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1. Introduction

Let M be an irreducible n−dimensional Hermitian symmetric space of compact type, 
equipped with a canonical Kähler-Einstein metric ω. Write ωn for the associated volume 
form (up to a positive constant depending only on n). The purpose of this paper is to 
prove the following rigidity theorem:

Theorem 1.1. Let (M, ω) be an irreducible n−dimensional Hermitian symmetric space of 
compact type as above. Let F = (F1, ..., Fm) be a holomorphic mapping from a connected 
open subset U ⊂ M into the m-Cartesian product M × ... ×M of M . Assume that each 
Fj is generically non-degenerate in the sense that F ∗

j (ωn) �≡ 0 over U . Assume that F
satisfies the following volume-preserving (or measure-preserving) equation:

ωn =
m∑
i=1

λiF
∗
i (ωn), (1)

for certain constants λj > 0. Then for each j with 1 ≤ j ≤ m, Fj extends to a holo-
morphic isometry of (M, ω). In particular, the conformal factors satisfy the identity: ∑m

j=1 λj = 1.

Rigidity properties are among the fundamental phenomena in Complex Analysis and 
Geometry of several variables, that study the global extension and uniqueness for various 
holomorphic objects up to certain group actions. The rigidity problem that we consider 
in this paper was initiated by a celebrated paper of Calabi [4]. In [4], Calabi studied 
the global holomorphic extension and uniqueness (up to the action of the holomorphic 
isometric group of the target space) for a local holomorphic isometric embedding from 
a Kähler manifold into a complex space form. He established the global extension and 
the Bonnet type rigidity theorem for a local holomorphic isometric embedding from a 
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complex manifold with a real analytic Kähler metric into a standard complex space form. 
The phenomenon discovered by Calabi [4] has been further explored in the past several 
decades due to its extensive connection with problems in Analysis and Geometry. (See 
[43], [9], [10], for instance.)

In 2004, motivated by the modularity problem of the algebraic correspondences in al-
gebraic number theory, Clozel and Ullmo [7] were led to study the rigidity problems for 
local holomorphic isometric maps and even much more general volume-preserving maps 
between bounded symmetric domains equipped with their Bergman metrics. By reducing 
the modularity problem to the rigidity problem for local holomorphic isometries, Clozel-
Ullmo proved that an algebraic correspondence in the quotient of a bounded symmetric 
domain preserving the Bergman metric has to be a modular correspondence in the case of 
the unit disc in the complex plane and in the case of bounded symmetric domains of rank 
≥ 2. Notice that in the one dimensional setting, volume preserving maps are identical 
to the metric preserving maps. Thus the Clozel-Ullmo result also applies to the volume 
preserving algebraic correspondences in the lowest dimensional case. Motivated by the 
work in [7], Mok carried out a systematic study of the rigidity problem for local isometric 
embeddings in a very general setting. Mok in [31–33] proved the total geodesy for a local 
holomorphic isometric embedding between bounded symmetric domains D and Ω when 
either (i) the rank of each irreducible component of D is at least two or (ii) D = Bn and 
Ω = (Bn)p for n ≥ 2. In a paper of Yuan-Zhang [48], the total geodesy is obtained in the 
case of D = Bn and Ω = BN1 ×· · ·×BNp with n ≥ 2 and Nl arbitrary for 1 ≤ l ≤ p. Ear-
lier, Ng in [39] had established a similar result when p = 2 and 2 ≤ n ≤ N1, N2 ≤ 2n −1. 
In a paper of Yuan and the second author of this paper [20], we established the rigidity 
result for local holomorphic isometric embeddings from a Hermitian symmetric space 
of compact type into the product of Hermitian symmetric spaces of compact type with 
even negative conformal factors where certain non-cancellation property for the confor-
mal factors holds. (This cancellation condition turns out be the necessary and sufficient 
condition for the rigidity to hold due to the presence of negative conformal factors.) In a 
recent paper of Ebenfelt [11], a certain classification, as well as its connection with prob-
lems in CR geometry, has been studied for local isometric maps when the cancellation 
property fails to hold. The recent paper of Yuan [47] studied the rigidity problem for 
local holomorphic maps preserving the (p, p)-forms between Hermitian symmetric spaces 
of non-compact type. At this point, we should also mention other related studies for the 
rigidity of holomorphic mappings. Here, we quote the papers by Chan-Xiao-Yuan [5], 
Dinh-Sibony [8], Huang [18,19], Huang-Yuan [21], Ji [25], Kim-Zaitsev [26], Mok [30,34], 
Mok-Ng [35], Ng [37–39], Xiao-Yuan [45,46] and many references therein, to name a few.

The work of Clozel and Ullmo has left open an important question of understanding 
the modularity problem for volume-preserving correspondences in the quotient of Her-
mitian symmetric spaces of higher dimension equipped with their Bergman metrics. In 
2012, Mok and Ng answered, in the affirmative, the question of Clozel and Ullmo in [36]
by establishing the rigidity property for local holomorphic volume preserving maps from 
an irreducible Hermitian manifold of non-compact type into its Cartesian products.
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The present paper continues the above mentioned investigations, especially those in 
[7], [36] and [20]. Our main purpose is to establish the Clozel-Ullmo and Mok-Ng results 
for local measure preserving maps between Hermitian symmetric spaces of compact type. 
Notice that in the Riemann sphere setting, Theorem 1.1 also follows from the isometric 
rigidity result obtained in an earlier paper of the second author with Yuan [20]. However, 
the basic approach in this paper fundamentally differs from that in [20]. The method 
used in [20] is to first obtain the result in the simplest projective space setting and 
then use the minimal rational curves to reduce the general case to the much simpler 
projective space case. On the other hand, restrictions of volume preserving maps are 
no longer volume preserving and thus the reduction method in [20] can not be applied 
here. The approach we use in this paper is first to establish general results under certain 
geometric and analytic assumptions (i.e., Propositions (I)–(III)) and then verify that 
these assumptions are automatically satisfied based on a case by case argument in terms 
of the type of the Hermitian space.

We now briefly describe the organization of the paper and the basic ideas for the proof 
of Theorem 1.1. The major part of the paper is devoted to showing the algebraicity for a 
certain component Fj in Theorem 1.1 with total degree depending only on the geometry 
of (M, ω). For this, we introduce the concept of Segre family for an embedded projective 
subvariety. Notice that in the previous work, Segre varieties were only defined for a real 
submanifold in a complex space through complexification. Our Segre family is defined 
by slicing the minimal embedding with a hyperplane in the ambient projective space, 
associated with points in its conjugate space. The Segre family thus defined is invariant 
under holomorphic isometric transformations, whose defining function is closely related 
to the complexification of the potential function of the canonical metric. The first step 
in our proof is to show that a certain component Fj preserves at least locally the Segre 
family. The next difficult step is then to show that preservation of the Segre foliation 
gives the algebraicity of Fj . To obtain the algebraicity of Fj, we need to study the size 
that the space of the jets of the map Fj along the Segre variety directions. Indeed, 
an important part of the paper is to show that the space of the jets of an associated 
embedding map rF along the Segre direction up to a certain order depending only on 
M and its minimal embedding spans the whole target tangent space. This is a main 
reason we need to describe precisely what the minimal embedding is for each M . Once 
this is done, we can then show that the map, when restricted to each Segre variety, stays 
in the field generated by rational functions and the differentiations of their defining 
functions as well as their inverse, and thus must be algebraic by a modified version 
of the Hurwitz theorem. The uniform bound of the total degree of Fj is obtained by 
the fact that we need only a fixed number of steps to perform algebraic and differential 
operations to reproduce the map from the minimal embedding functions. After obtaining 
the algebraicity, we further show that Fj extends to a birational self-map of the space by 
a monodromy argument, the geometry of the Segre foliation, an iteration argument and 
the classical Bezout theorem. Finally, a simple argument shows that a birational map 
which preserves the Segre foliation is the restriction of a holomorphic self-isometry of the 
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space. Once Fj is proved to be an isometry, we can delete Fj from the original equation 
and then apply an induction argument to conclude the rigidity for other components.

The organization of the paper is as follows: In §2, we first introduce the Segre family for 
a polarized projective variety. We then describe the canonical and minimal embedding of 
the space into a complex projective space in terms of the type of the space. In §3, we derive 
a general theorem for partially degenerate holomorphic embeddings which will play a 
fundamental role in the later development. In §4, we provide the algebraicity for one of the 
components of the holomorphic mapping F under additional assumptions which include 
the partial non-degeneracy condition introduced in §3, the generic transversality of the 
Segre varieties and the irreducibility of the Segre family. In §5, we show that the partial 
non-degeneracy holds for local biholomorphisms between any irreducible Hermitian space 
of compact type. §6 is devoted to proving the generic transversality for the intersection 
of the Segre varieties. We prove in §7 the irreducibility of the potential functions pulled 
back to a complex Euclidean space, which has consequences on the irreducibility of the 
Segre varieties and the Segre families. The argument in §5-§7 varies as the type of the 
space varies and thus has to be done case by case.

We include several Appendices for convenience of the reader. In Appendix A, we give 
the concrete functions for a minimal holomorphic embedding of a Hermitian symmetric 
space of exceptional type into a projective space. In Appendix B, we continue to establish 
Proposition (I) for the rest cases. In Appendix C, we provide the verification on the 
transversality for the Segre varieties for the remaining cases not covered in §6.

Acknowledgment. The authors would like to thank A. Buch, J. Lu, L. Manivel, X. Yang 
and Z. Zhang for many discussions during the preparation of this work. In particular, 
the first author would like to express his gratitude to R. Bryant for answering many of 
his questions on Hermitian symmetric spaces through the mathoverflow website.

2. Irreducible Hermitian symmetric spaces and their Segre varieties

2.1. Segre varieties of projective subvarieties

Write z = (z1, · · · , zn, zn+1) for the coordinates of Cn+1 and [z] = [z1, · · · , zn, zn+1]
for the homogeneous coordinates of CPn. For a polynomial p(z), we define p(z) :=
p(z). For a connected projective variety V ⊂ CPn, write IV for the ideal consisting 
of homogeneous polynomials in z that vanish on V . We define the conjugate variety 
V ∗ of V to be the projective variety defined by I∗

V := {f̄ : f ∈ IV }. Apparently the 
map z �→ z defines a diffeomorphism from V to V ∗. When IV has a basis consisting of 
polynomials with real coefficients, V ∗ = V . Also if V is irreducible and has a smooth 
piece parametrized by a neighborhood of the origin of a complex Euclidean space through 
polynomials with real coefficients, then V ∗ = V .

Next for [ξ] ∈ V ∗, we define the Segre variety Qξ of V associated with ξ by Qξ =
{[z] ∈ V :

∑n+1
j=1 zjξj = 0} which is a subvariety of codimension one in V . Similarly, for 
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[z] ∈ V , we define the Segre variety Q∗
z of V ∗ associated with z by Q∗

z = {[ξ] ∈ V ∗ :∑n+1
j=1 zjξj = 0}. It is clear that [z] ∈ Qξ if and only if [ξ] ∈ Q∗

z. The Segre family of V
is defined to be the projective variety M := {([z], [ξ]) ∈ V × V ∗, [z] ∈ Qξ}.

Now, we let (M, ω) be an irreducible Hermitian symmetric space of compact type 
canonically embedded in a certain minimal projective space CPN , that we will describe 
in detail later in this section. Then under this embedding, its conjugate space M∗ is 
just M itself. Taking ω to be the natural restriction of the Fubini-Study metric to M , 
the holomorphic isometric group of M is then the restriction of a certain subgroup of 
the unitary actions of the ambient space. Now, for two points p1, p2 ∈ M , let U be an 
(N + 1) × (N + 1) unitary matrix such that σ([z]) = [z] · U is an isometry sending p1
to p2. Then σ∗([ξ]) = [ξ]U is an isometry of M∗. By a straightforward verification, we 
see that σ∗ biholomorphically sends Q∗

p1
to Q∗

p2
. Similarly, for any q1, q2 ∈ M∗, Qq1 is 

unitary equivalent to Qq2 . In the canonical embeddings which we will describe later, the 
hyperplane section at infinity of the manifold is a Segre variety. Since the one at infinity 
is built up from Schubert cells and all Segre varieties are holomorphically equivalent to 
each other, one deduces that each Segre variety of M is irreducible. This fact will play 
a role in the proof of our main theorem.

2.2. Canonical embeddings and explicit coordinate functions

We now describe a special type of canonical embedding of the Hermitian symmetric 
space M of compact type into CPN . This embedding will play a crucial role in our 
computation leading to the proof of Theorem 1.1. See [16] for the classification of the 
irreducible Hermitian symmetric spaces of compact type. See also [28], [29] on the typical 
canonical embeddings of the Heritian symmetric spaces of compact type and the related 
theory of Hermitian positive Jordan triple system.

♣1. Grassmannians (spaces of type I): Write G(p, q) for the Grassmannian space 
consisting of p planes in Cp+q. (Since G(p, q) is biholomorphically equivalent to G(q, p), 
we will assume p ≤ q in what follows.) There is a matrix representation of G(p, q) as the 
equivalence classes of p ×(p +q) non-degenerate matrices under the matrix multiplication 
from the left by elements of GL(p, C). A Zariski open affine chart A for G(p, q) is 
identified with Cpq with coordinates Z for elements of the form:

(Ip×p Z ) =

⎛⎜⎝1 0 0 · · · 0 z11 z12 · · · z1q
0 1 0 · · · 0 z21 z22 · · · z2q

· · · · · ·
0 0 0 · · · 1 zp1 zp2 · · · zpq

⎞⎟⎠ , where Z is a p× q matrix.

The Plücker embedding G(p, q) → CP (ΛpCp+q) is given by mapping the p−plane Λ
spanned by vectors v1, ..., vp ∈ Cp+q into the wedge product v1 ∧ v2 ∧ ... ∧ vp ∈ ∧pCp+q. 
The action induced by the multiplication through elements of SU(p + q) from the right 
induces a unitary action in the embedded ambient projective space. In homogeneous
coordinates, the embedding is given by the p × p minors of the p × (p + q) matrices (up 
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to a sign). More specifically, in the above local affine chart, we have the following (up to 
a sign in front of the components):

Z → [1, Z( i1 ... ik
j1 ... jk

), ...] (2)

which is denoted for simplicity of notation, in what follows, by [1, rz] = [1, ψ1, ψ2, ..., ψN ]. 
Here and in what follows, Z( i1 ... ik

j1 ... jk
) is the determinant of the submatrix of Z formed 

by its ith1 , ..., ithk rows and jth
1 , ..., jth

k columns, where the indices run through

k = 1, 2, ..., p, 1 ≤ i1 < i2 < ... < ik ≤ p, 1 ≤ j1 < j2 < ... < jk ≤ q.

In particular when k = 1, Z( i1
j1

) = zi1j1 . Notice that under such an embedding into 

the projective space, (G(p, q))∗ = G(p, q). We thus have the same affine coordinates for 
(G(p, q))∗:

(Ip×p Ξ) =

⎛⎜⎝1 0 0 · · · 0 ξ11 ξ12 · · · ξ1q
0 1 0 · · · 0 ξ21 ξ22 · · · ξ2q

· · · · · ·
0 0 0 · · · 1 ξp1 ξp2 · · · ξpq

⎞⎟⎠ , Ξ is a p× q matrix.

By the definition in §2.1, it follows that the restriction of the Segre family to the product 
of these Zariski open affine subsets has the following canonical defining function:

ρ(z, ξ) = 1 +
∑

1≤i1<i2<...<ik≤p,
1≤j1<j2<...<jk≤q

k=1,...,p

Z( i1 ... ik
j1 ... jk

)Ξ( i1 ... ik
j1 ... jk

) (3)

Here z = (z11, z12, ..., zpq), ξ = (ξ11, ξ12, ..., ξpq). For simplicity of notation and termi-
nology, we call this quasi-projective algebraic variety embedded in Cpq × Cpq, which is 
defined by (3), the Segre family of G(p, q). Our defining function ρ(z, ξ) of the Segre 
family is closely related to the generic norm of the corresponding Hermitian positive 
Jordan triple system (cf. [28], [29]).

♣2. Orthogonal Grassmannians (type II): Write GII(n, n) for the submanifold of 
the Grassmannian G(n, n) consisting of isotropic n-dimensional subspaces of C2n. Then 
S̃ ∈ GII(n, n) if and only if

S̃

(
0 In×n

In×n 0

)
S̃T = 0. (4)

In the aforementioned open affine piece of the Grassmannian G(n, n) with S̃ = (I, S), 
S̃ ∈ GII(n, n) if and only if S is an n × n antisymmetric matrix. We identify this open 
affine chart A of GII(n, n) with C

n(n−1)
2 through the holomorphic coordinate map:
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(In×n Z ) :=

⎛⎜⎝1 0 0 · · · 0 0 z12 · · · z1n
0 1 0 · · · 0 −z12 0 · · · z2n

· · · · · ·
0 0 0 · · · 1 −z1n −z2n · · · 0

⎞⎟⎠ → (z12, · · · z(n−1)n).

(5)

Later in the paper we will sometimes use the notation zji := −zij if j > i for this type 
II case. The Plücker embedding of G(n, n) gives a 2-canonical embedding of GII(n, n). 
Unfortunately this embedding is not good enough for our purposes later. Therefore, we 
will use a different embedding in this paper, which is given by the spin representation 
of O2n. This embedding is what is called a one-canonical embedding of GII(n, n). We 
briefly describe this embedding as following. More details can be found in [Chapter 12; 
41].

Let V be a real vector space of dimension 2n with a given inner product, and let K(V )
be the space consisting of all orthogonal complex structures on V preserving this inner 
product. An element of K(V ) is a linear orthogonal transformation J : V → V such that 
J2 = −1. Any two choices of J are conjugate in the orthogonal group O(V ) = O2n, and 
thus K(V ) can be identified with the homogeneous space O2n/Un. On the other hand, 
there is a one-to-one correspondence assigning the complex J to a complex n-dimensional 
isotropic subspace W of VC(= V

⊗
C). K(V ) has two connected components K±(V ):

Noticing that any complex structure defines an orientation on V , these two components 
correspond to the two possible orientations on V . Write one for K+(V ), which is actually 
our GII(n, n).

Now fix an isotropic n-dimensional subspace W ⊂ VC with the associated complex 
structure J of VC and pick a basis for V: {x1, ..., xn, y1, ..., yn} with J(xi) = yi, J(yi) =
−xi. Then W is spanned by {xi−

√
−1yi}ni=1. Define W to be the space spanned by {xi+√

−1yi}ni=1. As shown in [41], there is a holomorphic embedding K(V ) ↪→ CP (Λ(W )), 
where Λ(W ) is the exterior algebra of W . This embedding is equivariant under the action 
of O(V ). Thus K+(V ) ↪→ CP (Λ(W )) is equivariant under SO(V ). Choose the open affine 
cell of K+(V ) such that {Y ∈ K+(V )|Y ∩W = ∅}. Then it can be identified with (5).

We next describe the 1-canonical embedding by Pfaffians as following: Let Π be the 
set of all partitions of {1, 2, ..., 2n} into pairs without regard to order. An element α ∈ Π
can be written as α = {(i1, j1), (i2, j2), ..., (in, jn)} with ik < jk and i1 < i2 < ... < in. 
Let

π =
[

1 2 3 4 ... 2n
i1 j1 i2 j2 ... jn

]

be the corresponding permutation. Given a partition α as above and a (2n) ×(2n) matrix 
A = (ajk), define

Aα = sgn(π)ai1j1ai2j2 · · · ainjn .

The Pfaffian of A is then given by
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pf(A) =
∑
α∈Π

Aα.

The Pfaffian of an m ×m skew-symmetric matrix for m odd is defined to be zero.
Therefore in the coordinate system (5), the embedding of A is given by

[1, ...,pf(Zσ), ...]. (6)

Write Sk for the collection of all subsets of {1, ..., n} with k elements. The σ in (6) runs 
through all elements of Sk with 2 ≤ k ≤ n and k even. For σ = {i1 < · · · < ik}, Zσ is 
defined as the submatrix Z(i1 ... ik

i1 ... ik
). For instance, (pf(Zσ))σ∈S2

= (z12, ..., z(n−1)n). 
We also write (6) as [1, rz] = [1, ψ1, ψ2, ..., ψN ] for simplicity of notation. We choose the 
local coordinates for (GII(n, n))∗ in a similar way

(In×n Ξ) =

⎛⎜⎝1 0 0 · · · 0 0 ξ12 · · · ξ1n
0 1 0 · · · 0 −ξ12 0 · · · ξ2n

· · · · · ·
0 0 0 · · · 1 −ξ1n −ξ2n · · · 0

⎞⎟⎠ . (7)

The defining function for the Segre family (in the product of such affine pieces) is given 
by

ρ(z, ξ) = 1 +
∑

σ∈Sk,
2≤k≤n,2|k

Pf(Zσ)Pf(Ξσ). (8)

♣3. Symplectic Grassmannians (type III): Write GIII(n, n) for the submanifold of 
the Grassmannian space G(n, n) defined as follows: Take the matrix representation of 
each element of the Grassmannian G(n, n) as an n × 2n non-degenerate matrix. Then 
Ã ∈ GIII(n, n), if and only if,

Ã

(
0 In×n

−In×n 0

)
ÃT = 0. (9)

In the Zariski open affine piece of the Grassmannian G(n, n) defined before, we can take 
a representative matrix of the form: Ã = (I, Z). Then we conclude that Ã ∈ GIII(n, n)
if and only if Z is an n × n symmetric matrix. We identify this Zariski open affine chart 
A of GIII(n, n) with C

n(n+1)
2 through the holomorphic coordinate map:

Ã = (In×n Z ) :=

⎛⎜⎝1 0 0 · · · 0 z11 z12 · · · z1n
0 1 0 · · · 0 z12 z22 · · · z2n

· · · · · ·
0 0 0 · · · 1 z1n z2n · · · znn

⎞⎟⎠ → (z11, · · · , znn).

Later in the paper we sometimes use the notation zji := zij if j > i for this type III 
case. Through the Plücker embedding of the Grassmannian, GIII(n, n) is embedded into 
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CP (ΛnC2n)(∼= CPN∗
). In the above local coordinates, we write down the embedding as 

(up to a sign)

Z → [1, · · · , Z( i1 ... ik
j1 ... jk

), ...] := [1, ψ1, · · · , ψN∗ ]. (10)

Choose the local affine open piece of (GIII(n, n))∗ consisting of elements in the following 
form:

(In×n Ξ) =

⎛⎜⎝1 0 0 · · · 0 ξ11 ξ12 · · · ξ1n
0 1 0 · · · 0 ξ12 ξ22 · · · ξ2n

· · · · · ·
0 0 0 · · · 1 ξ1n ξ2n · · · ξnn.

⎞⎟⎠ .

The defining function of Segre family in the product of such affine open pieces is given 
by

ρ(z, ξ) = 1 +
∑

1≤i1<i2<...<ik≤n,
1≤j1<j2<...<jk≤n

k=1,...,n

Z( i1 ... ik
j1 ... jk

)Ξ( i1 ... ik
j1 ... jk

) (11)

However the Plücker embedding is not a useful canonical embedding to us for GIII(n, n), 
due to the fact that {ψj} is not a linearly independent system. For instance,

Z

(
1 2
3 4

)
+ Z

(
1 4
2 3

)
= Z

(
1 3
2 4

)
.

This embedding can not serve our purposes here. We therefore derive from this embed-
ding a minimal embedding into a certain projective subspace in CP(ΛnC2n)(∼= CPN∗

). 
We denote this minimal projective subspace by H ∼= CPN , which is discussed in de-
tail below. We notice that the embedding GIII(n, n) ↪→ CPN is equivariant under the 
transitive action of Sp(n).

Following the notations we set up in the Grassmannian case, we write [1, ψ1, · · · , ψN∗ ]
for the map of the Plücker embedding into CPN∗

. Write (ψi1 , ..., ψimk
) for those compo-

nents of degree k in z among {ψj}N
∗

j=1. Here 1 ≤ k ≤ n, and {i1, ..., imk
} depends on k. 

For instance, if k = 1, then

(ψi1 , ..., ψim1
) = (z11, ..., znn),

where zij is repeated twice if i �= j. Let {ψ(k)
1 , · · · , ψ(k)

m∗
k
} be a maximally linearly inde-

pendent subset of {ψi1 , ..., ψimk
} over R (and thus also over C). For instance,

{ψ(1)
1 , · · · , ψ(1)

m∗} = {zij}i≤j .
1
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Let Ak be the m∗
k ×mk matrix such that (ψi1 , · · · , ψimk

) = (ψ(k)
1 , · · · , ψ(k)

m∗
k
) ·Ak. Appar-

ently Ak has real entries and is of full rank. Hence Ak ·At
k is positive definite.

Then {ψ∗
1 , · · · , ψ∗

N} := {ψ(k)
1 , · · · , ψ(k)

m∗
k
}1≤k≤n forms a basis of {ψ1, · · · , ψN∗}, where 

N = m∗
1 + ... + m∗

n. Moreover, if we write A as the (m∗
1 + ... + m∗

n) × (m1 + ... + mn)
matrix:

A =
(
A1

· · ·
An

)
,

then A has full rank and we have a real orthogonal matrix U such that

U =
(
U1

· · ·
Un

)
, U t(A ·At)U =

(
μ1

· · ·
μN

)
with each μj > 0.

Here Uk, 1 ≤ k ≤ n, is an m∗
k ×m∗

k orthogonal matrix. Now we define

(ψ1
1 , ..., ψ

1
N1

, ψ2
1 , ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn)

:= (ψ∗
1 , · · · , ψ∗

N ) · U ·

⎛⎜⎝
√
μ1 √

μ2
· · · √

μN

⎞⎟⎠ .

Here N1 + ... + Nn−1 + Nn = N∗, where we set Nn = 1. We will also sometimes write 
ψn
Nn

= ψn. As a direct consequence,

(ψ1
1 , ..., ψ

1
N1

,ψ2
1 , ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn)

· (ψ1
1 , ..., ψ

1
N1

, ψ2
1 , ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn)

= (ψ1, · · · , ψN∗) · (ψ1, · · · , ψN∗) = det(I + ZZ̄t) = ρ(z, z).

(12)

Moreover {ψ1
1 , ..., ψ

1
N1

, ψ2
1 , ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn} forms a linearly indepen-

dent system; and {ψk
1 , ..., ψ

k
Nk

} are polynomials in z of degree k for k = 1, ..., n. Now our 
canonical embedding of the aforementioned affine piece A of GIII(n, n) is taken as

z ∈ C
n(n+1)

2 → [1, ψ1
1 , ..., ψ

1
N1

, ψ2
1 , ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn].

For simplicity, we will still denote (ψ1
1 , ..., ψ

1
N1

, ψ2
1 , ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn) by

rz = (ψ1, ψ2, ..., ψN ) =
(
ψ1

1 , ..., ψ
1
N1

, ψ2
1 , ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn

)
. (13)

Here, for instance, (ψ1, ..., ψn(n+1)
2

) = (ψ1
1 , ..., ψ

1
N1

) = (aijzij)1≤i≤j≤n, where aij equals 
to 1 if i = j, equals to 

√
2 if i < j. Hence the defining function of the Segre family, which 

is the same as (11), is given by ρ(z, ξ) = 1 +
∑N

i=1 ψi(z)ψi(ξ).



