one of the following two alternative problems.
\# 1 Find a counterexample to the problem as stated. Then add a simple hypothesis to the problem which makes it correct, and solve the resulting problem.
\# 2 Solve this problem, quoted from Remmert's Theory of Complex Functions. Here \mathbb{E} is the unit disc.

Let $f: \mathbb{E} \rightarrow \mathbb{E}$ be holomorphic, with $f(0)=0$. Let $n \in \mathbb{N}, n \geq 1, \zeta:=e^{2 \pi i / n}$. Show that

$$
\begin{equation*}
\left|f(\zeta z)+f\left(\zeta^{2} z\right)+\cdots+f\left(\zeta^{n} z\right)\right| \leq n|z|^{n} \quad \text { for all } z \in \mathbb{E} \tag{*}
\end{equation*}
$$

Moreover, if there is at least one $c \in \mathbb{E} \backslash\{0\}$ such that equality prevails in $\left(^{*}\right)$ at $z=c$, then there exists an $a \in \partial \mathbb{E}$ such that $f(z)=a z^{n}$ for all $z \in \mathbb{E}$. Hint. Consider the function $h(z):=\frac{1}{n z^{n-1}} \sum_{j=1}^{n} f\left(\zeta^{j} z\right)$. For the proof of the implication $f(\zeta z)+f\left(\zeta^{2} z\right)+\cdots+f\left(\zeta^{n} z\right)=n a z^{n} \Rightarrow f(z)=a z^{n}$, verify that the function $k(z):=f(z)-a z^{n}$ satisfies
$k(\zeta z)+k\left(\zeta^{2} z\right)+\cdots+k\left(\zeta^{n} z\right)=0$ and $\left|a z^{n}\right|+2 \Re\left(a z^{n} \overline{k\left(\zeta^{j} z\right)}\right)+\mid k\left(\left.\left(\zeta^{j} z\right)\right|^{2}<1\right.$
for every $j \in\{0,1, \ldots, n-1\}$, and consequently $|k(z)|^{2}<n\left(1-|z|^{2 n}\right)$.

