
## Math 403:01 Homework assignment #2 February 1, 2010

## Due at the beginning of class, Monday, February 8, 2010

Solve these textbook problems (4 points each): 1.4 (page 41): 19, 22, 31; 1.5 (page 53): 11, 13, 14.

Also hand in solutions to the following two problems:

- A. (10 points) This problem concerns  $z^z$ . The picture shows the upper right quarter of the unit circle (where |z|=1,  $\text{Re}(z)\geq 0$ , and  $\text{Im}(z)\geq 0$  or where  $z=e^{it}$  and t is ...).
- a) Find all values of  $z^z$  at A (where z=1), B (where  $z=\frac{1+i}{\sqrt{2}}$ ), and  $i \in \mathbb{C}$  (where z=i).
- b) Suppose you start with the standard value of  $1^1$  for  $z^z$  at A, and move *continuously* on the quarter circle shown, computing  $z^z$  (this should probably be called the *principal branch* of  $z^z$ ). What value of  $z^z$  is obtained at B? What value of  $z^z$  is obtained at C?



c) Sketch the image of this quarter circle in  $\mathbb C$  under the mapping  $z\mapsto z^z$  (the principal branch!).

**Comment** Remember the *definition* of  $A^B$  in this course (made this week!). Use a graphing device to sketch the curve requested in c). You can get a formula for  $z^z$  when  $z = e^{it}$  in terms of familiar functions, but the formula will combine them in strange ways, and the resulting curve is strange to me. Maybe that's because  $z^z$  is, indeed, very strange.

B. (10 points) A frog starts at the origin. It leaps one unit eastward (to the right!) on its first jump,  $\frac{1}{2}$  unit on its second,  $\frac{1}{4}$  unit on its third,  $\frac{1}{8}$  on the fourth, and so on, each time turning exactly an angle  $\theta$  to the left from the previous jump. Assuming only that  $0 < \theta < \pi$ , show that this frog will always end up at some point on a semicircle of radius  $\frac{2}{3}$ . Sketch this semicircle.

Hint Example 27 on page 39 will be useful if you write the frog's travel using complex numbers.