12 H. Fang et al. / Advances in Mathematics 360 (2020) 106885
♣4. Hyperquadrics (type IV): Let Qn be the hypersurface in CPn+1 defined by{
[x0, ..., xn+1] ∈ CPn+1 :

n∑
i=1

x2
i − 2x0xn+1 = 0

}
,

where [x1, ..., xn+2] are the homogeneous coordinates for CPn+1. It is invariant under the 
action of the group SO(n +2). We mention that under the present embedding, the action 
is not the standard SO(n + 2) in GL(n + 2). However it is conjugate to the standard 
SO(n +2) action by a certain element g ∈ U(n +2). A Zariski open affine piece A ⊂ Qn

identified with Cn is given by (z1, ..., zn) �→ [1, ψ1, ..., ψn+1] = [1, z1, ..., zn, 12
∑n

i=1 z
2
i ], 

which will be denoted by [1, rz] = [1, ψ1, ψ2, ..., ψn+1]. Choose the same local chart for 
(Qn)∗: (ξ1, ..., ξn) → [1, ξ1, ..., ξn, 12

∑n
i=1 ξ

2
i ]. Then the defining function of the Segre 

family restricted to Cn ×Cn ↪→ Qn × (Qn)∗ is given by

ρ(z, ξ) = 1 +
n∑

i=1
ziξi + 1

4(
n∑

i=1
z2
i )(

n∑
i=1

ξ2
i ) (14)

♣5. The exceptional manifold M16 := E6/SO(10) × SO(2): As shown in [23], [24], 
this exceptional Hermitian symmetric space can be realized as the Cayley plane. Take 
the exceptional 3 × 3 complex Jordan algebra

J3(O) =
{(

c1 x3 x̄2
x̄3 c2 x1
x2 x̄1 c3

)
: ci ∈ C, xi ∈ O

}
∼= C27. (15)

Here O is the complexified algebra of octonions, which is a complex vector space of 
dimension 8. Denote a standard basis of O by {e0, e1, ..., e7}. The multiplication rule 
in terms of this basis is given in Appendix A. The conjugation operator appeared in 
(15) is for octonions, which is defined as follows: x̄ = x0e1 − x1e1 − ... − x7e7, if x =
x0e0+x1e1+x2e2+ ... +x7e7, xi ∈ C. Moreover under this basis, J3(O) ∼= C27 is realized 
by identifying each matrix

X =
(
ξ1 η κ̄
η̄3 ξ2 τ
κ τ̄ ξ3

)
∈ J3(O)

with the point (ξ1, ξ2, ξ3, η0, η1, . . . , η7, κ0, κ2, . . . , κ7, τ0, τ1, . . . , τ7) ∈ C27, where η =∑7
i=0 ηiei, κ =

∑7
i=0 κiei and τ =

∑7
i=0 τiei.

The Jordan multiplication is defined as A ◦B = 1
2 (AB +BA) for A, B ∈ J3(O). The 

subgroup SL(O) of GL(J3(O)) consisting of automorphisms preserving the determinant 
is the adjoint group of type E6. The action of E6 on the projectivization CPJ3(O) has 
exactly three orbits: the complement of the determinantal hypersurface, the regular part 
of this hypersurface, and its singular part which is the closed E6−orbit. The closed orbit 
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is the Cayley plane or the hermitian symmetric space of compact type corresponding to 
E6. It can be defined by the quadratic equation

X2 = trace(X)X, X ∈ J3(O),

or as the closure of the affine cell A

OP2
1 =

{(1 x y
x̄ xx̄ yx̄
ȳ xȳ yȳ

)
: x, y ∈ O

}
∼= C16

in the local coordinates (x0, x1, ..., x7, y0, ..., y7). The precise formula for the canoni-
cal embedding map is given in Appendix B. We denote this embedding by [1, rz] =
[1, ψ1, ψ2, ..., ψN ].

To find the defining function for its Segre family over the product of such stan-
dard affine sets, we choose local coordinates for the conjugate Cayley plane to be 
(κ0, κ1, ..., κ7, η0, η1, ..., η7). Then

ρ(z, ξ) = 1 +
7∑

i=0
xiκi +

7∑
i=0

yiηi +
7∑

i=0
Ai(x, y)Ai(κ, η) + B0(x, y)B0(κ, η) + B1(x, y)B1(κ, η),

(16)

where Aj , Bj are defined as in Appendix A, z = (x0, ..., x7, y0, ..., y7) and ξ =
(κ0, ..., κ7, η0, ..., η7).

♣6. The other exceptional manifold M27 = E7/E6 × SO(2): As shown in [6], it can 
be realized as the Freudenthal variety. Consider the Zorn algebra

Z2(O) = C
⊕

J3(O)
⊕

J3(O)
⊕

C

One can prove that there exists an action of E7 on that 56−dimensional vector space (see 
[13]). The closed E7−orbit inside CPZ2(O) is the Freudenthal variety E7/E6 × SO(2). 
An affine cell A of Freudenthal variety is [1, X, Com(X), det(X)] ∈ CPZ2(O). Here X
belongs to J3(O); Com(X) is the comatrix of X such that XCom(X) = det(X)I under 
the usual matrix multiplication rule. Notice that Com(X) = X×X, where X×X is the 
Freudenthal multiplication defined as follows (see [40]):

X ×X := X2 − tr(X)X + 1
2(tr(X)2 − tr(X2))I.

For explicit expressions for X ×X and det(X) in terms of the entries of X, see [40] or 
Appendix A in this paper.

The embedding of E7/E6 × SO(2) ↪→ CPN in local coordinates z is given in Ap-
pendix A. Choose the local affine open piece for (E7/E6 × SO(2))∗ with coordinates

ξ = (ξ1, ξ2, ξ3, η0, ..., η7, κ0, ..., κ7, τ0, ..., τ7).
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We denote this embedding by [1, rz] = [1, ψ1, ψ2, ..., ψN ]. The defining function for the 
Segre family is then ρ(z, ξ) = 1 + rz · rξ, where

rz = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w7, A(z), B(z), C(z), D0(z), ..., D7(z),

E0(z), ..., E7(z), F0(z), ..., F7(z), G(z))

rξ = (ψ1(ξ), ψ2(ξ), ..., ψN (ξ)) = (ξ1, ξ2, ξ3, η0, ..., η7, κ0, ..., κ7, τ0, ..., τ7,

A(ξ), B(ξ), C(ξ), D0(ξ), ..., D7(ξ), E0(ξ), ..., E7(ξ), F0(ξ), ..., F7(ξ), G(ξ))

(17)

Here see Appendix A for the definition of the functions appeared in the formula.

Summarizing the above, for each irreducible Hermitian symmetric space of compact 
type M of dimension n, we now have described a canonical embedding from M into a 
projective space PN , which restricted to a certain Zariski open affine piece A holomor-
phically equivalent to Cn takes the form: z(∈ Cn) �→ [1, κ1z1, · · · , κizi, · · · , κnzn, O(z2)]. 
Here κi = 1 for all i except in the case of type III where κi can be 1 or 

√
2. This is the 

embedding we will use in later discussions. Notice in our embedding, the conjugate space 
M∗ is the same as M . For simplicity of notation, we will also write M for the restriction 
of the Segre family of M restricted to A ×A∗ = Cn×Cn. From this embedding and the 
invariant property of Segre varieties, we immediately conclude the following:

Lemma 2.1. Assume A and B are two distinct points of M . Then their associated Segre 
varieties are different, namely, QA �= QB.

Proof of Lemma 2.1: Since the holomorphic isometric group acts transitively on M , 
we can assume A = (0, 0, ..., 0) ∈ Cn ∼= A ⊂ M . Therefore QA is the hyperplane section 
of M ↪→ PN at infinity, namely, QA = M\A. Now if B ∈ A, because B �= (0, 0, ..., 0), 
there are non-trivial linear terms in the defining function of QB. This leads to the fact 
that the defining function of QB has to be a non-constant polynomial in C[ξ1, ..., ξn]. 
Therefore QB ∩ Cn �= ∅ and thus does not coincide with QA. If B ∈ M\A, by the 
symmetric property of Segre varieties, we have (0, ..., 0) ∈ QB . Therefore QB �= QA. We 
then arrive at the conclusion. �

Finally, since in our setting, M∗ = M and the Segre family on M and M∗ are the 
same. For simplicity of notation, we do not distinguish, in what follows, Q∗ and M∗

from Q and M, respectively.

2.3. Explicit expression of the volume forms

From now on, we assume that M is an irreducible Hermitian symmetric space of 
compact type and we choose the canonical embedding M ↪→ CPN as described in §2.2
according to its type. We denote the metric on M induced from Fubini-Study of CPN

by ω, and the volume form by dμ = ωn (up to a positive constant). Notice that the 
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metric we obtained is always invariant under the action of a certain transitive subgroup 
G ⊂ Aut(M) (which comes from the restriction of a subgroup of the unitary group 
of the ambient projective space). Hence by a theorem of Wolf [44], ω is the unique G
invariant metric on M up to a scale. We claim ω must be Kähler-Einstein. Indeed, since 
the Ricci form Ric(ω) of ω is invariant under G, for a small ε, ω + εRic(ω) is thus also a 
G invariant metric on M . By [44], it is a multiple of ω, and thus Ric(ω) = λω. Write dμ
as the product of V and the standard Euclidean volume form over the affine subspace 
A, where V is a positive function in z. Since Ric(ω) = −i∂∂̄ log V , −i∂∂̄ log V = λω. 
Notice that λ > 0. In the local affine open piece A defined before, ω = i∂∂̄ log ρ(z, ̄z), 
where ρ(z, ξ) is the defining function for the associated Segre family. As we will see later 
(§7), ρ(z, ξ) is an irreducible polynomial in (z, ξ). Then we have

∂∂̄ log(V ρ(z, z̄)λ) = 0.

Hence, log(V ρ(z, ̄z)λ) = φ(z) + ψ(z), where both φ and ψ are holomorphic functions. 
Therefore V = eφ(z)+ψ(z)

ρ(z,z̄)λ . Because ρ(z, ξ) is an irreducible polynomial, from the way V

is defined, V must be a rational function of the form p(z,z)
ρ(z,z̄)m with p, ρ relatively prime to 

each other. Since φ, ψ are globally defined, by a monodromy argument, it is clear that λ
has to be an integer. Also both eφ(z) and eψ(ξ) must be rational functions. Again, since 
φ, ψ are also globally defined, this forces φ, ψ to be constant functions. Therefore, we 
conclude that V = cρ(z, z̄)−λ. Here λ is a certain positive integer and c is a positive 
constant. Next by a well-known result (see [1]), two Kähler-Einstein metrics of M are 
different by an automorphism of M (up to a positive scalar multiple). Therefore, to 
prove Theorem 1.1, we can assume, without loss of generality, that the Kähler-Einstein 
metric in Theorem 1.1 is the metric obtained by restricting the Fubini-Study metric to 
M through the embedding described in this section.

3. A basic property for partially degenerate holomorphic maps

In this section, we introduce a notion of degeneracy for holomorphic maps and derive 
an important consequence, which will be fundamentally applied in the proof of our main 
theorem.

Let ψ(z) := (ψ1(z), ..., ψN (z)) be a vector-valued holomorphic function from a 
neighborhood U of 0 in Cm, m ≥ 2, into CN , N > m, with ψ(0) = 0. Here we 
write z = (z1, ..., zm) for the coordinates of Cm. In the following, we will write 
z̃ = (z1, ..., zm−1), i.e., the vector z with the last component zm being dropped out. 
Write ∂|α|

∂z̃α = ∂|α|

∂z
α1
1 ...∂z

αm−1
m−1

for an (m − 1)−multiindex α, where α = (α1, ..., αm−1). 
Write

∂|α|

∂z̃α
ψ(z) =

(
∂|α|

∂z̃α
ψ1(z), ...,

∂|α|

∂z̃α
ψN (z)

)
.

We introduce the following definition.
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Definition 3.1. Let k ≥ 0. For a point p ∈ U , write Ek(p) = SpanC{∂|α|

∂z̃α ψ(z)|z=p : 0 ≤
|α| ≤ k}. We write r for the greatest number such that for any neighborhood O of 0, 
there exists p ∈ O with dimCEk(p) = r. r is called the k−th z̃−rank of ψ at 0, which is 
written as rankk(ψ, ̃z). F is called z̃−nondegenerate if rankk0(ψ, ̃z) = N for some k0 ≥ 1.

Remark 3.2. It is easy to see that rankk(ψ, ̃z) = r if and only if the following matrix

⎛⎜⎜⎜⎝
∂|α0|

∂z̃α0 ψ(z)
...
...

∂|αs|

∂z̃αs ψ(z)

⎞⎟⎟⎟⎠
has an r × r submatrix with determinant not identically zero for z ∈ U for some multi-
indices {α0, ..., αs} with all 0 ≤ |αj | ≤ k. Moreover, any l × l (l > r) submatrix of the 
matrix has identically zero determinant for any choice of {α0, ..., αs} with 0 ≤ |αj | ≤ k.

In particular, ψ is z̃−nondegenerate if and only if there exist multiindices β1, ..., βN

such that ∣∣∣∣∣∣∣
∂|β1|

∂z̃β1 ψ1(z) ... ∂|β1|

∂z̃β1 ψN (z)
... ... ...

∂|βN |

∂z̃βN ψ1(z) ... ∂|βN |

∂z̃βN ψN (z)

∣∣∣∣∣∣∣
is not identically zero. Moreover, ranki+1(ψ, ̃z) ≥ ranki(ψ, ̃z) for any i ≥ 0.

For the rest of this section, we further assume that the first m components of ψ, i.e., 
(ψ1, ..., ψm) : Cm → Cm is a biholomorphic map in a neighborhood of 0 ∈ Cm. Then we 
have,

Lemma 3.3. It holds that rank0(ψ, ̃z) = 1, rank1(ψ, ̃z) = m, and for k ≥ 1, rankk(ψ, ̃z) ≥
m.

Proof of Lemma 3.3: We first notice that it holds trivially that rank0(ψ, ̃z) = 1, for F
is not identically zero. We now prove rank1(ψ, ̃z) = m. First notice that rank1(ψ, ̃z) ≤ m

as there are only m distinct multiindices β such that |β| ≤ 1. On the other hand, since 
ψ has full rank at 0, we have,

∣∣∣∣∣∣
∂ψ1
∂z1

... ∂ψm

∂z1
... ... ...
∂ψ1
∂zm

... ∂ψm

∂zm

∣∣∣∣∣∣ (0) �= 0.

This together with the fact ψ(0) = 0 implies that the zm derivative of
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∣∣∣∣∣∣∣∣
ψ1 ... ψm
∂ψ1
∂z1

... ∂ψm

∂z1
... ... ...
∂ψ1

∂zm−1
... ∂ψm

∂zm−1

∣∣∣∣∣∣∣∣ (18)

is nonzero at p = 0. Consequently, the quantity in (18) is not identically zero in U . By 
the definition of the z̃-rank, we then arrive at the conclusion. �

We now prove the following degeneracy theorem in terms of its z̃-rank, which will be 
used to derive Theorem 3.10.

Theorem 3.4. Let ψ = (ψ1, ..., ψm, ψm+1, ..., ψN ) be a holomorphic map from a neigh-
borhood of 0 ∈ Cm into CN with ψ(0) = 0. Recall that z̃ = (z1, ..., zm−1), i.e., the 
vector z with the last component zm being dropped out. Assume that (ψ1, ..., ψm) is a 
biholomorphic map from a neighborhood of 0 ∈ Cm into a neighborhood of 0 ∈ Cm. 
Suppose

rankN−m+1(ψ, z̃) < N. (19)

Then there exist N holomorphic functions g1(zm), ..., gN (zm) near 0 in the zm−Gauss 
plane with {g1(0), ..., gN (0)} not all zero such that the following holds for any (z1, ..., zm)
near 0.

N∑
i=1

gi(zm)ψi(z1, ..., zm) ≡ 0. (20)

In particular, one can make one of the {gi}Ni=1 to be identically one.

The geometric intuition for the theorem is as follows: The space of 1-jets has dimension 
m by Lemma 3.3. We expect that at least one more dimension is increased when we go 
from the space of k-jets to the space of (k+1)-jets until we reach the maximum possible 
value N . The theorem says that if this process fails, namely, the assumption in (19)
holds, we then end up with a function relationship as in (20).

Proof of Theorem 3.4: We consider the following set,

S = {l ≥ 1 : rankl(ψ, z̃) ≤ l + m− 2}.

Note that 1 /∈ S, for rank1(F ) = m. We claim that S is not empty. Indeed, we have 
1 + N − m ∈ S by (19). Now write t′ for the minimum number in S. Then 2 ≤ t′ ≤
1 + N −m. Moreover, by the choice of t′,

rankt′(ψ, z̃) ≤ t′ + m− 2, rankt′−1(ψ, z̃) ≥ t′ + m− 2. (21)

This yields that
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rankt′(ψ, z̃) = rankt′−1(ψ, z̃) = t′ + m− 2. (22)

We write t := t′ − 1, n := t′ + m − 2. Here we note t ≥ 1, m ≤ n ≤ N − 1. Then there 
exist multiindices {γ1, ..., γn} with each |γi| ≤ t and j1, ..., jn such that

Δ(γ1, ..., γn|j1, ..., jn) :=

∣∣∣∣∣∣∣
∂|γ1|ψj1
∂z̃γ1 ...

∂|γ1|ψjn

∂z̃γ1

... ... ...
∂|γn|ψj1
∂z̃γn ...

∂|γn|ψjn

∂z̃γn

∣∣∣∣∣∣∣ is not identically zero in U. (23)

Since rank1(ψ, ̃z) = m, we can choose (γ1, ..., γn|j1, ..., jn) such that

γ1 = (0, .., 0), γ2 = (1, 0, ..., 0), ..., γm = (0, ..., 0, 1).

For any α1, ..., αn+1 with |αi| ≤ t + 1, and l1, ..., ln+1, we have

Δ(α1, ..., αn+1|l1, ..., ln+1) =

∣∣∣∣∣∣∣∣∣∣
∂|α1|ψl1
∂z̃α1 ...

∂|α1|ψln

∂z̃α1
∂|α1|ψln+1

∂z̃α1

... ... ... ...

... ... ... ...
∂|αn+1|ψl1
∂z̃αn+1 ...

∂|αn+1|ψln

∂z̃αn+1
∂|αn+1|ψln+1

∂z̃αn+1

∣∣∣∣∣∣∣∣∣∣
≡ 0 in U. (24)

We write Γ for the collection of (γ1, ..., γn|j1, ..., jn), j1 < ... < jn, with γ1 = (0, .., 0)
and with (23) being held. We associate each (γ1, ..., γn|j1, ..., jn) with an integer 
s(γ1, ..., γn|j1, ..., jn) := s0 where s0 is the least number s ≥ 0 such that

∂s1+...+sm−1+sΔ(γ1, ..., γn|j1, ..., jn)
∂zs11 ∂zs22 ...∂z

sm−1
m−1 ∂z

s
m

(0) �= 0

for some integers s1, ..., sm−1. Then s(γ1, ..., γn|j1, ..., jn) ≥ 0 for any (γ1, ..., γn|j1, ..., jn)
∈ Γ .

Let (β1, ..., βn|i1, ..., in) ∈ Γ, i1 < ... < in be indices with the least s(γ1, ..., γn|j1, ..., jn)
among all (γ1, ..., γn|j1, ..., jn) ∈ Γ .

We write {in+1, ..., iN} = {1, ..., N} \ {i1, .., in}, where in+1 < ... < iN . Write Ũ =
{z ∈ U : Δ(β1, ..., βn|i1, ..., in) �= 0}. We then have the following:

Lemma 3.5. Fix j ∈ {in+1, ..., iN}. Let i ∈ {i1, .., in}. Write {i′1, ..., i′n−1} = {i1, ..., in} \
{i}. There exists a holomorphic function gji (zm) in Ũ which only depends on zm such 
that the following holds for z ∈ Ũ :
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∣∣∣∣∣∣∣∣∣∣
∂|β1|ψi′1
∂z̃β1 ...

∂|β1|ψi′n−1

∂z̃β1
∂|β1|ψj

∂z̃β1

... ... ... ...

... ... ... ...
∂|βn|ψi′1
∂z̃βn ...

∂|βn|ψi′n−1
∂z̃βn

∂|βn|ψj

∂z̃βn

∣∣∣∣∣∣∣∣∣∣
(z)=gji(zm)

∣∣∣∣∣∣∣∣∣∣
∂|β1|ψi′1
∂z̃β1 ...

∂|β1|ψi′n−1

∂z̃β1
∂|β1|ψi

∂z̃β1

... ... ... ...

... ... ... ...
∂|βn|ψi′1
∂z̃βn ...

∂|βn|ψi′n−1
∂z̃βn

∂|βn|ψi

∂z̃βn

∣∣∣∣∣∣∣∣∣∣
(z),

(25)

or equivalently,

∣∣∣∣∣∣∣∣∣∣
∂|β1|ψi′1
∂z̃β1 ...

∂|β1|ψi′n−1

∂z̃β1
∂|β1|(ψj−gj

i (zm)ψi)
∂z̃β1

... ... ... ...

... ... ... ...
∂|βn|ψi′1
∂z̃βn ...

∂|βn|ψi′n−1
∂z̃βn

∂|βn|(ψj−gj
i (zm)ψi)

∂z̃βn

∣∣∣∣∣∣∣∣∣∣
≡ 0. (26)

Proof of Lemma 3.5: For simplicity of notation, we write ∂

∂z̃βi for ∂
|βi|

∂z̃βi , and for μ = i

or j, write the matrix

Vμ :=

⎛⎜⎜⎜⎝
∂ψi′1
∂z̃β1 ...

∂ψi′n−1

∂z̃β1
∂ψμ

∂z̃β1

... ... ... ...

... ... ... ...
∂ψi′1
∂z̃βn ...

∂ψi′n−1
∂z̃βn

∂ψμ

∂z̃βn

⎞⎟⎟⎟⎠ =

⎡⎢⎣v1
μ
...

vn
μ

⎤⎥⎦ ,

where v1
μ, · · · , vn

μ are the row vectors of Vμ. To prove (25), one just needs to show that, 
for each 1 ≤ ν ≤ m − 1,

∂

∂zν

det(Vj)
det(Vi)

≡ 0 in Ũ . (27)

Indeed, by the quotient rule, the numerator of the left-hand side of (27) equals to

det
(

det(Vi) det(Vj)
∂

∂zν
det(Vi) ∂

∂zν
det(Vj)

)

= det

⎛⎜⎜⎜⎜⎜⎝
det(Vi) det(Vj)

det

⎡⎢⎢⎢⎣
∂

∂zν
v1
i

v2
i
...

vn
i

⎤⎥⎥⎥⎦ det

⎡⎢⎢⎢⎣
∂

∂zν
v1
j

v2
j
...

vn
j

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ + · · · + det

⎛⎜⎜⎜⎜⎜⎝
det(Vi) det(Vj)

det

⎡⎢⎢⎢⎣
v1
i
...

vn−1
i
∂

∂zν
vn
i

⎤⎥⎥⎥⎦ det

⎡⎢⎢⎢⎢⎣
v1
j
...

vn−1
j

∂
∂zν

vn
j

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ .

By (24) and Lemma 4.4 in [2], each term on the right-hand side of the equation above 
equals 0. For instance, the last term above equals to
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∂ψi′1
∂z̃β1 ...

∂ψi′n−1

∂z̃β1
∂ψi

∂z̃β1

... ... ... ...

... ... ... ...
∂ψi′1
∂z̃βn ...

∂ψi′n−1
∂z̃βn

∂ψi

∂z̃βn

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∂ψi′1
∂z̃β1 ...

∂ψi′n−1

∂z̃β1
∂ψj

∂z̃β1

... ... ... ...

... ... ... ...
∂ψi′1
∂z̃βn ...

∂ψi′n−1
∂z̃βn

∂ψj

∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β

1 ...
∂ψi′n−1
∂z̃β

1
∂ψi

∂z̃β
1

... ... ... ...
∂ψi′1

∂z̃β
n−1 ...

∂ψi′n−1
∂z̃β

n−1
∂ψi

∂z̃β
n−1

∂
∂zν

(
∂ψi′1
∂z̃β

n ) ... ∂
∂zν

(
∂ψi′n−1
∂z̃β

n ) ∂
∂zν

( ∂ψi

∂z̃β
n )

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β

1 ...
∂ψi′n−1
∂z̃β

1
∂ψj

∂z̃β
1

... ... ... ...
∂ψi′1

∂z̃β
n−1 ...

∂ψi′n−1
∂z̃β

n−1
∂ψj

∂z̃β
n−1

∂
∂zν

(
∂ψi′1
∂z̃β

n ) ... ∂
∂zν

(
∂ψi′n−1
∂z̃β

n ) ∂
∂zν

( ∂ψj

∂z̃β
n )

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(28)

It is a multiple of the following determinant (by Lemma 4.4 in [2]):∣∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β1 ...

∂ψi′n−1

∂z̃β1
∂ψi

∂z̃β1
∂ψj

∂z̃β1

... ... ... ... ...
∂ψi′1
∂z̃βn ...

∂ψi′n−1
∂z̃βn

∂ψi

∂Z̃βn
∂ψj

∂z̃βn

∂ψi′1
∂z̃βn+1 ...

∂ψi′n−1

∂z̃βn+1
∂ψi

∂z̃βn+1
∂ψj

∂z̃βn+1

∣∣∣∣∣∣∣∣∣∣∣
, (29)

where ∂
∂z̃βn+1 = ∂

∂zν
( ∂
∂z̃βn ), which is identically zero by (24). This establishes 

Lemma 3.5. �
The extendability of gji (zm) will be needed for our later argument:

Lemma 3.6. For any i, j as above, the holomorphic function gji (zm) can be extended 
holomorphically to a neighborhood of 0 in the zm−plane.

Proof of Lemma 3.6: First, gji is defined on the projection πm(Ũ) of Ũ , where πm is 
the natural projection of (z1, ..., zm) to its last component zm. If 0 ∈ πm(Ũ), the claim 
follows trivially. Now assume that 0 /∈ πm(Ũ). If we write s = s(β1, ..., βn|i1, ..., in), by 
its definition, then there exists (a1, ..., am−1) ∈ Cm−1 close to 0, such that∣∣∣∣∣∣∣∣∣∣

∂|β1|ψi′1
∂z̃β1 ...

∂|β1|ψi′n−1

∂z̃β1
∂|β1|ψi

∂z̃β1

... ... ... ...

... ... ... ...
∂|βn|ψi′1
∂z̃βn ...

∂|βn|ψi′n−1
∂z̃βn

∂|βn|ψi

∂z̃βn

∣∣∣∣∣∣∣∣∣∣
(a1, ..., am−1, zm) = czsm + o(|zm|s), c �= 0. (30)

Then there exists r > 0 small enough such that for any 0 < |zm| < r, (a1, ..., am−1, zm)
∈ Ũ . That is, at any of such points, equation (30) is not zero.

We now substitute (a1, ..., am−1, zm), 0 < |zm| < r, into the equation (25), and com-
pare the vanishing order as zm → 0:

c1z
s′

m + o(|zm|s′) = gji (zm)(czsm + o(|zm|s)), c �= 0, (31)
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for some s′ ≥ 0. Note that 0 ≤ s ≤ s′ by the definition of s and the choice of 
(β1, ..., βn|i1, ..., in). The holomorphic extendability across 0 of gji (zm) then follows eas-
ily. �

We next make the following observation:

Claim 3.7. For each fixed j ∈ {in+1, ..., iN} and any i′1 < ... < i′n−1 with {i′1, ..., i′n−1} ⊂
{i1, ..., in}, we have:∣∣∣∣∣∣∣∣∣∣

∂|β1|ψi′1
∂z̃β1 ...

∂|β1|ψi′n−1

∂z̃β1
∂|β1|(ψj−

∑n
k=1 gj

ik
ψik

)
∂z̃β1

... ... ... ...

... ... ... ...
∂|βn|ψi′1
∂z̃βn ...

∂|βn|ψi′n−1
∂z̃βn

∂|βn|(ψj−
∑n

k=1 gj
ik

ψik
)

∂z̃βn

∣∣∣∣∣∣∣∣∣∣
(z) ≡ 0, ∀z ∈ Ũ . (32)

Proof of Claim 3.7: Note that for each i′l, 1 ≤ l ≤ n − 1, the following trivially holds:∣∣∣∣∣∣∣∣∣∣
∂|β1|ψi′1
∂z̃β1 ...

∂|β1|ψi′n−1

∂z̃β1

∂|β1|(gj

i′
l
ψi′

l
)

∂z̃β1

... ... ... ...

... ... ... ...
∂|βn|ψi′1
∂z̃βn ...

∂|βn|ψi′n−1
∂z̃βn

∂|βn|(gj

i′
l
ψi′

l
)

∂z̃βn

∣∣∣∣∣∣∣∣∣∣
(z) ≡ 0, (33)

for the last column in the matrix is a multiple of one of the first (n − 1) columns. Then 
(32) is an immediate consequence of (26) and (33). �
Lemma 3.8. For each fixed j ∈ {in+1, ..., iN}, we have ψj(z) −

∑n
k=1 g

j
ik

(zm)ψik(z) ≡ 0
for any z ∈ Ũ , and thus it holds also for all z ∈ U .

Proof of Lemma 3.8: This can be concluded easily from the following Lemma 3.9 and 
Claim 3.7. Here one needs to use the fact that β1 = (0, ..., 0). �
Lemma 3.9. ([2], Lemma 4.7) Let b1, · · · , bn and a be n-dimensional column vectors 
with elements in C, and let B = (b1, · · · , bn) denote the n × n matrix. Assume that 
detB �= 0 and det(bi1 , bi2 , · · · , bin−1 , a) = 0 for any 1 ≤ i1 < i2 < · · · < in−1 ≤ n. Then 
a = 0.

Theorem 3.4 now follows easily from Lemma 3.8. �
If we further assume that ψi(z), m +1 ≤ i ≤ N , vanishes at least to the second order, 

then we have the following, which plays a crucial role in our proof of Theorem 1.1.

Theorem 3.10. Let ψ = (ψ1, ..., ψm, ψm+1, ..., ψN ) be a holomorphic map from a neigh-
borhood of 0 ∈ Cm into CN with ψ(0) = 0. Assume that (ψ1, ..., ψm) is a biholomorphic 
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map from a neighborhood of 0 ∈ Cm into a neighborhood of 0 ∈ CN . Assume that 
ψj(z) = O(|z|2) for m + 1 ≤ j ≤ N . Suppose that rankN−m+1(ψ) < N . Then there exist 
am+1, ..., aN ∈ C that are not all zero such that

N∑
i=m+1

ajψj(z1, ..., zm−1, 0) ≡ 0, (34)

for all (z1, ..., zm−1) near 0.

Proof of Theorem 3.10: We first have the following:

Claim 3.11. For each 1 ≤ i ≤ m, gi(0) = 0.

Proof of Claim 3.11: Suppose not. Write c := (g1(0), ..., gm(0)) �= 0. Then 
(g1(zm), ..., gm(zm)) = c + O(|zm|). The fact that ψi(z) = O(|z|2), i ≥ m + 1, implies

m∑
i=1

gi(zm)ψi(z) = O(|z|2). (35)

Notice that (the Jacobian of) (ψ1, ..., ψm) is of full rank at 0. Hence⎛⎝ ∂ψ1
∂z1

(0) ... ∂ψm

∂z1
(0)

... ... ...
∂ψ1
∂zm

(0) ... ∂ψm

∂zm
(0)

⎞⎠ ct �= 0. (36)

This is a contradiction to (35). �
Finally, letting zm = 0 in equation (20), we obtain (34). By Claim 3.11, (gm+1(0), ...,

gN (0)) �= 0. This establishes Theorem 3.10. �
4. Proof of the main theorem assuming three extra propositions

In this section, we give a proof of our main theorem under several extra assumptions 
(i.e., Propositions (I)–(III)), which will be verified one by one in the later sections.

Let M ⊂ CPN be an irreducible Hermitian symmetric space of compact type, which 
has been canonically (and isometrically) embedded in the complex projective space 
through the way described in §2. In this section, we write n as the complex dimension 
of M . We also have on M an affine open piece A that is biholomorphically equivalent to 
the complex Euclidean space of the same dimension, such that M \ A is a codimension 
one complex subvariety of M . We identify the coordinates of A by the parametriza-
tion map with z = (z1, ..., zn) ∈ Cn through what is described in §2, which we wrote as 
[1, ψ1, ..., ψN ], where ψ1, ..., ψN are polynomial maps in (z1, ..., zn) with ψj = κjzj , where 
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κj = 1 or 
√

2, for j = 1, · · · , n. We also write F (ξ) for F (ξ) for ξ = (ξ1, ..., ξn) ∈ Cn. We 
still use ρ(z, ξ) for the defining function of the Segre family of M restricted to A ×A∗, 
which will be canonically identified with Cn×Cn. Since the coefficients of ψ1, ..., ψN are 
all real, ψ = ψ and A∗ = A. Hence, we have

ρ(z, ξ) = 1 +
N∑
i=1

ψi(z)ψi(ξ). (37)

Recall the standard metric ω of M on A is given by

ω = i∂∂log(ρ(z, z̄)). (38)

The volume form dμ = cnω
n associated to ω, by §2, is now given in A by the multipli-

cation of V with the standard Euclidean volume form, where

V = c

(ρ(z, z̄))λ (39)

with c > 0 and λ a certain positive integer depending on M . For instance, λ = p + q

when X = G(p, q) [15]. Here cn is a certain positive constant depending only on n.

Theorem 4.1. Let A ⊂ M be as above equipped with the standard metric ω. Let Fj, j =
1, ..., m, be a holomorphic map from U ⊂ A into M , where U is a connected open 
neighborhood of A. Assume that F ∗

j (dμ) �≡ 0 for each j and assume that

dμ =
m∑
j=1

λjF
∗
j (dμ), (40)

for certain positive constants λj > 0 with j = 1, · · · , m. Then for any j ∈ {1, 2, ..., m}, 
Fj extends to a holomorphic isometry of (M, ω).

For convenience of our discussions, we first fix some notations: In what follows, we 
identify A with Cn having z = (z1, · · · , zn) as its coordinates. On U ⊂ A ⊂ M and 
after shrinking U if needed, we write the holomorphic map Fj, for j = 1, ..., m, from 
U → A = Cn, as follows:

Fj = (Fj,1, Fj,2, ..., Fj,n), j = 1, ...,m. (41)

Still write the holomorphic embedding from A into CPN as [1, ψ1, · · · , ψN ]. We define 
Fj(z) = (Fj,1, ..., Fj,N ) = (ψ1(Fj), ψ2(Fj), ..., ψN (Fj)) for j = 1, ..., m. Finally, all Segre 
varieties and Segre families are restricted to A = Cn.

The main purpose of this section is to give a proof of Theorem 4.1, assuming the 
following three propositions hold. These propositions will be separately established in 
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terms of the type of M in §5, §6 and §7. This then completes the proof of our main 
theorem.

Proposition (I). Write Li = ∂
∂zi

−
∂ρ
∂zi

(z,ξ)
∂ρ
∂zn

(z,ξ)
∂

∂zn
, 1 ≤ i ≤ n − 1, which are holomorphic 

vector fields (whenever defined) tangent to the Segre family M of M ↪→ CPN restricted 
to A × A∗ = Cn × Cn defined by ρ(z, ξ) = 0. Under the notations we set up above, 
for any local biholomorphic map F = (f1, · · · , fn) : U → Cn with F (0) = 0, there are 
z0 ∈ U, ξ0 ∈ Qz0 , β1, ..., βN , such that

∂ρ

∂zn
(z0, ξ0) �= 0, Λ(β1, ..., βN )(z0, ξ0) :=

∣∣∣∣∣∣
Lβ1F1 ... Lβ1FN

... ... ...

LβNF1 ... LβNFN

∣∣∣∣∣∣ (z0, ξ0) �= 0. (42)

Here βl = (kl1, ..., kln−1), kl1, ..., kln−1 are non-negative integers, for l = 1, 2, ..., N ; β1 =
(0, 0, ..., 0); Lβl = Lkl

1
1 Lkl

2
2 Lkl

3
3 ...Lkl

n−1
n−1 ; F(z) = (F1, ..., FN ) = (ψ1(F ), ψ2(F ), ..., ψN (F )). 

Moreover, sl :=
∑n−1

i=1 kli (l = 1, ..., N) is a non-negative integer bounded from above by 
a universal constant depending only on (M, ω). Also, in what follows, when we like to 
emphasize the dependence of Λ(β1, ..., βN ) on F , we also write it as ΛF (β1, ..., βN ).

Proposition (II). Suppose that ξ0 ∈ Cn with ξ0 �= (0, 0, ..., 0). Then for a generic smooth 
point z0 on the Segre variety Qξ0 and a small neighborhood U � z0, there is a z1 ∈
U ∩Qξ0 such that Qz0 and Qz1 both are smooth at ξ0 and intersect transversally at ξ0, 
too. Moreover, we can find a biholomorphic parametrization near ξ0: (ξ1, ξ2, ..., ξn) =
G(ξ̃1, ξ̃2, ..., ξ̃n) with (ξ̃1, ξ̃2, ..., ξ̃n) ∈ U1 × U2 × ... × Un ⊂ Cn, where U1 and U2 are 
small neighborhoods of 1 ∈ C, and Uj for j ≥ 3 are small neighborhoods of 0 ∈ C such 
that (i). G(1, 1, 0, · · · , 0) = ξ0, (ii). G({ξ̃1 = 1} × U2 × ... × Un) ⊂ Qz0 , G(U1 × {ξ̃2 =
1} × U3 × ... × Un) ⊂ Qz1 , and (iii). G({ξ̃1 = t} × U2 × ... × Un) or G(U1 × {ξ̃2 =
s} × U3 × ... × Un), s ∈ U1, t ∈ U2 is an open piece of a certain Segre variety for each 
fixed t and s. Moreover G consists of algebraic functions with total degree bounded by a 
constant depending only on the manifold M .

Proposition (III). For any ξ �= 0(z �= 0, respectively) ∈ Cn, ρ(z, ξ) is an irreducible 
polynomial in z (and in ξ, respectively). (In particular, Q∗

ξ and Qz are irreducible.) 
Moreover, if U is a connected open set in Cn, then the Segre family M restricted to 
U ×Cn is an irreducible complex subvariety and thus its regular points form a connected 
complex submanifold. In particular, M is an irreducible complex subvariety of Cn×Cn.

The rest of this section is splitted into several subsections. In the first subsection, we 
discuss a partial algebraicity for a certain component Fj0 in Theorem 4.1. In §4.2, we 
show Fj0 is algebraic. In §4.3, we further prove the rationality of Fj0 . §4.4 is devoted 
to proving that Fj0 extends to a birational map from M to itself and extends to a 
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holomorphic isometry, which can be used, through an induction argument, to prove 
Theorem 4.1 assuming Propositions (I)–(III).

4.1. An algebraicity lemma

We use the notations we have set up so far. We now proceed to the proof Theorem 4.1
under the hypothesis that Propositions (I)–(III) hold.

Denote by Jf (z) the determinant of the complex Jacobian matrix of a holomorphic 
map f : B → Cn, where B ⊂ Cn is an open subset and z = (z1, · · · , zn) ∈ B. For 
any holomorphic map g(ξ) from an open subset of Cn to Cm, where ξ ∈ Cn, we define 
g(ξ) := g(ξ).

Now from (37)(38)(39)(40), we obtain

m∑
j=1

λj

|JFj
(z)|2

(1 +
∑N

i=1 ψi(Fj(z))ψi(F j(z̄)))λ
= 1

(1 +
∑N

i=1 ψi(z)ψi(z̄))λ
, z = (z1, ..., zn) ∈ U.

(43)

Recall that Fj = (Fj,1, Fj,2, ..., Fj,n), j = 1, ..., n. Complexifying (43), we have

m∑
j=1

λj

JFj
(z)JFj

(ξ)
(1 +

∑N
i=1 ψi(Fj(z))ψi(F j(ξ)))λ

= 1
(1 +

∑N
i=1 ψi(z)ψi(ξ))λ

, (z, ξ) ∈ U×conj(U).

(44)

Here conj(U) =: {z : z ∈ U}. Using the transitive action of the holomorphic isometric 
group of (M, ω) on M , we assume that 0 ∈ U , Fj(0) = 0 ∈ A and JFj

(0) �= 0 for each j. 
Also, letting U = Br(0) for a sufficiently small r > 0, we have conj(U) = U . Hence, we 
will assume that (44) holds for (z, ξ) ∈ U × U .

We will need the following algebraicity lemma.

Lemma 4.2. Let F ′
js be as in Theorem 4.1. Then there exist Nash algebraic maps

F̂1(z,X1, ..., Xm), ..., F̂m(z,X1, ..., Xm)

holomorphic in (z, X1, ..., Xm) near (0, JF1(0), ..., JFm
(0)) ∈ Cn ×Cm such that

F j(z) = F̂j(z, JF1(z), ..., JFm
(z)), j = 1, ...,m (45)

for z = (z1, ..., zn) near 0.

Proof of Lemma 4.2: Recall that ψi = κizi, where κi = 1 or 
√

2, for i = 1, · · · , n and 
ψi = O(|z|2) is a polynomial of z for each n + 1 ≤ i ≤ N . We obtain from (44) the 
following:
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m∑
j=1

λj

(
JFj

(z)JFj
(ξ) − λ(

n∑
i=1

(JFj
(z)κiFj,i(z))(JFj

(ξ)κiF j,i(ξ))) + Pj(z, Fj(ξ), JFj
(ξ))

)
= 1

(1 +
∑N

i=1 ψi(z)ψi(ξ))λ
. (46)

Here each Pj(z, Fj(ξ), JFj
(ξ)) is a rational function in z, Fj(ξ) and JFj

(ξ).
We now set Xj = JFj

, 1 ≤ j ≤ m. Set Yj , 1 ≤ j ≤ m, to be the vectors:

Yj = (Yj1, ..., Yjn) := (κ1JFj
Fj,1, ..., κnJFj

Fj,n).

Then equation (46) can be rewritten as

m∑
j=1

λj

(
Xj(z)Xj(ξ) − λYj(z) · Y j(ξ) + Qj(z,Xj(ξ), Y j(ξ))

)
= 1

(1 +
∑N

i=1 ψi(z)ψi(ξ))λ

(47)

over U × U . Here each Qj with 1 ≤ j ≤ m is rational in Xj , Y j . Moreover, each 

Qj , 1 ≤ j ≤ m, has no terms of the form X
k

jY
l

js with l ≤ 1 for any s ≥ 1 in its Taylor 
expansion at (Xj(0), Yj(0)).

We write Dα = ∂|α|

∂z
α1
1 ...∂zαn

n
for an n−multiindex α = (α1, ..., αn). Taking differentia-

tion in (47), we obtain, for each multiindex α, the following:

m∑
j=1

(
(DαXj(z))Xj(ξ) − λ(DαYj(z)) · Y j(ξ) + DαQj(z,Xj(ξ), Y j(ξ))

)
= Dα

( 1
(1 +

∑N
i=1 ψi(z)ψi(ξ))λ

)
.

Again each DαQj , 1 ≤ j ≤ m, is rational in (Xj , Y j) and has no terms of the form 

X
k

jY
l

js with l ≤ 1 and s ≥ 1 in its Taylor expansion at (Xj(0), Yj(0)). Applying a similar 
argument as in [Proposition 3.1, [20]], we can algebraically solve for Fj to complete the 
proof of the lemma. �

Let R be the field of rational functions in z = (z1, ..., zn). Consider the field extension

E = R(JF1(z), ..., JFm
(z)).

Let K be the transcendental degree of the field extension E/R. If K = 0, then each 
of {JF1 , ..., JFm

} is Nash algebraic. As a consequence of Lemma 4.2, each Fj with 1 ≤
j ≤ m is Nash algebraic. Otherwise, by re-ordering the indices if necessary, we let 
G = {JF1 , ..., JFK

} be the maximal algebraic independent subset of {JF1 , ..., JFm
}. It 

follows that the transcendental degree of E/R(G) is zero. For any l > K, there exists a 
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minimal polynomial Pl(z, X1, ..., XK , X) such that Pl(z, JF1(z), ..., JFK
(z), JFl

(z)) ≡ 0. 
Moreover,

∂Pl(z,X1, ..., XK , X)
∂X

(z, JF1(z), ..., JFK
(z), JFl

(z)) �≡ 0

in a small neighborhood V of 0, for otherwise, Pl cannot be a minimal polynomial of 
JFl

(z). Now the union of the vanishing set of the partial derivative with respect to X
in the above equation for each l forms a proper local complex analytic variety near 0. 
Applying the algebraic version of the implicit function theorem, there exists a small 
connected open subset U0 ⊂ U , with 0 ∈ U0 and a holomorphic algebraic function 
ĥl, l > K, in a certain neighborhood Û0 of {(z, JF1(z), ..., JFK

(z)) : z ∈ U0} in Cn ×CK , 
such that

JFl
(z) = ĥl(z, JF1(z), ..., JFK

(z)),

for any z ∈ U0. (We can assume here U0 is the projection of Û0.) Substitute this into

F̂i(z, JF1(z), ..., JFm
(z)),

and still denote it, for simplicity of notation, by F̂j(z, JF1(z), ..., JFK
(z)) with

F̂j(z, JF1(z), ..., JFK
(z)) = F̂j(z, JF1(z), ..., JFm

(z)) for z ∈ U0.

In the following, for simplicity of notation, we also write for j ≤ K,

ĥj(z, JF1(z), ..., JFK
(z)) = JFj

(z) or ĥj(z,X1, ..., XK) = Xj .

Now we replace Fj(ξ) by F̂j(ξ, JF1(ξ), ..., JFK
(ξ)), and replace JFj

(ξ) by ĥj(ξ, JF1(ξ),
..., JFK

(ξ)), for 1 ≤ j ≤ m, in (44). Furthermore, we write X = (X1, ..., XK), and replace 
JFj

(ξ) by Xj for 1 ≤ j ≤ K in

F̂j(ξ, JF1(ξ), ..., JFK
(ξ)), ĥj(ξ, JF1(ξ), ..., JFK

(ξ)), 1 ≤ j ≤ m.

We define a new function Φ as follows:

Φ(z, ξ,X) :=
m∑
j=1

λj

JFj
(z)ĥj(ξ,X)

(1 +
∑N

i=1 ψi(Fj(z))ψi(F̂j(ξ,X)))λ
− 1

(1 +
∑N

i=1 ψi(z)ψi(ξ))λ
. (48)

Lemma 4.3. Shrinking U if necessary, we have Φ(z, ξ, X) ≡ 0, i.e.,

m∑
λj

JFj
(z)ĥj(ξ,X)

(1 +
∑N

ψi(Fj(z))ψi(F̂j(ξ,X)))λ
= 1

(1 +
∑N

ψi(z)ψi(ξ))λ
, (49)
j=1 i=1 i=1
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or,

(1 +
N∑
i=1

ψi(z)ψi(ξ))λ
m∑
j=1

⎛⎝λjJFj
(z)ĥj(ξ,X)

∏
1≤k≤m,k �=j

(1 +
N∑
i=1

ψi(Fk(z))ψi(F̂k(ξ,X)))λ
⎞⎠

=
∏

1≤j≤m

(1 +
N∑
i=1

ψi(Fj(z))ψi(F̂j(ξ,X)))λ (50)

for z ∈ U and (ξ, X) ∈ Û0.

Proof of Lemma 4.3: Suppose not. Notice Φ is Nash algebraic in (ξ, X) for each fixed 
z ∈ U , by Lemma 4.2. For a generic fixed z = z0 near 0, since Φ(z, ξ, X) �≡ 0, there exist 
polynomials Al(ξ, X) for 0 ≤ l ≤ N with A0(ξ, X) �≡ 0 such that∑

0≤l≤N

Al(ξ,X)Φl(z, ξ,X) ≡ 0.

As Φ(z0, ξ, JF1(ξ), ..., JFK
(ξ)) ≡ 0 for ξ ∈ U0, then it follows that A0(ξ, JF1(ξ), ..., JFK

(ξ))
≡ 0 for ξ ∈ U0. This is a contradiction to the assumption that {JF1(ξ), ..., JFK

(ξ)} is an 
algebraic independent set. �

Now that F̂j(ξ, X), 1 ≤ j ≤ m, is algebraic in its variables, if F̂j , 1 ≤ j ≤ m, is 
independent of X, then Fj is algebraic by Lemma 4.2. This fact motivates the remaining 
work in this section.

4.2. Algebraicity and rationality with uniformly bounded degree

In this subsection, we prove the algebraicity and rationality for at least one of the 
F ′
js. We start with the following:

Lemma 4.4. Let Fj(z), j ∈ {1, ..., m}, be a local holomorphic map defined on a neigh-
borhood of 0 ∈ U as in (44). Suppose that there exist z0 ∈ U and ξ0 ∈ Qz0 such that 
Λ(β1, ..., βN )(z0, ξ0) is well defined and non-zero with β1 = (0, 0, ..., 0). Then there is 
an analytic variety W � U such that when z ∈ U\W , Λ(β1, ..., βN )(z, ξ) is a rational 
function in ξ over Qz and Λ(β1, ..., βN )(z, ξ) �≡ 0 on Qz.

Proof of Lemma 4.4: By the assumption, ∂ρ
∂zn

(z0, ξ0) �= 0 and

Λ(β1, ..., βN )(z0, ξ0) =

∣∣∣∣∣∣
Lβ1Fj,1 ... Lβ1Fj,N

... ... ...

LβNFj,1 ... LβNFj,N

∣∣∣∣∣∣ (z0, ξ0) (51)

is non-zero with β1 = (0, 0, ..., 0).
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By the definition, Li = ∂
∂zi

−
∂ρ
∂zi

(z,ξ)
∂ρ
∂zn

(z,ξ)
∂

∂zn
and Lβl = Lkl

1
1 Lkl

2
2 Lkl

3
3 ...Lkl

n−1
n−1 for 

βl = (kl1, ..., kln−1), kl1, ..., kln−1. Hence Λ(β1, ..., βN )(z, ξ) can be written in the form 
Λ(β1, ..., βN )(z, ξ) = G1(z,ξ)

G2(z,ξ) . Here G1(z, ξ) =
∑M1

|I|=0 ΦI(z)ξI , G2(z, ξ) =
∑M2

|J|=0 ΨJ (z)ξJ , 
with ΦI and ΨJ being holomorphic functions defined over U ⊂ Cn. In fact, G2(z, ξ) is 
simply taken as a certain sufficiently large power of ρzn := ∂ρ

∂zn
.

By our assumption, we have G1, G2 not equal to zero at (z0, ξ0). Hence, G1, G2 are 
not zero elements in O(U)[ξ1, ..., ξn], the polynomial ring of ξ with coefficients from the 
holomorphic function space over U .

By Proposition (III), the defining function of the Segre family ρ can be written in 
the form ρ(z, ξ) =

∑M3
|α|=0 Θk(z)ξα, which is an irreducible polynomial in (z, ξ). And for 

each fixed z, by Proposition (III), we also have ρ(z, ξ) irreducible as a polynomial of ξ
only.

Then the set of z ∈ U where Λ(β1, ..., βN )(z, ξ) is undefined over Qz is a subset of 
z ∈ U where G2(z, ξ), as a polynomial of ξ, contains the factor ρ(z, ξ) as a polynomial in ξ. 
We denote the latter set by W2. Similarly, the set of z ∈ U with Λ(β1, ..., βN )(z, ξ) ≡ 0
over Qz is a subset of z ∈ U where G1(z, ξ), as a polynomial of ξ, contains a factor ρ(z, ξ), 
which we denote by W1.

Notice that ρ(z, ξ) ∈ O(U)[ξ1, ..., ξn] depends on each ξj for 1 ≤ j ≤ n. Also notice 
that G2(z, ξ), as a certain power of ρzn(z, ξ), depends on ξn.

We next characterize W2 by the resultant R2 of G2(z, ξ) and ρ(z, ξ) as polynomials 
in ξn. We rewrite G2 and ρ as polynomials of ξn as follows:

G2 =
k∑

i=0
ai(z, ξ1, ..., ξn−1)ξin, ρ =

l∑
j=0

bj(z, ξ1, ..., ξn−1)ξjn.

Here the leading terms ak, bl �≡ 0 with k, l ≥ 1. We write the resultant as 
R2(z, ξ1, ..., ξn−1) =

∑
I cI(z)ξ′

I , where c′Is are holomorphic functions of z ∈ U .
For those points z ∈ W2, R2(z, ·) ≡ 0 as a polynomial of ξ1, ..., ξn−1. Then W2 is 

contained in the complex analytic set W̃2 := {cI = 0, ∀I}. If W̃2 = U , then we can find 
non-zero polynomials f, g ∈ O(U)[ξ1, ..., ξn−1][ξn] such that fρ + gG2 ≡ 0, where the 
degree of g in ξn is less than the degree of ρ in ξn. Hence {G2 = 0} ∪ {g = 0} ⊃ {ρ =
0} ∩ (U × Cn). Again by the irreducibility of {ρ = 0} ∩ (U × Cn), since {g = 0} is a 
thin set in {ρ = 0} ∩ (U × Cn), G2 vanishes on {ρ = 0} ∩ (U × Cn). This contradicts 
G2(z0, ξ0) �= 0. Hence W2 ⊂ W̃2 and W̃2 is a proper complex analytic subset of U .

By a similar argument, we can prove that W1 is contained in W̃1 that is also a proper 
analytic set of U . Let W = W̃1 ∪ W̃2. Then when z ∈ U\W , Λ(β1, ..., βN )(z, ξ) is 
well-defined over Qz as a rational function in ξ and Λ(β1, ..., βN )(z, ξ) �≡ 0 on Qz. �
Lemma 4.5. Let ψ(ξ, X) be a non-zero Nash-algebraic function in (ξ, X) = (ξ1, ..., ξn, X1,

..., Xm) ∈ Cn × Cm. Write E for a proper complex analytic variety of Cn × Cm that 
contains the branch locus of ψ and the zeros of the leading coefficient in the minimal 
polynomial of ψ. Then there exists a proper analytic set W1 in Cn such that
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{ξ| ∃X0, (ξ,X0) /∈ E} ⊃ Cn\W1.

Proof of Lemma 4.5: Since ψ is algebraic, there is an irreducible polynomial 
Φ(ξ, X; Y ) =

∑k
i=0 φi(ξ, X)Y i such that Φ(ξ, X, ψ(ξ, X)) ≡ 0. If k = 1 then ψ is a 

rational function and thus E is just the poles and points of indeterminacy. The proof is 
then obvious and we hence assume k ≥ 2.

Define Ψ(ξ, X, Y ) = ∂Φ
∂Y . Since k ≥ 2, the degree of Ψ in Y is at least one. 

Consider Φ, Ψ as polynomials in Y , and write R(ξ, X) for their resultant. Then the 
branch locus is contained in {(ξ, X)|R(ξ, X) = 0}. Notice that R �≡ 0, for Φ is irre-
ducible. Write R =

∑
I rI(ξ)XI with some rI �= 0. Write φk(ξ, X) =

∑
φk,i(ξ)Xi and 

W1 = {rI(ξ) = 0 , ∀I} ∪ {φk,i(ξ) = 0 , ∀ i}, which is a proper complex analytic set in 
Cn. Then {ξ| ∃X0, (ξ, X0) /∈ E} ⊃ Cn\W1. �

Let E be a proper complex analytic variety containing the union of the branch loci 
of ĥj , F̂j for j = 1, · · · , m and the zeros of the leading coefficients in their minimal 
polynomials. For any point (z0, ξ0, X0) ∈ U × ((Cn × CK)\E), we can find a smooth 
Jordan curve γ in U × ((Cn × CK)\E) connecting (z0, ξ0, X0) with a certain point in 
U × (Û0 \ E). We can holomorphically continue the following equation along γ:

(ρ(z, ξ))λ
m∑
j=1

⎛⎝λjJFj
(z)ĥj(ξ,X)

∏
1≤k≤m,k �=j

(1 +
N∑
i=1

ψi(Fk(z))ψi(F̂k(ξ,X)))λ
⎞⎠

=
∏

1≤j≤m

(1 +
N∑
i=1

ψi(Fj(z))ψi(F̂j(ξ,X)))λ, z ∈ U, (ξ,X) ∈ Û0,

(52)

to a neighborhood of (z0, ξ0, X0). For our later discussions, we further define

Msing,z = {(z, ξ) : ∂ρ

∂zj
= 0, ∀j},Mreg,z = M\Msing,z;

MSING = {(z, ξ) : ∂ρ

∂ξj
= 0, ∀j} ∪ {(z, ξ) : ∂ρ

∂zj
= 0, ∀j}, MREG = M\MSING;

Prz : C2n → Cn (z, ξ) �→ (z) and Prξ : C2n → Cn (z, ξ) �→ (ξ).
Notice that MREG is a Zariski open subset of M and the restrictions of Prz,Prξ to 

MREG are open mappings. Also, for (z0, ξ0) ∈ MREG, Qz0 is smooth at ξ0, and Qξ0 is 
smooth at z0. By Proposition (III), Mreg,z ∩ (Qξ0 , ξ0) is Zariski open in (Qξ0 , ξ0).

Lemma 4.6. With the notations we have set up so far, there exists a point (z0, ξ0, X0) ∈
(U×Cn×CK) with (z0, ξ0) ∈ MREG∩(U×Cn) and (ξ0, X0) /∈ E. Moreover, for each j =
1, ..., m, we can find β1

j , ..., β
N
j with β1

j = (0, ..., 0) such that ΛFj
(β1

j , ..., β
N
j )(z0, ξ0) �= 0.

Proof of Lemma 4.6: This is an easy consequence of Propositions (I), (III), Lemma 4.4
and the Zariski openness of MREG in M. �
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Let (z0, ξ0, X0) be chosen as in Lemma 4.6. We then analytically continue the equation
(52) to a neighborhood of the point (z0, ξ0, X0) through a Jordan curve γ described 
above. We denote one of such neighborhoods by V1 × V2 × V3, where V1, V2 and V3

are chosen to be a small neighborhood of z0, ξ0, and X0, respectively. It is clear, after 
shrinking V1, V2, V3 if needed, that there exists a j0 ∈ {1, ..., m} such that

1 +
N∑
i=1

ψi(Fj0(z))ψi(F̂j0(ξ,X)) = 0, for (z, ξ) ∈ M∩ (V1 × V2), X ∈ V3.

We next proceed to prove the algebraicity for Fj0(z).

Theorem 4.7. F̂j0(ξ, X), for ξ ∈ V2, X ∈ V3, is independent of X and is thus a Nash 
algebraic function of ξ. Hence Fj0 is an algebraic function of z. Moreover, the algebraic 
total degree of F̂j0(ξ, X) = Fj0(ξ), and thus of Fj0(z), is uniformly bounded by a constant 
depending only on the manifold (X, ω) and the described canonical embedding.

Before proceeding to the proof, we state a slightly modified version of a classical result 
of Hurwitz. We first give the following definition:

Definition 4.8. Suppose F is an algebraic function defined on ξ ∈ Cn. The total degree 
of F is defined to be the total degree of its minimum polynomial. Namely, let P (ξ; X) be 
an irreducible minimum polynomial of F , the total degree of F is defined as the degree 
of P (ξ; X) as a polynomial in (ξ, X).

We next state some simple facts about algebraic functions, whose proof is more or 
less standard (see, for instance, [12]):

Lemma 4.9. 1. Suppose φ1, φ2 are algebraic functions defined in ξ ∈ U ⊂ Cn with total 
degree bounded by N . Then φ1 ± φ2, φ1φ2, 1/φ1 (if φ1 �≡ 0) are algebraic functions and 
their degrees are bounded above by a constant depending only on N, n.

2. Suppose φ1(z1, ..., zn) is an algebraic function of total degree bounded by N , and sup-
pose that ψ1(ξ1, ..., ξm), ..., ψn(ξ1, ..., ξm) are algebraic functions with total degree bounded 
by N as well. Let

A0 = (ξ0
1 , ξ

0
2 , ..., ξ

0
m) ∈ Cm,

where ψ1, ..., ψn are holomorphic functions in a neighborhood of A0 and let φ1 be a holo-
morphic function in a neighborhood U ⊂ Cn of (ψ1(A0), ψ2(A0), ..., ψm(A0)). Then the 
composition Φ(ξ1, ..., ξm) = φ1(ψ1(ξ1, ..., ξm), ψ2(ξ1, ..., ξm), ψ3(ξ1, ..., ξm), ..., ψn(ξ1, ...,
ξm)) is an algebraic function with total degree bounded by a constant C(N, n, m) de-
pending only on (N, n, m).
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3. Suppose P1(z1, z2, ..., zm, ξ1, ξ2, ..., ξn), ..., Pn(z1, z2, ..., zm, ξ1, ξ2, ..., ξn) are alge-
braic functions with total degrees bounded from above by N which are holomorphic in 
a neighborhood U × V ⊂ Cm ×Cn of A0 = (z0

1 , ..., z
0
m, ξ0

1 , ..., ξ
0
n). Suppose that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P1(z1, z2, ..., zm, ξ1, ..., ξn) = 0
P2(z1, z2, ..., zm, ξ1, ..., ξn) = 0
...

Pn(z1, z2, ..., zm, ξ1, ..., ξn) = 0

has a solution at A0 = (z0, ξ0) = (z0
1 , ..., z

0
m, ξ0

1 , ..., ξ
0
n) and ∂(P1,P2,...,Pn)

∂(ξ1,ξ2,...,ξn) (z0
1 , z

0
2 , ..., z

0
m, ξ0

1 ,

..., ξ0
n) �= 0. Then we can solve ξ1 = φ1(z1, z2, ..., zm), ξ2 = φ2(z1, z2, ..., zm),..., ξn =

φn(z1, z2, ..., zm) with φj(z0) = ξ0 in a neighborhood of z0 ∈ Ũ ⊂ U ⊂ Cm, where 
φ1, ..., φn are algebraic functions with total degree bounded by C(N, n, m).

We now state the following modified version of the classical Hurwitz theorem with a 
controlled total degree [3].

Theorem 4.10. Let F (s, t, ξ1, ξ2, ..., ξm) be holomorphic over U×V ×W ⊂ Cm+2. Suppose 
that for any fixed s ∈ U ⊂ C, F is an algebraic function in (t, ξ1, ..., ξm) with its total 
degree uniformly bounded by N; and for any fixed t ∈ V ⊂ C, F is an algebraic function 
of (s, ξ1, ..., ξm) with its total degree uniformly bounded by N . Then F is an algebraic 
function with total degree bounded by a constant depending only on (m, N).

The proof of Theorem 4.10 is more or less the same as in the classical setting [3]. (See, 
for example, the Ph. D. thesis of the first author [12].)

Proof of Theorem 4.7: By the choice of (z0, ξ0, X0), there exist β1
j0
, ..., βN

j0
such that

ΛFj0
(β1

j0 , ..., β
N
j0 )(z0, ξ0) =

∣∣∣∣∣∣
Lβ1

j0Fj0,1 ... LβN
j0Fj0,N

... ... ...

LβN
j0Fj0,1 ... LβN

j0Fj0,N

∣∣∣∣∣∣ (z0, ξ0) �= 0. (53)

We can also assume that (z0, ξ0) satisfies the assumption in Proposition (II) after a 
slight perturbation of z0 inside Qξ0 if needed. By Proposition (II), we can find z1 ∈ V1 ∩
Qξ0 such that Qz0 intersects Qz1 transversally at ξ0. Moreover there exists a neighbor-
hood B of ξ0 and a biholomorphic parametrization of B: (ξ1, ξ2, ..., ξn) = G(ξ̃1, ξ̃2, ..., ξ̃n)
with (ξ̃1, ξ̃2, ..., ξ̃n) ∈ U1 × U2 × ... × Un ⊂ Cn. Here U1, U2 are as in Proposition (II). 
Moreover, G({ξ̃1 = 1} × U2 × ... × Un) ⊂ Qz0 , G(U1 × {ξ̃2 = 1} × U3 × ... × Un) ⊂ Qz1 . 
Also, for s ∈ U1, t ∈ U2, G({ξ̃0 = t} ×U2 × ... ×Un), G(U1 ×{ξ̃1 = s} ×U3 × ... ×Un) are 
open pieces of certain Segre varieties. Here G consists of algebraic functions with total 
algebraic degree uniformly bounded by M and the canonical embedding. Consider the 
equation:
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1 + Fj0(z) · F̂j0(ξ,X) = 0, (z, ξ,X) ∈ V1 × V2 × V3, (z, ξ) ∈ M. (54)

Since the holomorphic vector fields {Li}n−1
i=1 are tangent to the Segre family, we have

⎛⎝Lβ1
j0Fj0,1(z, ξ) ... Lβ1

j0Fj0,N (z, ξ)
... ... ...

LβN
j0Fj0,1(z, ξ) ... LβN

j0Fj0,N (z, ξ)

⎞⎠⎛⎝ F̂j0,1(ξ,X)
...

F̂j0,N (ξ,X)

⎞⎠ =
(−1
· · ·
0

)
, (55)

where (z, ξ)(≈ (z0, ξ0)) ∈ M, X ≈ X0.
By the Cramer’s rule, we conclude that {F̂j0,l(ξ, X)}Nl=1 are rational functions of ξ

with a uniformly bounded degree on an open piece of each Segre variety Qz for z ≈ z0. By 
the previous modified Hurwitz Theorem (Theorem 4.10), we conclude the algebraicity 

of F̂j0,l(ξ, X) for l = 1, ..., N . Since in (55) the matrix 
(
Lβμ

j0Fj0,ν(z, ξ)
)

1≤μ,ν≤N
and 

the right hand side are independent of X, these functions must also be independent of 
the X-variables. Moreover, by Lemma 4.9 and Theorem 4.10, the total algebraic degree 
of F j0,l(ξ) = F̂j0,l(ξ, X), for l = 1, ..., n, is uniformly bounded. Since F is obtained by 
holomorphically continuing the conjugation function F of F , we conclude the algebraicity 
of Fj0,l for each 1 ≤ l ≤ n. Also the total algebraic degree of each Fj0,l is bounded by a 
constant depending only on (M, ω). �
Theorem 4.11. Under the notations we have just set up, Fj0 is a rational map, whose 
degree depends only on the canonical embedding M ↪→ CPN .

For the proof Theorem 4.11, we first recall the following Lemma of [22]:

Lemma 4.12. (Lemma 3.7 in [22]) Let U ⊂ Cn be a simply connected open subset and 
S ⊂ U be a closed complex analytic subset of codimension one. Then for p ∈ U \ S, the 
fundamental group π1(U \S, p) is generated by loops obtained by concatenating (Jordan) 
paths γ1, γ2, γ3, where γ1 connects p with a point arbitrarily close to a smooth point 
q0 ∈ S, γ2 is a loop around S near q0 and γ3 is γ1 reversed.

Proof of Theorem 4.11: We give a proof for the rationality of Fj0 . Once this is done, 
we then conclude that the degree of Fj0 is uniformly bounded, for we know the total 
algebraic degree of F is uniformly bounded by Theorem 4.7.

Suppose that Fj0 and thus Fj0 is not rational. Write E ⊂ Cn for a proper complex 
analytic variety containing the branch locus of Fj0 , Fj0 and the zeros of the leading 
coefficients of the minimal polynomials of their components. We first notice that for 
A �= B ∈ Cn, Q∗

A �= Q∗
B , by Lemma 2.1. Hence, for any proper complex analytic 

variety V 1, V 2 ⊂ Cn and any point (a, b) ∈ M, we can find (a1, b1) ≈ (a, b) such that 
a1 ∈ Qb1 \ V 1 and b1 /∈ V 2.

We choose (z0, ξ0) as above and assume further that z0, ξ0 /∈ E (after a small perturba-
tion if needed). We choose a sufficiently small neighborhood W of (z0, ξ0) in MREG such 
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that for each (z1, ξ1) ∈ W , we can find, by Lemma 4.12, a loop of the form γ = γ−1
1 ◦γ2◦γ1

in Cn \E with γ(0) = γ(1) = ξ1, γ1(1) = q. Here γ1 is a simple curve connecting ξ1 to q
with q in a small ball Bp centered at a certain smooth point p of E such that the funda-
mental group of Bp \E is generated by γ2; and γ−1

1 is the reverse curve of γ1. Moreover, 
when Fj0 is holomorphically continued along γ, we end up with a different branch Fj0

∗ of 
Fj0 near ξ1. We pick p such that there is an Xp /∈ E with (Xp, p) ∈ Mreg,z. (This follows 
from Proposition (III) and Lemma 2.1 as mentioned above.) Take a certain small neigh-
borhood W of (Xp, p) in Mreg,z. We assume, without loss of generality, that the piece 
W of Mreg,z is defined by a holomorphic function of the form z1 = φ(z2, · · · , zn, ξ). 
In particular, writing Xp = (zp1 , · · · , zpn), we have zp1 = φ(zp2 , · · · , zpn, p). Make Bp

sufficiently small such that it is compactly contained in the image of the projection 
of W into the ξ-space. Write Xq = (φ(zp2 , · · · , zpn, q), z

p
2 , · · · , zpn) and define the loop 

γ∗
2(t) = (φ(zp2 , · · · , zpn, γ2(t)), zp2 , · · · , zpn). Then γ∗

2 is a loop whose base point is at Xq. 
Also, we have (γ∗

2(t), γ2(t)) ∈ M.
Notice that Xp /∈ E. After shrinking Bp if needed, we assume that γ∗

2 stays sufficiently 
close to Xp and is homotopically trivial in Cn \ E.

Now we slightly thicken γ1 to get a simply connected domain U1 of Cn \ E. Since 
M is irreducible over Cn × U1, we can find a smooth simple curve γ̃1 = (γ1

∗, ̂γ1) in 
M \ ((E × Cn) ∪ (Cn × E)) connecting (z1, ξ1) to (Xq, q). Then γ̂1 is homotopic to γ1

relatively to {ξ1, q} and γ1
∗(1) = Xq. Now replace γ by its homotopically equivalent 

loop γ̂−1
1 ◦ γ2 ◦ γ̂1 and define γ∗ = γ∗−1

1 ◦ γ∗
2 ◦ γ∗

1. Define Γ = (γ∗, γ). Then the image of 
Γ lies inside M \ ((E×Cn) ∪ (Cn×E)). Continuing Equation (54) along Γ and noticing 
that it is independent of X now, we get both

1 + Fj0(z) · Fj0(ξ) = 0 and 1 + Fj0(z) · F
∗
j0(ξ) = 0 ∀(z, ξ) ∈ M∩ ((V1 \E) × (V2 \E)).

Now as before, applying the uniqueness for the solution of the linear system (55) (with 
an invertible coefficient matrix), we then conclude that Fj0

∗ ≡ Fj0 . This is a contradic-
tion. �
4.3. Isometric extension of F

For simplicity of notation, in the rest of this section, we denote the map Fj0 just 
by F . Now that all components of F are rational functions, it is easy to verify that F
gives rise to a rational map M ��� M . By the Hironaka theorem (see [17] and [27]), 
we have a (connected) complex manifold Y of the same dimension, holomorphic maps 
τ : Y → M , σ : Y → M , and a proper complex analytic variety E1 of M such that 
σ : Y \ σ−1(E1) → M \ E1 is biholomorphic; F : M \ E1 → M is well-defined; and for 
any p ∈ Y \ σ−1(E1), F (σ(p)) = τ(p).

Let E2 be a proper complex analytic subvariety of M containing E1, M \ A and 
let E3 ⊂ Y be the proper subvariety where τ fails to be biholomorphic. Write E∗ =
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τ(σ−1(E2) ∪ E3) ∪ (M \ A) and E = σ(τ−1(E∗)). Then F : A \ E → A \ E∗ is a 
holomorphic covering map. We first prove

Lemma 4.13. Under the above notation, F : A \E → A \ E∗ is a biholomorphic map.

Proof of Lemma 4.13: We first notice that since F is biholomorphic near 0 with 
F (0) = 0. We can assume that 0 /∈ E. Consider F 2 = F ◦F . Then F 2 = F

2. Since (F, F )
maps M into M whenever it is defined, it is easy to see that (F, F ) ◦ (F, F ) = (F 2, F

2)
also maps M into M at the points where it is well-defined. Hence, we can repeat a similar 
argument for F to conclude that F 2, as a rational map, also has its degree bounded by a 
constant independent of F 2. Similarly, we can conclude that for any positive integer m, 
Fm is a rational map with degree bounded by a constant independent of m and F . Now, 
as for F , we can find complex analytic subvarieties E(m), E∗(m) of Cn such that Fm is 
a holomorphic covering map from A \E(m) → A \ E∗(m). Suppose F : A \ E → A \ E∗

is a k to 1 covering map. It is easy to see that Fm : A \ E(m) → A \ E∗(m) is a km to 
1 covering map. However, since the degree Fm is independent of m, we conclude that 
k = 1 by the following Bezout theorem:

Theorem 4.14. ([42]) The number of isolated solutions to a system of polynomial equations

f1(x1, ..., xn) = f2(x1, ..., xn) = ... = fn(x1, ..., xn) = 0

is bounded by d1d2 · · · dn, where di = deg fi.

This proves the lemma. �
Now we prove that F extends to a global holomorphic isometry of (M, ω).

Theorem 4.15. F : (U, ω|U ) → (M, ω) extends to a global holomorphic isometry of (M, ω).

Proof of Theorem 4.15: By what we just achieved, we then have two proper complex 
analytic varieties W1, W2 of Cn such that F : Cn\W1 → Cn\W2 is biholomorphic. 
Similarly we have two proper complex analytic subvarieties W ∗

1 , W
∗
2 of Cn such that 

F : Cn \W ∗
1 → Cn \W ∗

2 is a biholomorphic map. Hence

F = (F, F ) : Cn \W1 ×Cn \W ∗
1 → Cn \W2 ×Cn \W ∗

2

is biholomorphic. Let ρ be the defining function of the Segre family as described before. 
Since ρ is irreducible as a polynomial in (z, ξ), M is an irreducible complex analytic 
variety of A. Since F maps a certain open piece of M into an open piece of M, by the 
uniqueness of holomorphic functions, we see that F = (F, F ) also gives a biholomorphic 
map from (Cn\W1×Cn\W ∗

1 ) ∩M to (Cn\W2×Cn\W ∗
2 ) ∩M. Hence ρF = ρ(F (z), F (ξ))

defines the same subvariety as ρ does over Cn \ W1 × Cn \ W ∗
1 . Since ρF is a rational 
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function in (z, ξ) with denominator coming from the factors of the denominators of F (z)
and F (ξ), we can write

ρF (z, ξ) = (ρ(z, ξ))l P i1
1 (z, ξ)P i2

2 (z, ξ) · · · P iτ
τ (z, ξ)

Qj1
1 (z) · · ·Qjμ

μ (z)Rk1
1 (ξ) · · ·Rkν

ν (ξ)
(56)

Here the zeros of Qj(z) and Rj(ξ) stay in W1 and W ∗
1 , respectively. All polynomials 

are irreducible and prime to each other. By what we just mentioned Pj(z, ξ) can not 
have any zeros in Cn \W1 × Cn \W ∗

1 , for otherwise it must have ρ as its factor by the 
irreducibility of ρ. Hence the zeros of Pj(z, ξ) must stay in (W1 × Cn) ∪ (Cn × W ∗

1 ). 
From this, it follows easily that Pj(z, ξ) = Pj,1(z) or Pj(z, ξ) = Pj,2(ξ). Namely, Pj(z, ξ)
depends either on z or on ξ. Since F is biholomorphic, we see that l = 1. Thus replacing 
ξ by z̄ and taking i∂∂̄ log to (56), we have i∂∂̄ log ρF (z, ̄z) = i∂∂̄ log ρ(z, ̄z). This shows 
that F ∗(ω) = ω, or F is a local isometry. Now, by the Calabi Theorem (see [4]), F
extends to a global holomorphic isometry of (M, ω). This proves Theorem 4.15. �

We now are ready to give a proof of Theorem 4.1. By what we have obtained, there 
is a component Fj for F in Theorem 4.1 that extends to a holomorphic isometry to 
(M, ω). Hence F ∗

j (dμ) = dμ. Notice λj < 1 due to the positivity of all terms in the 
right hand side of the equation (40). After a cancellation, we reduce the theorem to the 
case with only (m − 1)-maps. Then by an induction argument, we complete the proof of 
Theorem 4.1. �
5. Partial non-degeneracy: proof of Proposition (I)

In this section, we prove Proposition (I) for irreducible compact Hermitian spaces of 
compact type. Since the argument differs as its type varies, we do it on a case by case 
base. For convenience of the reader, we give a detailed proof here for the Grassmannians 
and Hyperquadrics. We will include the rest arguments in Appendix B.

5.1. Spaces of type I

With the same notations that we have set up in §2, Z is a p × q matrix (p ≤ q); 
Z( i1 ... ik

j1 ... jk
) is the determinant of the submatrix of Z formed by its ith1 , ..., ithk rows 

and jth
1 , ..., jth

k columns; z = (z11, ..., z1q, z21, ..., z2q, ..., zp1, ..., zpq) is the coordinates 
of Cpq ∼= A ⊂ G(p, q). Let 0 ∈ U be a small neighborhood of 0 in Cpq and F be a 
biholomorphic map defined over U with F (0) = 0. For convenience of our discussions, 
we represent the map F : U → A as a holomorphic matrix-valued map:

F =
(
f11 ... f1q
... ... ...

)
.

fp1 ... fpq
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Similar to Z( i1 ... ik
j1 ... jk

), F ( i1 ... ik
j1 ... jk

) denotes the determinant of the submatrix 

formed by the ith1 , ..., ithk rows and jth
1 , ..., jth

k columns of the matrix F . Recall in (2), rz
is defined as

(ψ1, ψ2, ..., ψN ) = (· · · , Z( i1 ... ik
j1 ... jk

), · · · ), 1 ≤ i1 < ... < ik ≤ p, 1 ≤ j1 < ... < jk ≤ q,

1 ≤ k ≤ p.

Similarly, we define:

rF := (· · · , F ( i1 ... ik
j1 ... jk

), · · · ), 1 ≤ i1 < ... < ik ≤ p, 1 ≤ j1 < ... < jk ≤ q, 1 ≤ k ≤ p.

Notice that rF = (ψ1(F (z)), ..., ψN (F (z))). We define

z̃ := (z11, ..., z1q, z21, ..., z2q, ..., zp1, ..., zp(q−1)),

i.e., z̃ is obtained from z by dropping the last component zpq. Write ∂|α|

∂z̃α =
∂|α|

∂z
α11
11 ...∂z

αp(q−1)
p(q−1)

for any (pq−1)−multiindex α, where α = (α11, ..., α1p, α21, ..., α2q, ..., αp1,

..., αp(q−1)).
We apply the notion of the partial degeneracy defined in Definition 3.1 of §3 by letting 

ψ = rF and letting z̃ be as just defined with m = pq. We prove the following proposition:

Proposition 5.1. rF are z̃-nondegenerate near 0. More precisely, rank1+N−pq(rF , ̃z) = N .

Proof of Proposition 5.1: If p = 1, q = n ≥ 1 i.e., the Hermitian symmetric space 
M = Pn, then it follows from Lemma 3.3 that rank1(rF , ̃z) = N = n. In the following 
we assume p ≥ 2.

Suppose the conclusion is not true. Namely, assume that rank1+N−pq(rF , ̃z) < N . 
Since the hypothesis of Theorem 3.10 is satisfied, we see that there exist cpq+1, ..., cN ∈ C

which are not all zero such that

N∑
i=pq+1

ciψi(F )(z11, ..., zpq−1, 0) ≡ 0. (57)

The next step is to show that (57) cannot hold in the setting of Proposition 5.1. This 
is obvious if we can prove the following:

Lemma 5.2. Let

H =
(
h11 ... h1p
... ... ...

)
,

hp1 ... hpq
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be a vector-valued holomorphic function in a neighborhood U of 0 in z̃ = (z11, ..., zp(q−1))
∈ Cpq−1 with H(0) = 0. Assume that H is of full rank at 0. Set

(φ1, ..., φm) := rH =
((

H

(
i1 ... ik
j1 ... jk

) )
1≤i1<...<ik≤p,1≤j1<...<jk≤q

)
2≤k≤p

. (58)

Here

m =
(
p

2

)(
q

2

)
+ ... +

(
p

p

)(
q

p

)
.

Let a1, ..., am be complex numbers such that

m∑
i=1

aiφi(z̃) ≡ 0 for all z̃ ∈ U. (59)

Then ai = 0 for each 1 ≤ i ≤ m.

Proof of Lemma 5.2: We start with the simple case p = q = 2, in which m = 1. Then 
by the assumption (59), a1φ1 = 0. Here

φ1 =
∣∣∣∣h11 h12
h21 h22

∣∣∣∣ .
Note that H = (h11, h12, h21, h22) is of full rank at 0. We assume, without loss of 
generality, that H̃ := (h11, h12, h21) is a local biholomorphic map from C3 to C3. Af-
ter an appropriate biholomorphic change of coordinates preserving 0, we can assume 
h11 = z11, h12 = z12, h21 = z21, and still write the last component as h22. Then we have

a1φ1 = a1(z11h22 − z12z21) ≡ 0,

which easily yields that a1 = 0.
We then prove the lemma for the case of p = 2, q = 3, in which m = 3. As before, 

without loss of generality, we assume that H̃ := (h11, h12, h13, h21, h22) is a local bi-
holomorphic map near 0 from C5 to C5. After an appropriate biholomorphic change of 
coordinates, we assume that H̃ = (z11, ..., z22). By (59), we have

a1φ1 + ... + a3φ3 = a1

∣∣∣∣z11 z12
z21 z22

∣∣∣∣ + a2

∣∣∣∣z11 z13
z21 h23

∣∣∣∣ + a3

∣∣∣∣z12 z13
z22 h23

∣∣∣∣ . (60)

The conclusion can be easily proved by checking the coefficients in the Taylor expan-
sion at 0. Indeed, the quadratic terms z13z21, z13z22 only appear once in the last two 
determinants. This implies a2 = a3 = 0. Then trivially a1 = 0.
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We also prove the case p = q = 3. In this case m = 10. As before, without loss 
of generality, we assume that H̃ = (h11, ..., h32) is a biholomorphic map from C8 to 
C8. After an appropriate biholomorphic change of coordinates, we can assume that 
H̃ = (z11, ..., z32). Then by assumption, we have

a1φ1 + ... + a10φ10 =

a1

∣∣∣∣z11 z12
z21 z22

∣∣∣∣ + a2

∣∣∣∣z11 z13
z21 z23

∣∣∣∣ + a3

∣∣∣∣z12 z13
z22 z23

∣∣∣∣ + a4

∣∣∣∣z11 z12
z31 z32

∣∣∣∣ + a5

∣∣∣∣z11 z13
z31 h33

∣∣∣∣
+ a6

∣∣∣∣z12 z13
z32 h33

∣∣∣∣ + a7

∣∣∣∣z21 z22
z31 z32

∣∣∣∣ + a8

∣∣∣∣z21 z23
z31 h33

∣∣∣∣ + a9

∣∣∣∣z22 z23
z32 h33

∣∣∣∣
+ a10

∣∣∣∣∣z11 z12 z13
z21 z22 z23
z31 z32 h33

∣∣∣∣∣ = 0.

(61)

We then check the coefficients for each term in its Taylor expansion at 0. First it is easy 
to note that a5 = a6 = a8 = a9 = 0 by checking the coefficients of quadratic terms

z13z31, z13z32, z23z31, z23z32,

respectively. Then by checking the coefficients of other quadratic terms, we see that 
a1 = a2 = a3 = a4 = a7 = 0. Finally we check the coefficient of the cubic term z13z22z31
to obtain that a10 = 0.

We now prove the general case: q ≥ p ≥ 2. As before, we assume without loss of 
generality that H̃ = (h11, ..., hp(q−1)) is a biholomorphic map from Cpq−1 to Cpq−1. 
Furthermore, we have H̃ = (z11, ..., zp(q−1)) after an appropriate biholomorphic change 
of coordinates. We again first consider the coefficients of the quadratic terms in (59). For 

that, we consider the 2 ×2 submatrix involving hpq, i.e., H
(
l p
k q

)
, 1 ≤ l < p, 1 ≤ k < q. 

Note that zlqzpk only appears in this 2 × 2 determinant, which yields that the coefficient 
ai associated to this 2 × 2 determinant is 0, for any 1 ≤ i < p, 1 ≤ j < q. Then by 
checking the coefficients of other quadratic terms, we see that all coefficients a′is that 

are associated to 2 × 2 determinants H
(
l1 l2
k1 k2

)
, 1 ≤ l1, l2 ≤ p, 1 ≤ k1, k2 ≤ q, are 0.

We then consider the coefficients of cubic terms in (59). We first look at those 3 × 3

submatrix involving hpq, i.e., H
(
l1 l2 p
k1 k2 q

)
, 1 ≤ l1 < l2 < p, 1 ≤ k1 < k2 < q. Note 

that zl1qzl2k2zpk1 only appears in this 3 × 3 matrix, which yields that the ai associated 
to this 3 × 3 determinant is 0. Furthermore, we see that all coefficients ai’s that are 
associated to 3 × 3 determinants are 0.

Now the conclusion can be proved inductively. Indeed, assume that we have proved 
that all coefficients ai’s that are associated with the determinants of order up to μ ×μ, 3 ≤
μ < p are zero. Then we will prove that the coefficients associated with (μ +1) × (μ + 1)
determinants are also 0. For this we consider all such determinants which involve hpq, 
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i.e., H
(
l1 ... lμ p
k1 ... kμ q

)
where 1 ≤ l1 < ... < lμ < p, 1 ≤ k1 < ... < kμ < q. We 

conclude the ai associated to it is 0 by noting that zl1qzl2kμ
...zlμk2zpk1 only appears in 

this (μ + 1) × (μ + 1) determinant. Then we can show all coefficients that are associated 
with other (μ + 1) × (μ + 1) determinants, i.e.,

H

(
l1 ... lμ lμ+1
k1 ... kμ kμ+1

)
, 1 ≤ l1 < ... < lμ+1 ≤ p, 1 ≤ k1 < ... < kμ+1 ≤ q,

(lμ+1, kμ+1) �= (p, q).

are 0 by checking a term of the form zl1k1 ...zlμ+1kμ+1 that only appears once in the Taylor 
expansion of the left hand side of (57). This proves the lemma. �

We thus get a contradiction to the equation (57). This establishes Proposition 5.1. �
Remark 5.3. Let F be as in Proposition 5.1. There exist multiindices β1, ..., βN with 
|βj | ≤ 1 + N − pq and

z0 =

⎛⎝z0
11 ... z0

1q
... ... ...
z0
p1 ... z0

pq

⎞⎠ �= 0

such that z0 is near 0 and

Δ(β1, ..., βN ) :=

∣∣∣∣∣∣∣∣
∂|β1|(ψ1(F ))

∂z̃β1 ... ∂|β1|(ψN (F ))
∂z̃β1

... ... ...
∂|βN |(ψ1(F ))

∂z̃βN ... ∂|βN |(ψN (F ))
∂z̃βN

∣∣∣∣∣∣∣∣ (z
0) �= 0. (62)

Perturbing z0 if necessary, we can thus assume that z0
pq �= 0. Moreover, we can replace 

one of the β1, ..., βN by β = (0, ..., 0), because (ψ1(F ), ..., ψN (F )) are not identically 
zero (see also the proof of Theorem 3.4). Without lost of generality, we can assume that 
β1 = (0, ..., 0).

The defining function of the Segre family now is

ρ(z, ξ) = 1+
p∑

k=1

⎛⎝ ∑
1≤i1<i2<...<ik≤p,1≤j1<j2<...<jk≤q

Z( i1 ... ik
j1 ... jk

)Ξ( i1 ... ik
j1 ... jk

)

⎞⎠ (63)

It is a complex manifold for any fixed ξ close enough to the point

ξ0 =

⎛⎝0 ... 0 0
0 ... 0 0
0 ... 0 ξ0

pq

⎞⎠ ∈ Cpq, ξ0
pq = − 1

z0
pq

.

Write for each 1 ≤ i ≤ p, 1 ≤ j ≤ q, (i, j) �= (p, q),
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Lij = ∂

∂zij
−

∂ρ
∂zij

(z, ξ)
∂ρ

∂zpq
(z, ξ)

∂

∂zpq
, (64)

which is a well-defined holomorphic tangent vector field along M near (z0, ξ0). Here 
we note that ∂ρ

∂zpq
(z, ξ) is nonzero near (z0, ξ0). For any (pq − 1)-multiindex β =

(β11, ..., βp(q−1)), we write

Lβ = Lβ11
11 ...Lβp(q−1)

p(q−1) .

Now we define for any N collection of (pq − 1)−multiindices {β1, ..., βN},

Λ(β1, ..., βN )(z, ξ) :=

∣∣∣∣∣∣
Lβ1(ψ1(F )) ... Lβ1(ψN (F ))

... ... ...

LβN (ψ1(F )) ... LβN (ψN (F ))

∣∣∣∣∣∣ (z, ξ). (65)

Theorem 5.4. There exist multiindices {β1, ..., βN}, such that

Λ(β1, ..., βN )(z, ξ) �= 0, (66)

for (z, ξ) in a small neighborhood of (z0, ξ0). Moreover, we can require β1 = (0, ..., 0).

Proof of Theorem 5.4: First we observe that Lij evaluating at (z0, ξ0) is just ∂
∂zij

. 
More generally, for any (pq − 1)−multiindex β, by an easy computation, Lβ evaluating 
at (z0, ξ0) coincides with ∂

∂z̃β . Therefore, we can just choose the same β1, ..., βN as in 
Remark 5.3. �
5.2. Spaces of type IV

In this subsection, we consider the hyperquadric case M = Qn. This case is more 
subtle because the tangent vector fields of its Segre family are more complicated. Recall 
that Qn is defined by{

[z0, ..., zn+1] ∈ CPn+1 :
n∑

i=1
z2
i − 2z0zn+1 = 0

}
,

where [z0, ..., zn+1] is the homogeneous coordinates of CPn+1. The previously described 
minimal embedding Cn(A) → Qn is given by

z := (z1, ..., zn) �→ [1, ψ1(z), ..., ψn+1(z)] = [1, z1, ..., zn,
1
2

n∑
i=1

z2
i ].

The defining function of the Segre family over A ×A is ρ(z, ξ) = 1 + rz · rξ, where
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rz = (z1, ..., zn,
1
2

n∑
i=1

z2
i ), rξ = (ξ1, ..., ξn,

1
2

n∑
i=1

ξ2
i ). (67)

Let F be a local biholomorphic map at 0 with F (0) = 0. We write

F = (f1, ..., fn), rF = (f1, ..., fn,
1
2

n∑
i=1

f2
i ). (68)

Notice that

rz = (ψ1(z), ..., ψn+1(z)), rF = (ψ1(F ), ..., ψn+1(F )).

We will need the following lemma:

Lemma 5.5. For each fixed μ1, ..., μn−1 with (
∑n−1

i=1 μ2
i ) +1 = 0 and each fixed (z1, ..., zn)

with (
∑n−1

i=1 μizi) + zn �= 0, we can find (ξ1, ..., ξn) such that

1 + z1ξ1 + ... + znξn = 0;
n∑

i=1
(ξi)2 = 0, ξj = μjξn, 1 ≤ j ≤ n− 1, ξn �= 0. (69)

Proof of Lemma 5.5: We just need to set

ξn = −1
(
∑n−1

i=1 μizi) + zn
, ξj = μjξn, 1 ≤ j ≤ n− 1.

Then it is easy to verify that (69) is satisfied. �
Recall that in the type I case, the vector fields ∂

∂z̃α in Cpq are tangent vector fields 
of the particular hyperplane {zpq = 0}. We can formulate the result in §3 in a more 
abstract way and extend it to a more general setting. For instance, it can be generalized 
to the complex hyperplane case. We briefly discuss this in more details as follows:

First fix μ1, ..., μn−1 with (
∑n−1

i=1 μ2
i ) + 1 = 0. Take the complex hyperplane H :

zn +
∑n−1

i=1 μizi = 0 in (z1, ..., zn) ∈ Cn. Write

L1 = ∂

∂z1
− μ1

∂

∂zn
, ..., Ln−1 = ∂

∂zn−1
− μn−1

∂

∂zn
.

Then {Li}n−1
i=1 forms a basis of the tangent vector fields of H. For any multiindex 

α = (α1, .., αn−1), we write Lα = Lα1
1 ...L

αn−1
n−1 . We define L−rank and L−nondegeneracy 

as in Definition 3.1 by using rF in (68) and by using Lα instead of z̃α with m = n. We 
write the kth L-rank defined in this setting as rankk(rF , L). We now need to prove the 
following

Proposition 5.6. rank2(rF , L) = n + 1.
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Proof of Proposition 5.6: Suppose not. By applying the same argument as in Section 3
and a linear change of coordinates, we can first obtain a modified version of Theorem 3.10:

Lemma 5.7. There exist n +1 holomorphic functions g1(w), ..., gn+1(w) which are defined 
near 0 on the w−plane with {g1(0), ..., gn+1(0)} not all zero such that the following holds 
for all z ∈ U .

n+1∑
i=1

gi(zn + μ1z1 + ... + μn−1zn−1)ψi(F (z)) ≡ 0. (70)

Then one shows with a similar argument as in Section 3, by the fact that F has full 
rank at 0, that g1(0) = 0, ..., gn(0) = 0. Hence we obtain,

Lemma 5.8. There exists a non-zero constant c ∈ C such that

cψn+1(F (z)) = c

2

n∑
i=1

f2
i (z) ≡ 0, (71)

for all z ∈ U when restricted on zn +
∑n−1

i=1 μizi = 0.

We then just need to show that (71) cannot hold by applying the following lemma 
and a linear change of coordinates.

Lemma 5.9. Let H = (h1, ..., hn) be a vector-valued holomorphic function in a neighbor-
hood U of 0 in z̃ = (z1, ..., zn−1) ∈ Cn−1 with H(0) = 0. Assume that H has full rank at 
0. Assume that a is a complex number such that,

a
n∑

i=1
h2
i (z̃) ≡ 0, (72)

then a = 0.

Proof of Lemma 5.9: Seeking a contradiction, suppose not. Notice that H has full rank 
at 0. We assume, without loss of generality, that (h1, ..., hn−1) gives a local biholomorphic 
map near 0 from Cn−1 to Cn−1. By a local biholomorphic change of coordinates, we 
assume (h1, ..., hn−1) = (z1, ..., zn−1), and still write the last component as hn. Then 
equation (72) is reduced to

a(z2
1 + ... + z2

n−1 + h2
n) = 0.

To cancel the z2
1 , z

2
2 terms, it yields that hn has linear z1, z2 terms. But then h2

n would 
produce a z1z2 term, which cannot be canceled out. This is a contradiction. �

This also establishes Proposition 5.6. �
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Remark 5.10. By Proposition 5.6, there exist multiindices β̃1, ..., β̃n+1 with |β̃j | ≤ 2 and

z0 = (z0
1 , ..., z

0
n) with

n−1∑
i=1

μiz
0
i + z0

n �= 0

such that ∣∣∣∣∣∣
Lβ̃1(ψ1(F )) ... Lβ̃1(ψn+1(F ))

... ... ...

Lβ̃n+1(ψ1(F )) ... Lβ̃n+1(ψn+1(F ))

∣∣∣∣∣∣ (z0) �= 0. (73)

We then choose ξ0 = (ξ0
1 , ..., ξ

0
n) as in Lemma 5.5. That is

1 + z0
1ξ

0
1 + ... + z0

nξ
0
n = 0;

n∑
i=1

(ξ0
i )2 = 0, ξ0

j = μjξ
0
n, 1 ≤ j ≤ n− 1, ξ0

n �= 0.

It is easy to see that (z0, ξ0) ∈ M. We now define

Li = ∂

∂zi
−

∂ρ
∂zi

(z, ξ)
∂ρ
∂zn

(z, ξ)
∂

∂zn
, 1 ≤ i ≤ n− 1 (74)

for (z, ξ) ∈ M near (z0, ξ0). They are well-defined holomorphic tangent vector fields 
along M. Moreover, ∂ρ

∂zn
(z, ξ) is nonzero near (z0, ξ0).

We define for any multiindex α = (α1, .., αn−1), Lα = Lα1
1 ...Lαn−1

n−1 . Then for any 
(n + 1) collection of (n − 1)−multiindices, set {β1, ..., βN},

Λ(β1, ..., βn+1)(z, ξ) :=

∣∣∣∣∣∣
Lβ1(ψ1(F )) ... Lβ1(ψn+1(F ))

... ... ...

Lβn+1(ψ1(F )) ... Lβn+1(ψn+1(F ))

∣∣∣∣∣∣ (z, ξ). (75)

By the fact that 
∑n

i=1(ξ0
i )2 = 0, one can check that, for any multiindex α =

(α1, .., αn), Lα = Lα when evaluated at (z0, ξ0). Then we get the following:

Theorem 5.11. There exist multiindices {β1, ..., βN} such that

Λ(β1, ..., βN )(z, ξ) �= 0,

for (z, ξ) in a small neighborhood of (z0, ξ0), where β1 = (0, 0, ..., 0).

Proofs for the other types are similar and will be left to Appendix B.
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6. Transversality and flattening of Segre families: proof of Proposition (II)

In this section, we prove Proposition (II). We still use the notations we have set up 
so far. We equip the space M with the canonical Kähler-Einstein metric ω as described 
before. We start with the following lemma:

Lemma 6.1. Let σ̂ : (M, ω) → (M, ω) be a holomorphic isometry. In the affine space A, 
its components consist of rational functions with its degree bounded only by a constant 
depending on (M, ω).

Proof of Lemma 6.1: Notice that M has been isometrically embedded into CPN

through the canonical map defined before. Hence σ̂ is the restriction of a unitary trans-
formation. Hence σ̂ can be identified with a map of the form:

(ψ̃0, ψ̃1, ψ̃2, ..., ψ̃N ) = (
N∑
j=0

a0jψj , ...,

N∑
j=0

aijψj , ...,

N∑
j=0

aNjψj),

where ψ0 = 1 and (aij) is a unitary matrix. Write

Ψ(z) : z(∈ A) �→ [1, κ1z1, · · · , κizi, · · · , κnzn, o(z2)] ∈ CPN

for the embedding, where κi = 1 or 
√

2. σ̂ induces a birational self-action σ of A such 
that Ψ(σ(z)) = σ̂(Ψ(z)). Then, from the special form of Ψ, σ(z) =

(
ψ̃1

κ1ψ̃0
, ψ̃2
κ2ψ̃0

, ..., ψ̃n

κnψ̃0

)
. 

Apparently ψ̃0 �≡ 0. �

Theorem 6.2. Suppose ξ0 ∈ Cn \ {0}. Then for a generic smooth point z0 on the Segre 
variety Qξ0 and a small neighborhood U ⊂ Cn of z0, there is a point z1 ∈ U ∩Qξ0 , such 
that Qz0 and Qz1 are both smooth at ξ0 and intersect transversally there. Moreover, there 
is a biholomorphic parametrization G(ξ̃1, ξ̃2, ..., ξ̃n) = (ξ1, ξ2, ..., ξn), with (ξ̃1, ξ̃2, ..., ξ̃n) ∈
U1 × U2 × ... × Un ⊂ Cn. Here when 1 ≤ j ≤ 2, Uj is a small neighborhood of 1 ∈ C. 
When 3 ≤ j ≤ n, Uj is a small neighborhood of 0 ∈ C with G(1, 1, 0, · · · , 0) = ξ0, such 
that G({ξ̃1 = 1} × U2 × ... × Un) ⊂ Qz0 , G(U1 × {ξ̃2 = 1} × U3 × ... × Un) ⊂ Qz1 , and 
G({ξ̃1 = t} × U2 × ... × Un), G(U1 × {ξ̃2 = s} × U3 × ... × Un), s ∈ U1, t ∈ U2 are open 
pieces of Segre varieties. Also, G consists of algebraic functions with total degree bounded 
by a constant depending only on (M, ω).

We first claim that, due to the invariance of the Segre family, we need only to prove 
the theorem for a special point 0 �= ξ0 ∈ Cn ⊂ M . Indeed, by the invariance property 
mentioned in §2, for an isometry σ, (σ, σ) preserves the Segre family M ⊂ M × M . 
Here for p ∈ CPN , σ(p) := σ(p) as before. Here, we mention that in the statement of the 
theorem, we assume that z0 is a generic smooth point because under this transformation, 
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some smooth points on Qξ0 may be mapped into the hyperplane of M at infinity, which 
can not be chosen as our z0.

We now proceed to the proof of Theorem 6.2 by choosing a good point ξ0. We only 
carry out the proof for the case of hyperquadrics and Grassmannian spaces here. The 
proof for the remaining cases is similar and will be included in Appendix C.

Proof of Theorem 6.2: Case 1. Hyperquadrics: Suppose M is the hyperquadric. Then 
the defining equation for the Segre family is

ρ(z, ξ) = 1 +
n∑

i=1
ziξi + 1

4(
n∑

i=1
z2
i )(

n∑
i=1

ξ2
i ) = 0.

We choose ξ0 = (1, 0, 0, ..., 0). Hence Qξ0 = {z : ρ(z, ξ0) = 1 +z1 + 1
4 (
∑n

i=1 z
2
i ) = 0}. We 

compute the gradient of ρ(z, ξ0) as follows: ∇ρ(z, ξ0) = (1 + 1
2z1, 12z2, ..., 12zn). Notice 

that Qξ0 is smooth except at (−2, 0, ..., 0), namely, we have ∇ρ(z, ξ0) �= 0 away from 
(−2, 0, · · · , 0). For a smooth point z0(�= (−2, 0, · · · , 0)) of Qξ0 , we choose a neighborhood 
U of z0 in Cn such that U ∩Qξ0 is a smooth piece of Qξ0 . Pick also z1(�= z0) ∈ U ∩Qξ0

and compute the gradient of the defining function of Qz0 and Qz1 at ξ0 = (1, 0, ..., 0), 
respectively. Recall

Qzs = {ξ|ρ(zs, ξ) = 1 +
n∑

i=1
zsi ξi + 1

4(
n∑

i=1
(zsi )2)(

n∑
i=1

ξ2
i ) = 0}, for s = 0, 1.

(
∇ρ(z0, ξ)|ξ0=(1,0,...,0)
∇ρ(z1, ξ)|ξ0=(1,0,...,0)

)
=

(
z0
1 + 1

2
∑n

i=1(z0
i )2 z0

2 z0
3 ... z0

n

z1
1 + 1

2
∑n

i=1(z1
i )2 z1

2 z1
3 ... z1

n

)

=
(−2 − z0

1 z0
2 z0

3 ... z0
n

−2 − z1
1 z1

2 z1
3 ... z1

n

)

The second equality is simplified by making use of the fact that z0, z1 ∈ Qξ0=(1,0,...,0), 
which implies that 0 = 1 + z0

1 + 1
4
∑n

i=1(z0
i )2 = 1 + z1

1 + 1
4
∑n

i=1(z1
i )2. Hence,

rank
(
∇ρ(z0, ξ)|ξ0=(1,0,...,0)
∇ρ(z1, ξ)|ξ0=(1,0,...,0)

)
= rank

(−2 − z0
1 z0

2 ... z0
n

−2 − z1
1 z1

2 ... z1
n

)
= rank

(−2 − z0
1 z0

2 ... z0
n

−Δz1
1 Δz1

2 ... Δz1
n

)

= rank
(

2 + z0
1 z0

2 ... z0
n

Δz1
1 Δz1

2 ... Δz1
n

)
= rank

(
∇ρ(z, ξ0)|z0

Δz1
1 Δz1

2 ... Δz1
n

)
,

where Δz1
i := z1

i − z0
i . Notice that z0 is a smooth point on Qξ0 . Hence ∇ρ(z, ξ0) is 

transversal to the tangent space of Qξ0 at z0. If we choose z1 ∈ Qξ0 close enough to z0, 
which ensures (Δz1

1 , ..., Δz1
n) close enough to tangent space of Qξ0 at z0, we then get
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rank
(
∇ρ(z0, ξ)|ξ0=(1,0,...,0)
∇ρ(z1, ξ)|ξ0=(1,0,...,0)

)
= rank

(
∇ρ(z, ξ0)|z0

Δz1
1 Δz1

2 ... Δz1
n

)
= 2.

We assume, without loss of generality, that ∂(ρ(z0,ξ),ρ(z1,ξ))
∂(ξ1,ξ2) �= 0 at ξ0. Now we introduce 

new variables ξ̃1, ..., ξ̃n and consider the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P1 : 1 +
∑n

i=1(ξ̃1z0
i )ξi + 1

4 (
∑n

i=1(ξ̃1)2(z0
i )2)(

∑n
i=1 ξ

2
i ) = 0

P2 : 1 +
∑n

i=1(ξ̃2z1
i )ξi + 1

4 (
∑n

i=1(ξ̃2)2(z1
i )2)(

∑n
i=1 ξ

2
i ) = 0

P3 : ξ̃3 − ξ3 = 0
... ...

Pn : ξ̃n − ξn = 0

Then we have ∂(P1,...,Pn)
∂(ξ1,...,ξn) |A �= 0 and ∂(P1,...,Pn)

∂(ξ̃1,...,ξ̃n) |A �= 0 where

A = (ξ̃1, ..., ξ̃n; ξ1, ..., ξn) = (1, 1, 0, ..., 0; 1, 0, ..., 0).

By Lemma 4.9, we get the needed algebraic flattening with total degree bounded only 
by (M, ω). This completes the proof of Theorem 6.2 in the hyperquadric case.

Case 2. Grassmannians: Pick ξ0 = (ξ0
11, ξ

0
12, ..., ξ

0
pq) = (1, 0, ..., 0). The defining func-

tion for the Segre family associated with this point is as follows:
ρ(z, ξ) = 1 + z11ξ11 + z12ξ12 + ... + z1qξ1q + z21ξ21 + ... + zp1ξp1 +

∑
i,j �=1 zijξij +∑

i,j≥2(z11zij −zi1z1j)(ξ11ξij − ξi1ξ1j) +
∑

(i,j),(k,l) �=(1,1)(zijzkl−zilzjk)(ξijξkl− ξilξjk) +
higher order terms.

Then Qξ0 = {z|ρ(z, ξ0) = 1 + z11 = 0}, ∇ρ(z, ξ0) = (1, 0, 0, ..., 0). Hence Qξ0 is 
smooth. For z ∈ Qξ0 , we have z = (−1, z12, ..., z1q, z21, ..., zp1, ..., zij , ..., zpq). Pick z0, z1 ∈
Qξ0 . Then Qzs = {ξ|0 = ρ(zs, ξ) = 1 + zs11ξ11 + zs12ξ12 + ... + zs1qξ1q + zs21ξ21 + ... +
zsp1ξp1 +

∑
i,j �=1 z

s
ijξij +

∑
i,j≥2(zs11zsij − zsi1z

s
1j)(ξ11ξij − ξi1ξ1j) +

∑
(i,j),(k,l) �=(1,1)(zsijzskl−

zsilz
s
jk)(ξijξkl − ξilξjk) + high order terms}, for s = 0, 1. We then compute their gradients 

as follows:(
∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)

=

⎛⎝ ∂ρ(z0,ξ)
∂ξ11

∂ρ(z0,ξ)
∂ξ12

... ∂ρ(z0,ξ)
∂ξ1q

∂ρ(z0,ξ)
∂ξ21

... ∂ρ(z0,ξ)
∂ξp1

... ∂ρ(z0,ξ)
∂ξpq

∂ρ(z1,ξ)
∂ξ11

∂ρ(z1,ξ)
∂ξ12

... ∂ρ(z1,ξ)
∂ξ1q

∂ρ(z1,ξ)
∂ξ21

... ∂ρ(z1,ξ)
∂ξp1

... ∂ρ(z1,ξ)
∂ξpq

⎞⎠∣∣
ξ0

=
(
−1 z0

12 ... z0
1q z0

21 ... z0
p1 −z0

i1z
0
1j ...

−1 z1
12 ... z1

1q z1
21 ... z1

p1 −z1
i1z

1
1j ...

)
.

Thus, we have
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rank
(
∇ρ(z0, ξ)

∣∣
ξ0

∇ρ(z1, ξ)
∣∣
ξ0

)

= rank
(
−1 z0

12 ... z0
p1 −z0

i1z
0
1j ...

0 Δz1
12 ... Δz1

p1 (−z0
i1Δz1

1j − z0
1jΔz1

i1 − Δz1
i1Δz1

1j) ...

)
,

where Δz1
ij = z1

ij − z0
ij . Hence, if we choose z1 such that z1

12 �= z0
12, then the rank equals 

to 2. Hence Qz0 and Qz1 are smooth and intersect transversally at ξ0.
Without loss of generality, assume ∂(ρ(z0,ξ),ρ(z1,ξ))

∂(ξ11,ξ12) �= 0 at ξ0. Now we introduce new 

variables ξ̃11, ..., ξ̃pq and set up the system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P11 : ρ(z0, ξ̃11ξ) = 0
P12 : ρ(z1, ξ̃12ξ) = 0
P13 : ξ̃13 − ξ13 = 0
... ...

Ppq : ξ̃pq − ξpq = 0

Then ∂(P11,...,Ppq)
∂(ξ11,...,ξpq) |A, 

∂(P11,...,Ppq)
∂(ξ̃11,...,ξ̃pq) |A �= 0, where A = (ξ̃11, ..., ξ̃pq, ξ11, ..., ξpq) =

(1, 1, 0, ..., 0, 1, 0, ..., 0). By Lemma 4.9, we get the needed algebraic flattening.
The proof is similar in the other cases. We include a detailed argument for the re-

maining cases in Appendix C. �
7. Irreducibility of Segre varieties: proof of Proposition (III)

In this section we will establish Proposition (III). We prove results on the irreducibility 
of the potential function ρ, Segre varieties and the Segre family. We still adapt the 
previously used notation and assume that M is an irreducible Hermitian symmetric space 
of compact type of dimension n, which has been minimally embedded into a projective 
space as described before.

Lemma 7.1. Each Segre variety is an irreducible algebraic subvariety.

Proof of Lemma 7.1: For a minimally embedded Hermitian symmetric space, since 
all Segre varieties are unitarily equivalent, it suffices to prove the lemma for a single 
Segre variety. Without lost of generality, we take z = (0, ..., 0) ∈ A ⊂ M . Therefore, 
the corresponding Segre variety Q∗

z is the hyperplane section M \ A, which is of pure 
dimension. From the classical algebraic geometry [14], when M is an irreducible Hermi-
tian symmetric space of compact type, the hyperplane section at infinity in the minimal 
canonical embedding case is a union of Schubert cells. Moreover as shown in [6], the top 
dimensional piece is equivalent to Cn−1 and the others are of codimension at least two. 
Hence, the smooth points of Qz are connected and thus Qz is irreducible. �
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As a corollary of this lemma, we conclude that for each z ∈ Cn, the defining function 
ρ(z, ·) of Qz has to be a power of one irreducible factor. However, as in the proof of 
Theorem 6.2, for some a(�= 0) ∈ Cn, dξρ(a, ξ) is not identically zero along Qa. Next, we 
use this property and the symmetric property of M to prove the following:

Proposition 7.2. For any b ∈ A with b �= (0, ..., 0), ρ(b, ξ) (ρ(z, b), respectively) is irre-
ducible as a polynomial of ξ (as a polynomial in z, respectively).

Proof of Proposition 7.2: Since ρ(z, ξ) = ρ(ξ, z), we need just to verify the first state-
ment. Let a be as above. For b ∈ A, there is σ̂ ∈ Isom(M, ω) ∩ SU(N + 1, C) such 
that σ̂(a) = b. (Notice that σ̂ is represented by a unitary action.) By Lemma 6.1, let 
σ = ( l1

κ1l0
, ..., ln

κnl0
) be the representation of σ̂ in A with l′js polynomials in z. Write 

Ψ = [1, rz] for the embedding of A in PN . Then from the definition of ρ(z, z), we have

ρ(z, z) = ||Ψ(z)||2 = Ψ · Ψt = (σ̂Ψ) · (σ̂Ψ)
t
.

Lemma 7.3. (σ̂Ψ) · (σ̂Ψ)
t
= |l0(Ψ)|2 · ||Ψ(σ(z))||2 = |l0(Ψ)|2 · ρ(σ(z), σ(z)).

Proof. Writing Ψ(z) = [1, rz] = [1, ψ1(z), · · · , ψN (z)]. Then the identity Ψ(σ(z)) =
σ̂(Ψ(z)) obtained in the proof of Lemma 6.1 yields that,

(ψ1(σ(z)), · · · , ψN (σ(z))) =
(
ψ̃1(Ψ(z))
ψ̃0(Ψ(z))

, · · · , ψ̃N (Ψ(z))
ψ̃0(Ψ(z))

)
.

Here ψ̃j = lj for 0 ≤ j ≤ n and σ̂(z) = [φ̃0, · · · , φ̃N ] as in the proof of Lemma 6.1. Then

(σ̂Ψ) · (σ̂Ψ)
t
=

N∑
j=0

|ψ̃j(Ψ(z))|2 =

⎛⎝1 +
N∑
j=1

|ψj(σ(z))|2
⎞⎠ |ψ̃0(Ψ(z))|2

= |l0(Ψ)|2 · ||Ψ(σ(z))||2.

This establishes the lemma. �
The Lemma 7.3 yields ρ(z, z) = |l0(Ψ)|2 · ρ(σ(z), σ(z)). Complexifying the identity 

and substituting z by a, we have:

l0(Ψ)(a) · l0(Ψ)(ξ) · ρ(b, σ(ξ)) = ρ(a, ξ), (76)

where l0(Ψ)(a) �= 0, l0(Ψ)(ξ), ρ(a, ξ) are polynomials in ξ and σ(ξ) is a rational map in ξ. 
Now supposing ρ(b, ξ) = f l(ξ), l ≥ 2, we have ρ(b, σ(ξ)) = (f(σ(ξ)))l = ( f1(ξ)

f2(ξ) )
l, where f1

and f2 are coprime polynomials. Since a, b �= (0, ..., 0), f1 is a non-constant polynomial. 
Therefore in (76), even after cancellation, we still have a factor f l

1(ξ). However as shown 
in §6, the right hand side of the identity (76) must be an irreducible polynomial, which 
is a contradiction. �
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Proposition 7.4. ρ(z, ξ) is an irreducible polynomial over Cn×Cn. Thus, the Segre family 
M restricted to Cn × Cn = A ×A ⊂ M ×M is an irreducible subvariety of dimension 
2n − 1.

We also have the following slightly strong version of the above proposition, which was 
used for applying a monodromy argument:

Proposition 7.5. Suppose U is an connected open set in Cn \ {0}. Then the Segre family 
M restricted to U ×Cn or restricted to Cn × U is an irreducible analytic variety.

Proof of Proposition 7.5: We need only to prove the first statement. Recall the no-
tations we defined before: MSING = {(z, ξ) : ∂ρ

∂ξj
= 0, ∀j} ∪ {(z, ξ) : ∂ρ

∂zj
= 0, ∀j}, and 

MREG = M\MSING. Since ρ(z, ξ) is an irreducible polynomial and ∂ρ
∂ξj

, ∂ρ∂zj
, j = 1, ..., n

are polynomials with lower degrees, ∂ρ
∂ξj

, ∂ρ∂zj
, j = 1, ..., n are not identically zero on 

M = {ρ(z, ξ) = 0}. Each of ∂ρ
∂ξj

, ∂ρ∂zj
defines a proper subvariety inside M. By Propo-

sition 7.2, for each z̃(�= 0) ∈ Cn, there is a certain point ξ̃ on Qz̃ such that a partial 
derivative of ρ(z̃, ξ) in ξ at (z̃, ξ̃) does not vanish. Hence MSING does not contain any 
Segre variety. Also the standard projection from MREG into the z-space is a submersion. 
Since Qz is irreducible for z ∈ Cn\(0, ..., 0), Qz ∩MREG is connected. To prove the the-
orem, we just need to show that MREG|U×Cn is connected. Write the above projection 
map to the z-space as Φ : MREG|U×Cn → U . Since it is a submersion, it is an open 
mapping. Suppose z0 is a point in U . As mentioned above, we know that each fiber of Φ
is connected. For any (z0, ξ0) ∈ MREG in the fiber above z0, we can choose a connected 
neighborhood V of (z0, ξ0) on MREG|U×Cn such that Φ(V ) is neighborhood of z0. Hence, 
for any z ∈ Φ(V ), any point in Qz ∩MREG can be connected by a smooth curve inside 
MREG|V×Cn to (z0, ξ0). Since U is connected, by a standard open-closeness argument, 
we see that MREG|U×Cn is connected. �

Appendix A. Affine cell coordinate functions for two exceptional classes of the 
Hermitian symmetric spaces of compact type

Define the multiplication law of octonions with the standard basis {e0 = 1, e1, · · · , e7}
by the following table:

e1 e2 e4 e7 e3 e6 e5
e1 −1 e4 −e2 −e3 e7 −e5 e6
e2 −e4 −1 e1 −e6 e5 e7 −e3
e4 e2 −e1 −1 −e5 −e6 e3 e7
e7 e3 e6 e5 −1 −e1 −e2 −e4
e3 −e7 −e5 e6 e1 −1 −e4 e2
e6 e5 −e7 −e3 e2 e4 −1 −e1
e5 −e6 e3 −e7 e4 −e2 e1 −1
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♣1. Case M16: Define

x = (x0, x1, x2, x3, x4, x5, x6, x7),
y = (y0, y1, y2, y3, y4, y5, y6, y7).

Define Aj(x, y), j = 0, . . . , 7, such that

xȳ =
7∑

j=0
Aj(x, y)ej , where x =

7∑
j=0

xjej and y =
7∑

j=0
yjej .

Define Bj(x, y), j = 0, 1 such that

xx̄ = B0(x, y)e0 and yȳ = B1(x, y)e0.

Then by computation, we have the following formulas:

A0 = A0(x, y) = y0x0 + y1x1 + y2x2 + y3x3 + y4x4 + y5x5 + y6x6 + y7x7,
A1 = A1(x, y) = − y0x1 + y1x0 − y2x4 + y4x2 − y3x7 + y7x3 − y5x6 + y6x5,
A2 = A2(x, y) = − y0x2 + y2x0 − y4x1 + y1x4 − y3x5 + y5x3 − y6x7 + y7x6,
A3 = A3(x, y) = − y0x3 + y3x0 + y1x7 − y7x1 + y2x5 − y5x2 − y4x6 + y6x4,
A4 = A4(x, y) = − y0x4 + y4x0 − y1x2 + y2x1 + y3x6 − y6x3 − y5x7 + y7x5,
A5 = A5(x, y) = − y0x5 + y5x0 + y1x6 − y6x1 − y2x3 + y3x2 + y4x7 − y7x4,
A6 = A6(x, y) = − y0x6 + y6x0 − y1x5 + y5x1 + y2x7 − y7x2 − y3x4 + y4x3,
A7 = A7(x, y) = − y0x7 + y7x0 − y1x3 + y3x1 − y2x6 + y6x2 − y4x5 + y5x4,
B0 = B0(x, y) = x2

0 + x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7,

B1 = B1(x, y) = y2
0 + y2

1 + y2
2 + y2

3 + y2
4 + y2

5 + y2
6 + y2

7 .

Then the embedding functions of a Zariski open subset A, which is identified with 
C16 with coordinates z := (x0, · · · , x7, y0, · · · , y7), of M16 := E6

SO(10)×SO(2) into CP26

are given by:

z �→ [1, x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, y6, y7, A0, A1, A2, A3, A4, A5, A6,

A7, B0, B1].

♣2. Case M27: Similarly we define

x = (x1, x2, x3),
y = (y0, y1, y2, y3, y4, y5, y6, y7),
t = (t0, t1, t2, t3, t4, t5, t6, t7),
ω = (ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7).

Define functions A, B, C, D0, . . . , D7, E0 . . . , E7, F0 . . . , F7 and G such that,

Com(X) = X ×X =

⎛⎝A D E
D B F

⎞⎠ , G = det(X),

E F C
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where D =
∑7

j=0 Djej , E =
∑7

j=0 Ejej , F =
∑7

j=0 Fjej and the matrix X correspond-
ing to the point (x, y, t, w) ∈ C27 is given by

X =
(
x1 y t
y x2 w
t w x3

)
∈ J3(O).

Recall the formulas in [40], we have

X ×X =

⎛⎝x2x3 − ww wt− x3y yw − x2t
wt− x3y x3x1 − tt ty − x1w
yw − x2t ty − x1w x1x2 − yy

⎞⎠ ∈ J3(O),

det(X) = x1x2x3 − x1ww − x2tt̄− x3yy + 2�c(wty),

where �c(x) = x0 for any x =
∑7

i=0 xiei ∈ O.
By further computation, we have the explicit expressions as follows:

A = A(x, y, t, ω) = x2x3 − (ω2
0 + ω2

1 + ω2
2 + ω2

3 + ω2
4 + ω2

5 + ω2
6 + ω2

7),
B = B(x, y, t, ω) = x1x3 − (t20 + t21 + t22 + t23 + t24 + t25 + t26 + t27),
C = C(x, y, t, ω) = x1x2 − (y2

0 + y2
1 + y2

2 + y2
3 + y2

4 + y2
5 + y2

6 + y2
7),

D0 = D0(x, y, t, ω) = t0ω0 + t1ω1 + t2ω2 + t3ω3 + t4ω4 + t5ω5 + t6ω6 + t7ω7 − x3y0,
D1 = D1(x, y, t, ω) = − t0ω1 + t1ω0 − t2ω4 + t4ω2 − t3ω7 + t7ω3 − t5ω6 + t6ω5 − x3y1,
D2 = D2(x, y, t, ω) = − t0ω2 + t2ω0 − t4ω1 + t1ω4 − t3ω5 + t5ω3 − t6ω7 + t7ω6 − x3y2,
D3 = D3(x, y, t, ω) = − t0ω3 + t3ω0 + t1ω7 − t7ω1 + t2ω5 − t5ω2 − t4ω6 + t6ω4 − x3y3,
D4 = D4(x, y, t, ω) = − t0ω4 + t4ω0 − t1ω2 + t2ω1 + t3ω6 − t6ω3 − t5ω7 + t7ω5 − x3y4,
D5 = D5(x, y, t, ω) = − t0ω5 + t5ω0 + t1ω6 − t6ω1 − t2ω3 + t3ω2 + t4ω7 − t7ω4 − x3y5,
D6 = D6(x, y, t, ω) = − t0ω6 + t6ω0 − t1ω5 + t5ω1 + t2ω7 − t7ω2 − t3ω4 + t4ω3 − x3y6,
D7 = D7(x, y, t, ω) = − t0ω7 + t7ω0 − t1ω3 + t3ω1 − t2ω6 + t6ω2 − t4ω5 + t5ω4 − x3y7,
E0 = E0(x, y, t, ω) = y0ω0 − y1ω1 − y2ω2 − y3ω3 − y4ω4 − y5ω5 − y6ω6 − y7ω7 − x2t0,
E1 = E1(x, y, t, ω) = y0ω1 + y1ω0 + y2ω4 − y4ω2 + y3ω7 − y7ω3 + y5ω6 − y6ω5 − x2t1,
E2 = E2(x, y, t, ω) = y0ω2 + y2ω0 + y4ω1 − y1ω4 + y3ω5 − y5ω3 + y6ω7 − y7ω6 − x2t2,
E3 = E3(x, y, t, ω) = y0ω3 + y3ω0 − y1ω7 + y7ω1 − y2ω5 + y5ω2 + y4ω6 − y6ω4 − x2t3,
E4 = E4(x, y, t, ω) = y0ω4 + y4ω0 + y1ω2 − y2ω1 − y3ω6 + y6ω3 + y5ω7 − y7ω5 − x2t4,
E5 = E5(x, y, t, ω) = y0ω5 + y5ω0 − y1ω6 + y6ω1 + y2ω3 − y3ω2 − y4ω7 + y7ω4 − x2t5,
E6 = E6(x, y, t, ω) = y0ω6 + y6ω0 + y1ω5 − y5ω1 − y2ω7 + y7ω2 + y3ω4 − y4ω3 − x2t6,
E7 = E7(x, y, t, ω) = y0ω7 + y7ω0 + y1ω3 − y3ω1 + y2ω6 − y6ω2 + y4ω5 − y5ω4 − x2t7,
F0 = F0(x, y, t, ω) = y0t0 + y1t1 + y2t2 + y3t3 + y4t4 + y5t5 + y6t6 + y7t7 − x1ω0,
F1 = F1(x, y, t, ω) = y0t1 − y1t0 − y2t4 + y4t2 − y3t7 + y7t3 − y5t6 + y6t5 − x1ω1,
F2 = F2(x, y, t, ω) = y0t2 − y2t0 − y4t1 + y1t4 − y3t5 + y5t3 − y6t7 + y7t6 − x1ω2,
F3 = F3(x, y, t, ω) = y0t3 − y3t0 + y1t7 − y7t1 + y2t5 − y5t2 − y4t6 + y6t4 − x1ω3,
F4 = F4(x, y, t, ω) = y0t4 − y4t0 − y1t2 + y2t1 + y3t6 − y6t3 − y5t7 + y7t5 − x1ω4,
F5 = F5(x, y, t, ω) = y0t5 − y5t0 + y1t6 − y6t1 − y2t3 + y3t2 + y4t7 − y7t4 − x1ω5,
F6 = F6(x, y, t, ω) = y0t6 − y6t0 − y1t5 + y5t1 + y2t7 − y7t2 − y3t4 + y4t3 − x1ω6,
F7 = F7(x, y, t, ω) = y0t7 − y7t0 − y1t3 + y3t1 − y2t6 + y6t2 − y4t5 + y5t4 − x1ω7.

G = G(x, y, t, ω) = x1x2x3 − x1(ω2
0 + ω2

1 + ω2
2 + ω2

3 + ω2
4 + ω2

5 + ω2
6 + ω2

7)

− x2(t20 + t21 + t22 + t23 + t24 + t25 + t26 + t27)

− x3(y2
0 + y2

1 + y2
2 + y2

3 + y2
4 + y2

5 + y2
6 + y2

7)

+ 2{(y0ω0 − y1ω1 − y2ω2 − y3ω3 − y4ω4 − y5ω5 − y6ω6 − y7ω7)t0
+ (y0ω1 + y1ω0 + y2ω4 − y4ω2 + y3ω7 − y7ω3 + y5ω6 − y6ω5)t1
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+ (y0ω2 + y2ω0 + y4ω1 − y1ω4 + y3ω5 − y5ω3 + y6ω7 − y7ω6)t2
+ (y0ω3 + y3ω0 − y1ω7 + y7ω1 − y2ω5 + y5ω2 + y4ω6 − y6ω4)t3
+ (y0ω4 + y4ω0 + y1ω2 − y2ω1 − y3ω6 + y6ω3 + y5ω7 − y7ω5)t4
+ (y0ω5 + y5ω0 − y1ω6 + y6ω1 + y2ω3 − y3ω2 − y4ω7 + y7ω4)t5
+ (y0ω6 + y6ω0 + y1ω5 − y5ω1 − y2ω7 + y7ω2 + y3ω4 − y4ω3)t6
+ (y0ω7 + y7ω0 + y1ω3 − y3ω1 + y2ω6 − y6ω2 + y4ω5 − y5ω4)t7}.

Hence the embedding functions of a Zariski open subset A, which is identified with 
C27 with coordinates z := (x, y, t, ω) = (x1, x2, x3, y0 · · · , y7, t0, · · · , t7, ω0, · · · , ω7), of 
M27 := E7

E6×SO(2) into CP55 are given by: z �→ [1, x, y, t, ω, A, B, C, D0, D1, D2, D3, D4,

D5, D6, D7, E0, E1, E2, E3, E4, E5, E6, E7, F0, F1, F2, F3, F4, F5, F6, F7, G]. The detailed 
discussions related to this Appendix can be found in [6], [13] and [40].

Appendix B. Proof of Proposition (I) for other types

In this Appendix, we complete the proof of Proposition (I) for spaces of the other 
type.

B.1. Spaces of type II

In this subsection, we establish Proposition (I) for the orthogonal Grassmannians 
GII(n, n). As shown in §2, we have a Zariski open affine chart A ⊂ GII(n, n) of elements 
of the form:

(In×n Z ) =

⎛⎜⎝1 0 0 · · · 0 0 z12 · · · z1n
0 1 0 · · · 0 −z12 0 · · · z2n

· · · · · ·
0 0 0 · · · 1 −z1n −z2n · · · 0

⎞⎟⎠
Here z = (z12, z13, ..., z(n−1)n) is the local coordinates for A ∼= C

n(n−1)
2 . Its conjugate 

A∗ ⊂ (GII(n, n))∗ is also a copy of C
n(n−1)

2 . We write the local coordinates for A∗ as 
ξ = (ξ12, ..., ξ(n−1)n).

The canonical embedding is given by

(1, ...,pf(Zσ), ...).

The defining function for the Segre family (in the product of such affine pieces) is given 
by

ρ(z, ξ) = 1 +
∑

σ∈Sk,

Pf(Zσ)Pf(Ξσ)
2≤k≤n,2|k
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Write

rZ =
(
Pf(Zσ)σ∈Sk

)
2≤k≤n,2|k

. (77)

The local biholomorphic map F defined near 0 ∈ U with F (0) = 0 can be represented 
as a matrix:

F =

⎛⎜⎜⎜⎝
0 f12 ... f1n

−f12 0 ... f2n
... ... ... ...

−f1n ... ... 0

⎞⎟⎟⎟⎠ .

Let rF be

rF =
(
pf((F )σ)σ∈Sk

)
2≤k≤n,2|k

. (78)

Under the notation of §2, it is easy to see rZ = (ψ1, ..., ψN ), rF = (ψ1(F ), ..., ψN (F )).
We write z̃ for the z with the last component z(n−1)n dropped. More precisely,

z̃ = (z12, ..., z1n, z23, ..., z2n, ..., z(n−2)(n−1), z(n−2)n). (79)

Recall z has n′ = n(n −1)/2 independent variables. Thus z̃ has (n′−1) components. We 
define the z̃−rank and z̃−nondegeneracy as in Definition 3.1 using ψ = rF in (78) and 
z̃ as in (79) with m = n′, respectively. We now prove the following:

Proposition B.1. rF is z̃–nondegenerate near 0. More precisely, rank1+N−n′(rF , ̃z) = N .

Proof of Proposition B.1: Suppose not. Without loss of generality, we assume that

rank1+N−n′(rF , z̃) < N.

As a consequence of Theorem 3.10, there exist cσ,k ∈ C, 4 ≤ k ≤ n, 2|k, σ ∈ Sk, which 
are not all zero, such that∑

4≤k≤n,2|n

∑
σ∈Sk

cσ,k pf((F )σ)(z12, ..., z(n−2)n, 0)) ≡ 0. (80)

However, (80) cannot hold by the following lemma, which gives a contradiction:

Lemma B.2. Let

H =

⎛⎜⎜⎜⎝
0 h12 ... h1n

−h12 0 ... ...

... ... ... ...

−h ... ... 0

⎞⎟⎟⎟⎠

1n
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be an anti-symmetric matrix-valued holomorphic function in a neighborhood U of 0 in 
z̃ = (z12, ..., z(n−2)n)) ∈ Cn′−1 with H(0) = 0. Assume that H is of full rank at 0. Set 
rH similar to the definition of rF ,

rH =
(
pf(Hσ)σ∈Sk

)
2≤k≤n,2|k

. (81)

Assume that aσ,k, σ ∈ Sk, 4 ≤ k ≤ n, are complex numbers such that

∑
4≤k≤n,2|k

∑
σ∈Sk

aσ,k pf(Hσ)(z12, ..., z(n−2)n)) ≡ 0 for all z̃ ∈ U. (82)

Then

aσ,k = 0

for all σ ∈ Sk, 4 ≤ k ≤ n, 2|k.

Proof of Lemma B.2: Suppose not. We will prove the lemma by seeking a contra-
diction. Note that H has full rank at 0. Hence there exist (n′ − 1) components Ĥ of 
H that forms a local biholomorphism from Cn′−1 to Cn′−1. We assume that these 
(n′ − 1) components Ĥ are H with hi0j0 being dropped, where i0 < j0. Without 
loss of generality, we assume i0 = n − 1, j0 = n. By a local biholomorphic change of 
coordinates, we assume Ĥ = z̃ = (z12, ..., z(n−2)n). We still write the missing compo-
nent as h(n−1)n. Now we assume 2(m + 1), m ≥ 1, is the least number k such that 
{aσ,k}σ∈Sk

are not all zero. We then consider {aσ,2(m+1)}σ∈S2(m+1) . We first claim that 
aσ,2(m+1) = 0 for those σ ∈ S2(m+1) such that pf(Hσ) involves h(n−1)n. More pre-
cisely, if pf(Hσ), σ ∈ S2(m+1) involves h(n−1)n, then σ = {i1, ..., i2m, (n − 1), n} for some 
1 ≤ i1 < ... < i2m ≤ n − 2. Suppose its coefficient is not zero. Then pf(Hσ) will produce 
the monomial zi1i2zi3i4 ...zi2m−3i2m−2zi2m−1(n−1)zi2mn. This term can only be canceled by 
the terms of form: zi2m−1(n−1)h(n−1)nQ or zi2mnh(n−1)nQ. But neither of them can ap-
pear in any other Pfaffians. This is a contradiction. Once we know there are no h(n−1)n
involved, then the remaining Pfaffians have only terms consisting of the product of some 
of z12, ..., z(n−2)n. Their sum cannot be zero unless their coefficients are all zero. This is 
a contradiction. We thus establish Lemma B.2. �

We thus also get a contradiction to equation (80). This establishes Proposition B.1. �

Remark B.3. By Proposition B.1, there exist multiindices β̃1, ..., β̃N with all |β̃j | ≤
1 + N − n′, and there is a point
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z0 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 z0

12 ... z0
1(n−1) z0

1n
−z0

12 0 ... z0
2(n−1) z0

2n
... ... ... ... ...

−z0
1(n−1) −z0

2(n−1) ... 0 z0
(n−1)n

−z0
1n −z0

2n ... −z0
(n−1)n 0

⎞⎟⎟⎟⎟⎟⎟⎠ , z0
(n−1)n �= 0;

near 0 such that ∣∣∣∣∣∣∣∣
∂|β1|(ψ1(F ))

∂z̃β̃1 ... ∂|β1|(ψN (F ))
∂z̃β̃1

... ... ...
∂|βN |(ψ1(F ))

∂z̃β̃N ... ∂|βN |(ψN (F ))
∂z̃β̃N

∣∣∣∣∣∣∣∣ (z
0) �= 0. (83)

We set

ξ0 =

⎛⎜⎜⎜⎜⎜⎝
0 0 ... 0 0
0 0 ... 0 0
... ... ... ... ...

0 0 ... 0 ξ0
(n−1)n

0 0 ... −ξ0
(n−1)n 0

⎞⎟⎟⎟⎟⎟⎠ ∈ Cn2
, ξ0

(n−1)n = − 1
z0
(n−1)n

.

Then it is easy to see that (z0, ξ0) ∈ M = {ρ(z, ξ) = 0}.
Write for each 1 ≤ i < j ≤ n, (i, j) �= (n − 1, n),

Lij = ∂

∂zij
−

∂ρ
∂zij

(z, ξ)
∂ρ

∂z(n−1)n
(z, ξ)

∂

∂z(n−1)n
(84)

which are holomorphic tangent vector fields along M near (z0, ξ0). Here we note that 
∂ρ

∂z(n−1)n
(z, ξ) is nonzero near (z0, ξ0). For any (n′ − 1)-multiindex β = (β12, ..., β(n−2)n), 

we write

Lβ = Lβ12
12 ...Lβ(n−2)n

(n−2)n .

Now we define for any N collection of (n′ − 1)−multiindices {β1, ..., βN},

Λ(β1, ..., βN )(z, ξ) :=

∣∣∣∣∣∣
Lβ1(ψ1(F )) ... Lβ1(ψN (F ))

... ... ...

LβN (ψ1(F )) ... LβN (ψN (F ))

∣∣∣∣∣∣ (z, ξ). (85)

Note that for any multiindex β, Lβ evaluating at (z0, ξ0) coincides with ∂
∂z̃β . We thus 

again have

Theorem B.4. There exist multiindices {β1, ..., βN}, such that

Λ(β1, ..., βN )(z, ξ) �= 0,
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for (z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, ..., 0).

B.2. Spaces of type III

Let F be a local biholomorphic map at 0. In this case, both Z and F are n × n

symmetric matrices. We write

Z =

⎛⎜⎜⎜⎝
z11 z12 ... z1n
z12 z22 ... z2n
... ... ... ...

z1n z2n ... znn

⎞⎟⎟⎟⎠ , z = (z11, z12, z13, ..., znn).

Similar notations are used for F .
Recall from (13) of ♣3 in §2:

rz =
(
ψ1

1(z), ..., ψ1
N1

(z), ψ2
1(z), ..., ψ2

N2
(z), ..., ψn−1

1 (z), ..., ψn−1
Nn−1

(z), ψn(z)
)
, (86)

where ψk
j is a homogeneous polynomial of degree k, 1 ≤ j ≤ Nk. ψn is a homogeneous 

polynomial of degree n. Moreover, the components of rz are linearly independent.
We write the number of components in rz to be N = N1 + ... + Nn, where we set 

Nn = 1. We will also sometimes write ψn
Nn

= ψn.
We emphasize that for each fixed k, ψk

1 , ..., ψ
k
Nk

are linearly independent. Moreover, 
each ψk

j is a certain linear combination of the determinants of k × k submatrices of Z. 
This will be crucial for our argument later.

We define rF as the composition of rz with the map F :

rF =
(
ψ1

1(F ), ..., ψ1
N1

(F ), ψ2
1(F ), ..., ψ2

N2
(F ), ..., ψn−1

1 (F ), ..., ψn−1
Nn−1

(F ), ψn(F )
)
. (87)

In what follows, we write also zij = zji. We write det(A) as the determinant of A when 
A is a square matrix.

Let P, P̃ be monomials in z′ijs, and h a polynomial in z′ijs. Let a, b be two complex 

numbers. In the following lemmas, when we say h always has the terms aP, bP̃ , we mean 
h has the term aP if and only if it has the term bP̃ .

Lemma B.5. Fixing 1 ≤ i, j < n, let P = zinznjQ and P̃ = zijznnQ with Q a monomial 
in z′ijs. The following statements are true.

• Let A be a square submatrix of Z. If zij � Q, then det(A) always has monomials of 
the form cP, −cP̃ for some c ∈ C depending on the submatrix A. (If det(A) does 
not have any multiple of P , it does not have any multiple of P̃ , either; vice versa.) 
If zij |Q, then det(A) always has monomials cP, −(c/2)P̃ for some c ∈ C depending 
on A.
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• Let k ≥ 1. Let ψk
l (z) be as defined in (86), 1 ≤ l ≤ Nk. If zij � Q, then ψk

l (z) always 
has monomials λP, −λP̃ for some λ ∈ C. If zij |Q, then ψk

l (z) always has monomials 
λP, −(λ/2)P̃ for some λ ∈ C.

Proof of Lemma B.5: The first part is a consequence of the Laplace expansion of a 
determinant by complementary minors. The second part is due to the fact that ψk

j is a 
linear combination of the determinants of submatrices of Z of order k. �

Similarly, one can prove in a similar way Lemmas B.6–B.8.

Lemma B.6. Fixing 1 ≤ j < n − 1, let P = zjnz(n−1)(n−1)Q and P̃ = zj(n−1)z(n−1)nQ

with Q a monomial in z′ijs.

• Let A be a square submatrix of Z. If zjn � Q, then det(A) always has monomials 
cP, −cP̃ for some c ∈ C. If zjn|Q, then det(A) always has monomials cP, −2cP̃ for 
some c ∈ C.

• Let k ≥ 1. Let ψk
l (z) be as defined in (86), 1 ≤ l ≤ Nk. If zjn � Q, then ψk

l (z) always 
has monomials λP, −λP̃ for some λ ∈ C. If zjn|Q, then ψk

l (z) always has monomials 
λP, −2λP̃ for some λ ∈ C.

Lemma B.7. Fixing 1 ≤ i < n − 1, let P = zi(n−1)zniQ and P̃ = ziiz(n−1)nQ with Q a 
monomial in z′ijs.

• Let A be a square submatrix of Z. If z(n−1)n � Q, then det(A) always has mono-
mials cP, −cP̃ for some c ∈ C. If z(n−1)n|Q, then det(A) always has monomials 
cP, −(c/2)P̃ for some c ∈ C.

• Let k ≥ 1. Let ψk
l (z) be as defined in (86), 1 ≤ l ≤ Nk. If z(n−1)n � Q, then ψk

l (z)
always has monomials λP, −λP̃ for some λ ∈ C. If z(n−1)n|Q, then ψk

l (z) always 
has monomials λP, −(λ/2)P̃ for some λ ∈ C.

Lemma B.8. Fixing 1 ≤ i < n − 1, 1 ≤ j < n − 1, i �= j, let P1 = zi(n−1)znjQ, P2 =
zinzj(n−1)Q, and P̃ = zijz(n−1)nQ with Q a monomial in z′ijs.

• Let A be a square submatrix of Z. If zij � Q, z(n−1)n � Q, then det(A) always has terms 
c1P1 + c2P2, −(c1 + c2)P̃ for some c1, c2 ∈ C. If zij � Q, z(n−1)n|Q, or zij |Q, z(n−1)n �
Q, then det(A) always has terms c1P1 + c2P2, − c1+c2

2 P̃ for some c1, c2 ∈ C. If 
zij |Q, z(n−1)n|Q, then det(A) always has terms c1P1 + c2P2, − c1+c2

4 P̃ .
• Let k ≥ 1. Let ψk

l (z) be as defined in (86), 1 ≤ l ≤ Nk. If zij � Q and z(n−1)n �
Q, then ψk

l (z) always has terms λ1P1 + λ2P2, −(λ1 + λ2)P̃ for some λ1, λ2 ∈ C. 
If zij � Q, z(n−1)n|Q, or zij |Q, z(n−1)n � Q, then ψk

l (z) always has terms λ1P1 +
λ2P2, −λ1+λ2

2 P̃ for some λ1, λ2 ∈ C. If zij |Q, z(n−1)n|Q, then ψk
l (z) always has 

terms λ1P1 + λ2P2, −λ1+λ2
4 P̃ for some λ1, λ2 ∈ C.



H. Fang et al. / Advances in Mathematics 360 (2020) 106885 59
We write z̃ for z with the last components znn being dropped. More precisely,

z̃ = (z11, ..., z1n, z22, ..., z2n, ..., z(n−1)(n−1), z(n−1)n). (88)

Recall z has n′ = n(n +1)/2 independent variables. Thus z̃ has (n′−1) components. We 
define z̃−rank and z̃−nondegeneracy in the same way as before, using rF in (87) and z̃
in (88) with m = n′. We now need to prove the following:

Proposition B.9. rF is z̃−nondegenerate at 0. More precisely, rank1+N−n′(rF , ̃z) = N .

Proof of Proposition B.9: Suppose not. Then one easily verifies that the hypothesis 
of Theorem 3.10 is satisfied. As a consequence of Theorem 3.10, there exist ckj ∈ C, 2 ≤
k ≤ n, 1 ≤ j ≤ Nk, which are not all zero such that

n∑
k=2

Nk∑
j=1

ckjψ
k
j (F (z11, ..., z(n−1)n, 0)) ≡ 0. (89)

Here as before, we write Nn = 1, ψn
Nn

= ψn.
Then we just need to show it can not happen by the following lemma:

Lemma B.10. Let

H =

⎛⎜⎜⎜⎝
h11 h12 ... h1n
h12 h22 ... h2n
... ... ... ...

h1n ... ... hnn

⎞⎟⎟⎟⎠
be a symmetric matrix-valued holomorphic function near 0 in z̃ = (z11, ..., z1n, z22, ..., z2n,

..., z(n−1)n) ∈ Cn′−1 with H(0) = 0. Assume that H is of full rank at 0. Set rH in a 
similar way as in (36):

rH =
(
ψ1

1(H), ..., ψ1
N1

(H), ψ2
1(H), ..., ψ2

N2
(H), ..., ψn−1

1 (H), ..., ψn−1
Nn−1

(H), ψn(H)
)

Again we write Nn = 1, ψn = ψn
Nn

. Assume that akj , 2 ≤ k ≤ n, 1 ≤ j ≤ n are complex 
numbers such that

n∑
k=2

Nk∑
j=1

akjψ
k
j (H(z̃)) ≡ 0 for z̃ ∈ U. (90)

Then

akj = 0

for each 2 ≤ k ≤ n, 1 ≤ j ≤ Nk.
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Proof of Lemma B.10: Suppose not. We will prove the lemma by seeking a contradic-
tion. Notice that H has full rank at 0. Hence there exist (n′−1) components Ĥ of H that 
gives a local biholomorphism from Cn′−1 to Cn′−1. We assume these (n′−1) components 
Ĥ are H with hi0j0 being dropped, where i0 ≤ j0. Then we split our argument into two 
parts in terms of i0 = j0 or i0 < j0.

Case I: Assume that i0 = j0. Without loss of generality, we assume i0 = j0 = n. 
By a local biholomorphic change of coordinates, we assume Ĥ = z̃ = (z11, ..., zn(n−1)). 
We still write the last component as hnn. Now we assume m ≥ 2 is the least number k
such that {ak1 , ..., akNk

} are not all zero. For any holomorphic g, we define Tl(g) to be the 
homogeneous part of degree l in the Taylor expansion of g at 0. Now the assumption in 
(90) yields:

Tm

⎛⎝Nm∑
j=1

amj ψm
j (H(z̃))

⎞⎠ ≡ 0. (91)

We first compute

Nm∑
j=1

amj ψm
j (H) =

Nm∑
j=1

amj ψm
j (z11, ..., z(n−1)n, hnn)

formally. Namely, we regard hnn as a formal variable and only conduct formal cancella-
tions. We write formally

Nm∑
j=1

amj ψm
j (z11, ..., z(n−1)n, hnn) = P1 + hnnP2. (92)

Here P1 = P1(z11, ..., z(n−1)n) is a homogeneous polynomial of degree m, and P2 =
P2(z11, ..., z(n−1)n) is a homogeneous polynomial of degree m − 1. We claim P2 �= 0. 
Otherwise,

Nm∑
j=1

amj ψm
j (z11, ..., z(n−1)n, hnn) = P1.

This implies that 
∑Nm

j=1 a
m
j ψm

j (z11, ..., z(n−1)n, hnn) does not depend on hnn formally. 
Then we can replace hnn by znn. That is,

Nm∑
j=1

amj ψm
j (z11, ..., z(n−1)n, znn) =

Nm∑
j=1

amj ψm
j (z11, ..., z(n−1)n, hnn(z̃)) = P1. (93)

By (91), we see that (93) is identically zero. This is a contradiction to the fact that 
{ψm

1 , ..., ψm
N } is linearly independent.
m
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Now since P2 �= 0, thus by (92), 
∑Nm

j=1 a
m
j ψm

j (z11, ..., z(n−1)n, hnn) has a monomial of 
the form μP̃ = μzijhnnQ of degree m for some 1 ≤ i, j < n, μ �= 0 and some monomial 
Q. By Lemma B.5, we get that 

∑Nm

j=1 a
m
j ψm

j (z11, ..., z(n−1)n, hnn) has also the term −μP

or −2μP , where P = zinznjQ. This is a contradiction to (91). Indeed, P can be only 
canceled by the terms of the forms: zinhnnQ̃ or znjhnnQ̃, where Q̃ is of degree m − 2. 
But they cannot appear in determinant of any submatrix of H as zin(or znj) can not 
appear with hnn.

Case II: Assume that i0 �= j0. Without loss of generality, we assume i0 = (n −
1), j0 = n. Then Ĥ = (h11, ..., h(n−1)(n−1), hnn) is a local biholomorphism. By a local 
biholomorphic change of coordinates, we assume Ĥ = z̃ = (z11, ..., z(n−1)n). We will still 
write the remaining component as h(n−1)n = hn(n−1). Note that the fact we are using 
only is that {z11, ..., z(n−1)n} are independent variables. Hence, to make our notation 
easier, we will write

Ĥ = (z11, ..., z(n−1)n) = (w11, ..., w1n, w22, ..., w2n, ..., w(n−1)(n−1), wnn)

such that they have the same indices as h’s in Ĥ. Now we assume m is the least number 
k such that {ak1 , ..., akNk

} are not all zero. Then again assumption (90) yields that

Tm

⎛⎝Nm∑
j=1

amj ψm
j (H(Z̃))

⎞⎠ ≡ 0. (94)

Again we formally compute that

Nm∑
j=1

amj ψm
j (w11, ..., h(n−1)n, wnn) = Q1 + h(n−1)nQ2. (95)

Here Q1 = Q1(w11, ..., w(n−1)(n−1), wnn) is a homogeneous polynomial of degree m. Sim-
ilarly, we can show that Q2 �= 0. We claim that (95) does not have a monomial of the 
form h(n−1)nh(n−1)nQ. Otherwise, by Lemma B.5, we get that (95) has also a monomial 
of degree m of the form: w(n−1)(n−1)wnnQ. But note that in (95) it can be canceled 
only by h(n−1)nh(n−1)nQ. Then h(n−1)n will have a linear term w(n−1)(n−1). But then 
h(n−1)nh(n−1)nQ will produce the term w(n−1)(n−1)w(n−1)(n−1)Q. This cannot be can-
celed out by any other terms.

Now since Q2 �= 0, (95) has a monomial of the form wijh(n−1)nQ, where Q is another 
monomial in w’s. Here 1 ≤ i, j ≤ n. Moreover, (i, j) �= (n − 1, n − 1), (n − 1, n), (n, n − 1)
or (n, n). We first assume 1 ≤ i, j < n −1, i �= j. Then by Lemma B.8, (95) has either P1
or P2, where P1 = wi(n−1)wnjQ, P2 = winwj(n−1)Q. Note P1, P2 can only be canceled 
by the terms wi(n−1)h(n−1)nQ, wnjh(n−1)nQ, winh(n−1)nQ, wj(n−1)h(n−1)nQ. So one of 
them will appear in (95). Whichever case it is, by Lemmas B.5, B.6, (95) will have either 
P = wlnw(n−1)(n−1)Q, or P̂ = wl(n−1)wnnQ for some 1 ≤ l < n. We assume, for instance, 
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(95) has the monomial P . Then it also has the monomial P̃ = wl(n−1)h(n−1)nQ by 
Lemma B.6. Note that the only term that can cancel P and appear in some determinant 
is wlnhn(n−1)Q. Hence hn(n−1) has a linear w(n−1)(n−1) term. Then P̃ will have the 
monomial wl(n−1)w(n−1)(n−1)Q, which can not be canceled by any other terms. This is 
a contradiction. The other cases can be proved similarly. �

This establishes Proposition B.9. �
Remark B.11. By Proposition B.9, there exist multiindices β̃1, ..., β̃N with |β̃j | ≤ 1 +
N − pq, and there exist

z0 =

⎛⎝ z0
11 ... z0

1n
... ... ...
z0
1n ... z0

nn

⎞⎠ , z0
nn �= 0,

near 0 such that ∣∣∣∣∣∣∣∣
∂|β1|(ψ1(F ))

∂Z̃β̃1 ... ∂|β1|(ψN (F ))
∂Z̃β̃1

... ... ...
∂|βN |(ψ1(F ))

∂Z̃β̃N ... ∂|βN |(ψN (F ))
∂Z̃β̃N

∣∣∣∣∣∣∣∣ (z
0) �= 0. (96)

Here we simply write rF = (ψ1(F ), ..., ψN (F )).

We then set

ξ0 =
(0 ... 0 0

0 ... 0 0
0 ... 0 ξ0

nn

)
∈ Cn2

, ξ0
nn = − 1

z0
nn

.

It is easy to verify that (z0, ξ0) ∈ M = {ρ(z, ξ) = 0}.
Write for each 1 ≤ i ≤ j ≤ n, (i, j) �= (n, n),

Lij = ∂

∂zij
−

∂ρ
∂zij

(z, ξ)
∂ρ

∂znn
(z, ξ)

∂

∂znn
, (97)

which are holomorphic tangent vector fields along M near (z0, ξ0). Here we note that 
∂ρ

∂znn
(z, ξ) is nonzero near (z0, ξ0). For any (n′ − 1)-multiindex β = (β11, ..., β(n−1)n), we 

write

Lβ = Lβ11
11 ...Lβ(n−1)n

(n−1)n .

Now we define for any N collection of (n′ − 1)−multiindices {β1, ..., βN},

Λ(β1, ..., βN )(z, ξ) :=

∣∣∣∣∣∣
Lβ1(ψ1(F )) ... Lβ1(ψN (F ))

... ... ...
βN βN

∣∣∣∣∣∣ (z, ξ). (98)

L (ψ1(F )) ... L (ψN (F ))
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Note Lβ evaluating at (z0, ξ0) coincides with ∂
∂Z̃β . We have

Theorem B.12. There exist multiindices {β1, ..., βN} such that Λ(β1, ..., βN )(z, ξ) �= 0 for 
(z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, 0, ..., 0).

B.3. The exceptional class M27

In this setting, we use the coordinates

z = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w7) ∈ C27.

The defining function of the Segre family described in (17) is:

ρ(z, ξ) = 1 + rz · rξ = 1 +
N∑
i=1

ψi(z)ψi(ξ), where N = 55 and

rz = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w7, A,B,C,D0, ...D7, E0, ..., E7, F0, ..., F7, G).
(99)

Here A, B, C, Di, Ei, Fi are homogeneous quadratic polynomials in z and G is a homo-
geneous cubic polynomial in z:

A = x2x3 −
7∑

i=0
w2

i , B = x1x3 −
7∑

i=0
t2i , C = x1x2 −

7∑
i=0

y2
i . (100)

For the expressions for Di, Ei, Fi, G, see Appendix A. Let F be a local biholomorphic 
map near 0. We write

F = (φ1, φ2, φ3, f10, ..., f17, f20, ..., f27, f30, ..., h37).

Also define rF to be the composition of rz with F :

rF = rz ◦ F = (φ1, φ2, φ3, f10, ..., f17, f20, ..., f27, f30, ..., f37, A(F ), B(F ), C(F ), ...., G(F )).
(101)

Notice that rF has 55 components. We will also write

rF = (ψ1(F ), ..., ψ55(F )).

We write z̃ for z with x3 being dropped. Namely,

z̃ = (x1, x2, y0, ..., y7, t0, ..., t7, w0, ..., w7). (102)

We define the z̃−rank and ψ−nondegeneracy as in Definition 3.1 using rF in (101)
and z̃ in (102) with m = 27.
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Proposition B.13. F is z̃−nondegenerate near 0. More precisely, rank29(F, ̃z) = 55.

Proof of Proposition B.13: Suppose not. As a consequence of Theorem 3.10, there 
exist c1, ..., c28 ∈ C that are not all zero, such that

c1A(F (x1, x2, 0, y0, ..., w7)) + ... + c28G(F (x1, x2, 0, y0, ..., w7)) ≡ 0. (103)

We will show that (103) cannot hold by the following lemma:

Lemma B.14. Let H = (ψ1, ψ2, ψ3, h10, ..., h17, h20, ..., h27, h30, ..., h37) be a vector-valued 
holomorphic function in a neighborhood U of 0 in z̃ = (x1, x2, y0, ..., y7, t0, ..., t7, w0, ..., w7)
∈ C26 with H(0) = 0. Assume that H has full rank at 0. Assume that a1, ..., a28 are com-
plex numbers such that

a1A(H(z̃)) + ... + a28G(H(z̃)) = 0 for all z̃ ∈ U. (104)

Then ai = 0 for all 1 ≤ i ≤ 28.

Proof of Lemma B.14: Suppose not. Notice that H has full rank at 0. Hence 
there exist 26 components Ĥ of H that give a local biholomorphism from C26 to 
C26. We assume these 26 components Ĥ are the H with η dropped, where η ∈
{ψ1, ψ2, ψ3, h10, ..., h17, h20, ..., h27, h30, ..., h37}. By a local biholomorphic change of co-
ordinates, we assume

Ĥ = (x1, x2, y0, ..., y7, t0, ..., t7, w0, ..., w7).

We still write the remaining components as η.
Case I: If η ∈ {ψ1, ψ2, ψ3}, without loss of generality, we can assume η = ψ3. We 

first claim that the coefficients of A, B, i.e., a1, a2 are zero. This is due to the fact 
that t2i , w2

i , 0 ≤ i ≤ 7 can only be canceled by tiψ3, wiψ3, which do not appear in the 
expressions of A(H), ..., G(H). We then claim the coefficients of C are zero, for x1x2 can 
not be canceled. Then the coefficients of all D’s have to be zero, for each tiwj is unique 
and can not be canceled. Then it follows trivially that all other coefficients are zero.

Case II: If η ∈ {h10, ..., h17, h20, ..., h27, h30, ..., h37}, without loss of generality, we 
assume η = h37. Notice that the only fact we are using about Ĥ is that its components 
are independent variables. For simplicity of notation, we will write

Ĥ = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w6).

We first claim that the coefficient of A is zero. This is due to the fact that x2x3 cannot 
be canceled. We also claim that the coefficient of B is zero. Suppose not. Notice that t2i
can only be canceled by tih37. Then the coefficient of each Di is non zero for 0 ≤ i ≤ 7. 
Moreover, x1x3 can only be canceled by x1h37. This implies h37 has a linear x3-term. 
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Then, in particular, the t7h37 term in D0 will produce a t7x3 term. It cannot be canceled 
by any other terms. This is a contradiction. Similarly, one can show that the coefficient 
of C is zero. Then we claim the coefficient of D0 is zero. Otherwise, to cancel the x3y0
term, h37 needs have a linear x3 term. Then the term t7h37 in D0 will produce a t7x3
term, which cannot be canceled by any other term. By the same argument, one can 
show that the coefficients of all Di, 0 ≤ i ≤ 7, are zero. Similarly, we can obtain the 
coefficients of all Ei, 0 ≤ i ≤ 7, are zero. Then we claim the coefficients of all F ’s have 
to be zero. This is because each yitj is unique. It can not be canceled out. Finally we 
get the coefficient of G to be zero. �

This also establishes Proposition B.13. �
Remark B.15. By Proposition B.13, there exist multiindices β̃1, ..., β̃55 with |β̃j | ≤ 29, 
and there exist

z0 = (x0
1, x

0
2, x

0
3, y

0
0 , ..., y

0
7 , t

0
0, .., t

0
7, w

0
0, ..., w

0
7), x0

3 �= 0,

such that ∣∣∣∣∣∣∣
∂|β1|(ψ1(F ))

∂z̃β̃1 ... ∂|β1|(ψ55(F ))
∂z̃β̃1

... ... ...
∂|β55|(ψ1(F ))

∂z̃β̃55 ... ∂|β55|(ψ55(F ))
∂z̃β̃55

∣∣∣∣∣∣∣ (z0) �= 0.

Then we set ξ0 = (0, 0, ξ0
3 , 0, ...0, 0, ..., 0, 0, ..., 0), ξ0

3 = − 1
x0
3
. It is easy to see that 

(z0, ξ0) ∈ M = {ρ(z, ξ) = 0}. Write

Li = ∂

∂xi
−

∂ρ
∂xi

(z, ξ)
∂ρ
∂x3

(z, ξ)
∂

∂x3
, 1 ≤ i ≤ 2;

L3+i = ∂

∂yi
−

∂ρ
∂yi

(z, ξ)
∂ρ
∂x3

(z, ξ)
∂

∂x3
, 0 ≤ i ≤ 7;

L11+i = ∂

∂ti
−

∂ρ
∂ti

(z, ξ)
∂ρ
∂x3

(z, ξ)
∂

∂x3
, 0 ≤ i ≤ 7;

L19+i = ∂

∂wi
−

∂ρ
∂wi

(z, ξ)
∂ρ
∂x3

(z, ξ)
∂

∂x3
, 0 ≤ i ≤ 7.

For any 26-multiindex β = (β1, ..., β26), we write Lβ = Lβ1
1 ...Lβ26

26 . Now we define for 
any 55 collection of 26−multiindices {β1, ..., β55},

Λ(β1, ..., β55)(z, ξ) :=

∣∣∣∣∣∣
Lβ1(ψ1(F )) ... Lβ1(ψ55(F ))

... ... ...
β55 β55

∣∣∣∣∣∣ (z, ξ). (105)

L (ψ1(F )) ... L (ψ55(F ))
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Note that for any multiindex, Lβ evaluating at (z0, ξ0) coincides with ∂
∂Z̃β . We have,

Theorem B.16. There exist multiindices {β1, ..., β55}, such that

Λ(β1, ..., β55)(z, ξ) �= 0

for (z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, ..., 0).

B.4. The exceptional class M16

This case is very similar to the hyperquadric setting. In this case, we write the coor-
dinates of C16 as

z := (x0, ..., x7, y0, ..., y7).

The defining function of the Segre family as described in (16) is

ρ(z, ξ) = 1 + rz · rξ = 1 +
N∑
i=1

ψi(z)ψi(ξ), where N = 26 and

rz = (x0, ..., x7, y0, ..., y7, A0, ...A7, B0, B1). (106)

Here Ai, 0 ≤ i ≤ 7, B0, B1 are homogeneous quadratic polynomials in z. For instance,

B0 =
7∑

i=0
x2
i , B1 =

7∑
i=0

y2
i .

For the expressions for Ai, see Appendix A.
Let F be as before. We write

F = (f0, ..., f7, f̃0, ...f̃7).

And define rF as the composition of rz with F :

rF = rz ◦ F = (f0, ..., f7, f̃0, ...f̃7, A0(F ), ...A7(F ), B0(F ), B1(F )). (107)

Notice that rF has 26 components.
We will need the following lemma:

Lemma B.17. For each fixed μ0, ..., μ6 with (
∑6

i=0 μ
2
i ) + 1 = 0 and fixed (y0, ..., y7) with 

(
∑6

i=0 μiyi) + y7 �= 0, we can always find (ξ0, ..., ξ7) such that

1 + y0ξ0 + ... + y7ξ7 = 0;
7∑

i=0
(ξi)2 = 0, ξj = μjξ7, 0 ≤ j ≤ 6, ξ7 �= 0.
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Proof of Lemma B.17: The proof is similar to that as in the hyperquadric case. �
Take the complex hyperplane H : y7 +

∑6
j=0 μjyj = 0 in (x0, ..., x7, y0, ..., y7) ∈ C16. 

Write L0 = ∂
∂x0

, ..., L7 = ∂
∂x7

; L8 = ∂
∂y0

− μ1
∂

∂y7
, ..., L14 = ∂

∂y6
− μ6

∂
∂y7

.
Then {Li}14

i=0 forms a basis of the tangent vector fields of H. For any multiindex 
α = (α0, .., α14), we write Lα = Lα0

0 ...Lα14
14 . We define the notion of L−rank and L−non-

degeneracy as in Definition 3.1 using rF in (107) and Lα instead of z̃α. We write the kth 
L-rank defined in this setting as rankk(rF , L). We now need to prove the following:

Proposition B.18. F is L−nondegenerate near 0. More precisely, rank11(rF , L) = 26.

Proof of Proposition B.18: Suppose not. As in the hyperquadric case, by a mod-
ified version of Theorem 3.10, we have that there exist 26 holomorphic functions 
g0(w), ..., g25(w) defined near 0 on the w−plane with {g0(0), ..., g25(0)} not all zero such 
that the following holds for z ∈ U :

25∑
i=0

gi(y7 + μ0y0 + ... + μ6y6)ψi(F (z)) ≡ 0. (108)

Then since F has full rank at 0, one can similarly prove that g0(0) = 0, ..., g15(0) = 0. 
Hence we obtain:

Lemma B.19. There exist c0, ..., c9 ∈ C that are not all zero such that

c0A0(F (Z)) + ... + c7A7(F (Z)) + c8B0(F (Z)) + c9B1(F (Z)) ≡ 0, (109)

for all Z ∈ U when restricted on y7 +
∑6

i=0 μiyi = 0.

We then just need to show that (109) can not hold by the following lemma after 
applying a linear change of coordinates.

Lemma B.20. Let H = (h0, ..., h7, g0, ..., g7) be a vector-valued holomorphic function in a 
neighborhood U of 0 in z̃ = (x0, ..., x7, y0, ..., y6) ∈ C15 with H(0) = 0. Assume that H
has full rank at 0. Assume that a0, ..., a9 are complex numbers such that

a0A1(H(z̃)) + ... + a7A7(H(z̃)) + a8B0(H(z̃)) + a9B1(H(z̃)) = 0 for all z̃ ∈ U. (110)

Then ai = 0 for 1 ≤ i ≤ 10.

Proof of Lemma B.20: Suppose not. Notice that H has full rank at 0. Hence there exist 
15 components Ĥ of H that gives a local biholomorphism from C15 to C15. We assume 
these 15 components Ĥ are H with η being dropped, where η ∈ {h0, ..., h7, g0, ..., g7}. By 
a local biholomorphic change of coordinates, we assume Ĥ = (x0, ..., x7, y0, ..., y6). We 
still write the remaining component as η. Without loss of generality, we assume η = g7.
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First we claim the coefficient a9 of B1 is zero. Suppose not. Note that y2
1, y

2
2 can be 

only canceled by g2
7. Then g7 will have linear y1, y2 terms. Hence g2

7 will produce a y1y2
term. It cannot be canceled by any other terms. This is a contradiction. Now we consider 
the coefficients of A0, ..., A7. We claim ai = 0, 0 ≤ i ≤ 7. Suppose not. We write

y7(Z̃) = λ0y0 + ... + λ6y6 + μ0x0 + ... + μ7x7 + O(2),

for some λi, μj ∈ C, 0 ≤ i ≤ 6, 0 ≤ j ≤ 7. By collecting the terms of the form x0yi in the 
Taylor expansion of (110) we get

ai + a7λi = 0, 0 ≤ i ≤ 6. (111)

By collecting the terms of the form x1yi, 0 ≤ i ≤ 6, we get,

a1 + a3λ0 = 0,−a0 + a3λ1 = 0,−a4 + a3λ2 = 0,−a7 + a3λ3 = 0,

a2 + a3λ4 = 0,−a6 + a3λ5 = 0, a5 + a3λ6 = 0.

By collecting the terms of the form x2yi, 0 ≤ i ≤ 6, we get,

a2 + a6λ0 = 0, a4 + a6λ1 = 0,−a0 + a6λ2 = 0,−a5 + a6λ3 = 0.

−a1 + a6λ4 = 0, a3 + a6λ5 = 0,−a7 + a6λ6 = 0.

One can further write down all the coefficients for xiyj , 0 ≤ i ≤ 7, 0 ≤ j ≤ 6. Once this 
is done, one easily sees that ai �= 0 for any 0 ≤ i ≤ 7. Otherwise, all ai = 0, 0 ≤ i ≤ 7.

Then by the above equations, we see that the matrix⎛⎜⎝ a0 a1 a2 a3 a4 a5 a6
a1 −a0 −a4 −a7 a2 −a6 a5
a2 a4 −a0 −a5 −a1 a3 −a7

⎞⎟⎠ (112)

is of rank one. Then one can get a contradiction by, for instance, carefully checking the 
determinants of its 2 × 2 submatrices. Hence ai = 0, 0 ≤ i ≤ 7. Finally we easily get the 
coefficient a8 of B0 is zero. �

This then establishes Proposition B.18. �
Remark B.21. First fix μ0, ..., μ6 with (

∑6
i=0 μ

2
i ) + 1 = 0. By Proposition B.18, there 

exist multiindices β̃1, ..., β̃26 with |β̃j | ≤ 11, and

Z0 = (x0
0, ..., x

0
7, y

0
0 , ..., y

0
7) with

6∑
i=0

μiyi + y7 �= 0,

such that
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∣∣∣∣∣∣
Lβ̃1(ψ1(F )) ... Lβ̃1(ψ26(F ))

... ... ...

Lβ̃26(ψ1(F )) ... Lβ̃26(ψ26(F ))

∣∣∣∣∣∣ (Z0) �= 0.

We then let ξ0 = (0, ..., 0, ξ0
0 , ..., ξ

0
7), where (ξ0

0 , ..., ξ
0
7) is chosen as in Lemma B.17

associated with (y0
0 , ..., y

0
7). That is

1 + y0
0ξ

0
0 + ... + y0

7ξ
0
7 = 0;

7∑
i=0

(ξ0
i )2 = 0, ξ0

j = μjξ
0
7 , 0 ≤ j ≤ 6, ξ0

7 �= 0.

It is easy to see that (z0, ξ0) ∈ M.
We now define

Li = ∂

∂xi
−

∂ρ
∂xi

(z, ξ)
∂ρ
∂y7

(Z, ξ)
∂

∂y7
, 0 ≤ i ≤ 7; (113)

L8+i = ∂

∂yi
−

∂ρ
∂yi

(z, ξ)
∂ρ
∂y7

(Z, ξ)
∂

∂y7
, 0 ≤ i ≤ 6; (114)

for (z, ξ) ∈ M near (z0, ξ0). They are tangent vector fields along M. Moreover, ∂ρ
∂yn

(z, ξ)
is nonzero near (z0, ξ0).

We define for any multiindex α = (α0, .., α14), Lα = Lα0
0 ...Lα14

14 . Define for any 26
collection of 15-multiindices {β1, ..., β26},

Λ(β1, ..., β26)(z, ξ) =

∣∣∣∣∣∣∣
Lβ1(ψ1(F )) ... Lβ1(ψ26(F ))

... ... ...

Lβ26(ψ1(F )) ... Lβ26(ψ26(F ))

∣∣∣∣∣∣∣ (z, ξ). (115)

By the fact that 
∑7

i=0(ξ0
i )2 = 0, one can check that, for any multiindex α =

(α0, .., α14), Lα = Lα when evaluated at (z0, ξ0). Then as before, we get the follow-
ing:

Theorem B.22. There exist multiindices {β1, ..., β26} such that

Λ(β1, ..., β26)(z, ξ) �= 0,

for (z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, 0, ..., 0).

Appendix C. Transversality and flattening of Segre families for the remaining cases

In this appendix, we will complete the proof of Theorem 6.2 for the remaining cases.

Continuation of the proof of Theorem 6.2: By the same method used before, we first 
establish the second part of Theorem 6.2 by assuming the first part of Theorem 6.2 is true. 
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Namely, suppose ξ0 ∈ Cn \{0} and z0 and z1 are smooth points on the Segre variety Qξ0

such that Qz0 and Qz1 are both smooth at ξ0 and intersect transversally there. We shall 
prove that there is a biholomorphic parametrization G(ξ̃1, ξ̃2, ..., ξ̃n) = (ξ1, ξ2, ..., ξn), with 
(ξ̃1, ξ̃2, ..., ξ̃n) ∈ U1×U2×... ×Un ⊂ Cn. Here when 1 ≤ j ≤ 2, Uj is a small neighborhood 
of 1 ∈ C. When 3 ≤ j ≤ n, Uj is a small neighborhood of 0 ∈ C with G(1, 1, 0, · · · , 0) =
ξ0, such that G({ξ̃1 = 1} ×U2 × ... ×Un) ⊂ Qz0 , G(U1 ×{ξ̃2 = 1} ×U3 × ... ×Un) ⊂ Qz1 , 
and G({ξ̃1 = t} × U2 × ... × Un), G(U1 × {ξ̃2 = s} × U3 × ... × Un), s ∈ U1, t ∈ U2 are 
open pieces of Segre varieties. Also, G consists of algebraic functions with total degree 
bounded by a constant depending only on (M, ω). By the first part of Theorem 6.2, we 
have

rank
(
∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
= 2.

Without loss of generality, we assume ∂(ρ(z0,ξ),ρ(z1,ξ))
∂(ξ1,ξ2) �= 0 at ξ0. Now we introduce 

new variables ξ̃1, ..., ξ̃n and set up the system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P1 : ρ(z0, ξ̃1ξ) = 0
P2 : ρ(z1, ξ̃2ξ) = 0
P3 : ξ̃3 − ξ3 = 0
... ...

Pn : ξ̃n − ξn = 0

Then ∂(P1,...,Pn)
∂(ξ1,...,ξn) |A, 

∂(P1,...,Pn)
∂(ξ̃1,...,ξ̃n) |A �= 0, where A = (ξ̃1, ..., ξ̃n, ξ1, ..., ξn) = (1, 1, 0, ..., 0, 1, 0,

..., 0). By Lemma 4.9, we get the needed algebraic flattening with the bound total degree.
Next, we proceed to prove the first part of Theorem 6.2. It suffices to find a sufficiently 

close point z1 to z0 such that

rank
(
∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
= 2.

We shall establish the above equation case by case as follows:
Case 3. Symplectic Grassmannians: Pick ξ0 = (1, 0, 0, ..., 0). The defining equation of 

the Segre family is ρ = 1 +
∑n

i=1 ziiξii+2 
∑

i<j zijξij +2 
∑

2≤i<j(z11zij−z1jzi1)(ξ11ξij−
ξi1ξ1j) +

∑n
i=2(z11zii − z2

1i)(ξ11ξii − ξ2
1i) +

∑
i<k,j<l,(i,j) �=(1,1)(zijzkl − zilzkj)(ξijξkl −

ξilξkj) + high order terms, where zji := zij for j > i.
Qξ0 = {z|ρ(z, ξ0) = 1 + z11 = 0}, ∇ρ(z, ξ0) = (1, 0, ..., 0). Hence Qξ0 is smooth, 

and for z ∈ Qξ0 we have z = (−1, z12, z22, z13, ..., z(n−1)n). Pick z0, z1 ∈ Qξ0 . Then 
Qzs = {ξ|0 = ρ(zs, ξ) = 1 +

∑n
i=1 z

s
iiξii+2 

∑
i<j z

s
ijξij+2 

∑
2≤i<j(zs11zsij−zs1jz

s
i1)(ξ11ξij−

ξi1ξ1j) +
∑n

i=2(zs11zsii − (zs1i)2)(ξ11ξii − ξ2
1i) +

∑
i<k,j<l,(i,j) �=(1,1)(zsijzskl − zsilz

s
kj)(ξijξkl −

ξilξkj) + high order terms}, for s = 0, 1.
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(
∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
=

⎛⎝ ∂ρ(z0,ξ)
∂ξ11

∂ρ(z0,ξ)
∂ξ12

... ∂ρ(z0,ξ)
∂ξ1n

... ∂ρ(z0,ξ)
∂ξij

... ∂ρ(z0,ξ)
∂ξnn

∂ρ(z1,ξ)
∂ξ11

∂ρ(z1,ξ)
∂ξ12

... ∂ρ(z1,ξ)
∂ξ1n

... ∂ρ(z1,ξ)
∂ξij

... ∂ρ(z1,ξ)
∂ξnn

⎞⎠∣∣
ξ0

=
(
−1 2z0

12 2z0
13 ... 2z0

1n −(z0
12)2 −2z0

12z
0
13 ... −(2 − δij)z0

1jz
0
1i ...

−1 2z1
12 2z1

13 ... 2z1
1n −(z1

12)2 −2z1
12z

1
13 ... −(2 − δij)z1

1jz
1
1i ...

)
.

Hence, we have

rank
(
∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)

= rank
(
−1 2z0

12 2z0
13 ... 2z0

1n −(z0
12)2 −2z0

12z
0
13 ... −(2 − δij)z0

1jz
0
1i ...

−1 2z1
12 2z1

13 ... 2z1
1n −(z1

12)2 −2z1
12z

1
13 ... −(2 − δij)z1

1jz
1
1i ...

)

= rank
(
−1 2z0

12 2z0
13 ... 2z0

1n −(2 − δij)z0
1jz

0
1i ...

0 2Δz1
12 2Δz1

13 ... 2Δz1
1n (2 − δij){z1

1jΔz1
1i + Δz1

1jz
1
1i − Δz1

1jΔz1
1i} ...

)
.

where Δz1
ij = z1

ij − z0
ij . If we pick z1

12 �= z0
12, then the above rank is 2.

Case 4. Orthogonal Grassmannians: Here we use the Pfaffian embedding stated in 
§2. Fixing ξ0 = (ξ0

12, ξ
0
13, ξ

0
23, ..., ξ

0
(n−1)n) = (1, 0, ..., 0), the defining function of the 

Segre family is given by ρ = 1 +
∑

i<j zijξij +
∑

2<i<j(z12zij − z1iz2j + z1jz2i)(ξ12ξij −
ξ1iξ2j + ξ1jξ2i) +

∑
i<j<k<l,{1,2}�⊂{i,j,k,l}(zijzkl− zikzjl + zilzjk)(ξijξkl− ξikξjl + ξilξjk) +

high order terms. Note here we use the notation zji := −zij for j > i.
Note Qξ0 = {z|0 = ρ(z, ξ0) = 1 +z12}. Hence it is smooth. Since z ∈ Qξ0 , we have z =

(−1, z13, ..., z(n−1)n). Pick z0, z1 ∈ Qξ0 . Then Qzs = {ξ|0 = ρ(zs, ξ) = 1 +
∑

i<j z
s
ijξij +∑

2<i<j(zs12zsij−zs1iz
s
2j +zs1jz

s
2i)(ξ12ξij−ξ1iξ2j +ξ1jξ2i) +

∑
i<j<k<l,{1,2}�⊂{i,j,k,l}(zsijzskl−

zsikz
s
jl + zsilz

s
jk)(ξijξkl − ξikξjl + ξilξjk) + h. o. t.s.}, for s = 0, 1.

(
∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
=

⎛⎝ ∂ρ(z0,ξ)
∂ξ12

∂ρ(z0,ξ)
∂ξ13

... ∂ρ(z0,ξ)
∂ξ1n

... ∂ρ(z0,ξ)
∂ξij

... ∂ρ(z0,ξ)
∂ξ(n−1)n

∂ρ(z1,ξ)
∂ξ12

∂ρ(z1,ξ)
∂ξ13

... ∂ρ(z1,ξ)
∂ξ1n

... ∂ρ(z1,ξ)
∂ξij

... ∂ρ(z1,ξ)
∂ξ(n−1)n

⎞⎠∣∣
ξ0

=
(
−1 z0

13 ... z0
1n ... z0

2n (−z0
13z

0
24 + z0

14z
0
23)a ... (−z0

1iz
0
2j + z0

1jz
0
2i)a ...

−1 z1
13 ... z1

1n ... z1
2n (−z1

13z
1
24 + z1

14z
1
23)a ... (−z1

1iz
1
2j + z1

1jz
1
2i)a ...

)
.

Hence,

rank
(
∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
= rank

(−1 z0
13 ... z0

1n ... z0
2n ...

0 Δz1
13 ... Δz1

1n ... Δz1
2n ...

)
.

Here Δz1
ij = z1

ij − z0
ij . If we choose z1

13 �= z0
13, then the rank is 2.

Case 5. M16: Pick ξ0 = (κ0
0, κ

0
1, ..., κ

0
7, η

0
0 , η

0
1 , ..., η

0
7) = (1, 0, ..., 0), z0 ∈ Qξ0 . The 

defining equation of the Segre family is 1 +x0κ0 + x1κ1 + ... + x7κ7 + y0η0 + y1η1 + ... +
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y7η7 + (x0y0 + x1y1 + ...)(κ0η0 + κ1η1 + ...) + (−y0x1 + y1x0 + ...)(−η0κ1 + η1κ0 + ...) +
... + (x2

0 + x2
1 + ... + x2

7)(κ0
2 + κ1

2... + κ7
2) + (y2

0 + y2
1 + ... + y2

7)(η2
0 + η2

1 + ... + η2
7) = 0.

Qξ0 = {z|ρ(z, ξ0) = 1 + x0 + (x2
0 + x2

1 + ... + x2
7) = 0}, and ∇ρ(z, ξ0)|z0 = (1 +

2x0, 2x1, ..., 2x0
7, 0, ..., 0). Hence Qξ0 is smooth. Pick z0, z1 ∈ Qξ0 . Then Qzs = {ξ|0 =

ρ(zs, ξ) = 1 +xs
0κ0 +xs

1κ1 + ... +xs
7κ7 +ys0η0 +ys1η1 + ... +ys7η7 +(xs

0y
s
0 +xs

1y
s
1 + ...)(κ0η0 +

κ1η1+ ...) +(−ys0x
s
1+ys1x

s
0+ ...)(−η0κ1+η1κ0+ ...) + ... +((xs

0)2+(xs
1)2+ ... +(xs

7)2)(κ0
2+

κ1
2 + ... + κ7

2) + ((ys0)2 + (ys1)2 + ... + (ys7)2)(η2
0 + η2

1 + ... + η2
7)}, for s = 0, 1.

rank
(
∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
≥ rank

⎛⎝ ∂ρ(z0,ξ)
∂κ0

∂ρ(z0,ξ)
∂κ1

... ∂ρ(z0,ξ)
∂κ7

∂ρ(z1,ξ)
∂κ0

∂ρ(z1,ξ)
∂κ1

... ∂ρ(z1,ξ)
∂y7

⎞⎠∣∣
ξ0

= rank
(−2 − x0

0 x0
1 x0

2 · · · x0
7

−2 − x1
0 x1

1 x1
2 · · · x1

7

)
. (C)

Since (−2 −x0
0, x

0
1, x

0
2, · · · , x0

7) �= (0, ..., 0), we can pick z1 sufficiently close to z0, such 
that the above rank is 2. That is because Qξ0 is irreducible and the subvarieties, defined 
by 2 × 2 minors of the last matrix in (C), are thin subsets of Qξ0 .

Case 6. M27: Take ξ0 =(ξ0
1 , ξ

0
2 , ξ

0
3 , η

0
0 , η

0
1 , ..., η

0
7 , κ

0
0, κ

0
1, ..., κ

0
7, τ

0
0 , τ

0
1 , ..., τ

0
7 ) =(1, 0, ..., 0). 

The defining function of the Segre family is 1 + rz · rξ where

rz = (x1, x2, x3, y0, ..., y7, z0, ..., z7, w0, ..., w7, A,B,C,D0, ...D7, E0, ..., E7, F0, ..., F7, G)

rξ = (ξ1, ξ2, ξ3, ..., η7, ..., κ7, ..., τ7, A(ξ), B(ξ), C(ξ), ..., D7(ξ), ..., E7(ξ), ..., G(ξ)).

Here A, B, C, Di, Ei, Fi are homogeneous quadratic polynomials; G is a homogeneous 
cubic polynomial defined in Appendix A.

For our purpose here, we present terms only involving ξ1, ξ2, and omit those involving 
ξ3, η0, η1, ..., η7, κ0, κ1, ..., κ7, τ0, τ1, ..., τ7 as follows: ρ(z, ξ) = 1 +x1ξ1+x2ξ2+... +(x1x2−
(
∑7

i=0 y
2
i ))(ξ1ξ2 − (

∑7
i=0(τi)2)) + · · · .

Qξ0 = {z|ρ(z, ξ0) = 1 + x1 = 0}, ∇ρ(z, ξ0) = (1, 0, 0, ..., 0). Hence Qξ0 is smooth 
and for z ∈ Qξ0 , we have z = (−1, x2, x3, ..., ). Pick z0, z1 ∈ Qξ0 . Then Qzs = {ξ|0 =
ρ(zs, ξ) = 1 + xs

1ξ1 + xs
2ξ2 + ... + (xs

1x
s
2 − (

∑7
i=0(ysi )2))(ξ1ξ2 − (

∑7
i=0(τi)2)) + ...}, for 

s = 0, 1.

rank
(
∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)

= rank

⎛⎝ ∂ρ(z0,ξ)
∂ξ1

∂ρ(z0,ξ)
∂ξ2

∂ρ(z0,ξ)
∂ξ3

... ∂ρ(z0,ξ)
∂η7

... ∂ρ(z0,ξ)
∂κ7

... ∂ρ(z0,ξ)
∂τ7

∂ρ(z1,ξ)
∂ξ1

∂ρ(z1,ξ)
∂ξ2

∂ρ(z1,ξ)
∂ξ3

... ∂ρ(z1,ξ)
∂η7

... ∂ρ(z1,ξ)
∂κ7

... ∂ρ(z1,ξ)
∂τ7

⎞⎠∣∣
ξ0

≥ rank

⎛⎝ ∂ρ(z0,ξ)
∂ξ1

∂ρ(z0,ξ)
∂ξ2

∂ρ(z1,ξ)
∂ξ1

∂ρ(z1,ξ)
∂ξ2

⎞⎠∣∣
ξ0 = rank

(
−1 −(

∑7
i=0(y0

i )2)
−1 −(

∑7
i=0(y1

i )2)

)∣∣
ξ0 ≥ 2,
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for those z1’s such that 
∑7

i=0(y1
i )2 �=

∑7
i=0(y0

i )2. This can be done in any small neigh-
borhood of z0; for {z| 

∑7
i=0(yi)2 = B} is a thin set in {z|0 = 1 + x1} for each fixed 

B ∈ C.
This completes the proof of the flattening theorem. �

References

[1] S. Bando, T. Mabuchi, Uniqueness of Einstein Kähler metric modulo connected group actions, in: 
Algebraic Geometry, Sendai, 1985, in: Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 
1987, pp. 11–40.

[2] S. Berhanu, M. Xiao, On the C∞ version of the reflection principle for mappings between CR 
manifolds, Amer. J. Math. 137 (5) (2015) 1365–1400.

[3] S. Bochner, W. Martin, Several Complex Variables, Princeton Mathematical Series, vol. 10, 1948.
[4] E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math. (2) 58 (1953) 1–23.
[5] S. Chan, M. Xiao, Y. Yuan, Holomorphic isometries between products of complex unit balls, Inter-

nat. J. Math. 28 (9) (2017) 1740010, 22 pp.
[6] P.E. Chaput, L. Manivel, N. Perrin, Quantum cohomology of minuscule homogeneous spaces, Trans-

form. Groups 13 (1) (2008) 47–89.
[7] L. Clozel, E. Ullmo, Correspondances modulaires et mesures invariantes, J. Reine Angew. Math. 

558 (2003) 47–83.
[8] T. Dinh, N. Sibony, Equidistribution problems in complex dynamics of higher dimension, Internat. 

J. Math. 28 (7) (2017) 1750057, 31 pp.
[9] A. Di Scala, A. Loi, Kähler maps of Hermitian symmetric spaces into complex space forms, Geom. 

Dedicata 125 (2007) 103–113.
[10] A. Di Scala, A. Loi, Kähler manifolds and their relatives, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 

9 (3) (2010) 495–501.
[11] P. Ebenfelt, Local holomorphic isometries of a modified projective space into a standard projective 

space; rational conformal factors, Math. Ann. 363 (3) (2015) 1333–1348.
[12] H. Fang, Rigidity of Local Holomorphic Maps between Hermitian Symmetric Spaces, Ph.D. Thesis, 

Rutgers University, New Brunswick, 2018.
[13] H. Freudenthal, Lie groups in the foundations of geometry, Adv. Math. 1 (2) (1964) 145–190.
[14] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Pure and Applied Mathematics, Wiley-

Interscience, New York, 1978.
[15] J. Grivaux, Tian’s invariant of the Grassmann manifold, J. Geom. Anal. 16 (3) (2006).
[16] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathe-

matics, vol. 80, Academic Press, Inc., New York-London, 1978.
[17] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, 

II, Ann. of Math. (2) 79 (1964).
[18] X. Huang, On the mapping problem for algebraic real hypersurfaces in the complex spaces of 

different dimensions, Ann. Inst. Fourier (Grenoble) 44 (2) (1994) 433–463.
[19] X. Huang, On a linearity problem of proper holomorphic maps between balls in complex spaces of 

different dimensions, J. Differential Geom. 51 (1999) 13–33.
[20] X. Huang, Y. Yuan, Holomorphic isometry from a Kähler manifold into a product of complex 

projective manifolds, Geom. Funct. Anal. 24 (3) (2014) 854–886.
[21] X. Huang, Y. Yuan, Submanifolds of Hermitian symmetric spaces, in: Analysis and Geometry, 

Springer Proc. Math. Stat., vol. 127, Springer, Cham, 2015, pp. 197–206.
[22] X. Huang, D. Zaitsev, Non-embeddable real algebraic hypersurface, Math. Z. 275 (3–4) (2013) 

657–671.
[23] A. Iliev, L. Manivel, The Chow ring of the Cayley plane, Compos. Math. 141 (1) (2005) 146–160.
[24] A. Iliev, L. Manivel, On cubic hypersurfaces of dimensions 7 and 8, Proc. Lond. Math. Soc. (3) 

108 (2) (2014) 517–540.
[25] S. Ji, Algebraicity of real analytic hypersurfaces with maximal rank, Amer. J. Math. 124 (6) (2002) 

1083–1102.
[26] S.-Y. Kim, D. Zaitsev, Rigidity of CR maps between Shilov boundaries of bounded symmetric 

domains, Invent. Math. 193 (2) (2013) 409–437.
[27] J. Kollár, Lectures on Resolution of Singularities, Annals of Mathematics Studies, vol. 166, 2007.

http://refhub.elsevier.com/S0001-8708(19)30501-8/bib42614D61s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib42614D61s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib42614D61s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4258s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4258s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib424Ds1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4361s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib435859s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib435859s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib434D50s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib434D50s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4355s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4355s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4453s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4453s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib444Cs1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib444Cs1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib444C31s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib444C31s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib45s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib45s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4661s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4661s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4672s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4748s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4748s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib47s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4865s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4865s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib48s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib48s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib487531s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib487531s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib487532s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib487532s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib485931s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib485931s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib485932s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib485932s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib485As1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib485As1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib494D31s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib494D32s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib494D32s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4A69s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4A69s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4B5As1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4B5As1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4Bs1


74 H. Fang et al. / Advances in Mathematics 360 (2020) 106885
[28] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Math. Lectures, Univ. of California, 
Irvine, 1977.

[29] O. Loos, Homogeneous algebraic varieties defined by Jordan pairs, Monatsh. Math. 86 (1978) 
107–129.

[30] N. Mok, Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, Series in Pure 
Mathematics, vol. 6, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989, xiv+278 pp.

[31] N. Mok, Local holomorphic isometric embeddings arising from correspondences in the rank-1 case, 
in: Contemporary Trends in Algebraic Geometry and Algebraic Topology, Tianjin, 2000, in: Nankai 
Tracts Math., vol. 5, World Sci. Publ., River Edge, NJ, 2002, pp. 155–165.

[32] N. Mok, Geometry of holomorphic isometries and related maps between bounded domains, in: 
Geometry and Analysis, vol. 2, in: Adv. Lect. Math. (ALM), vol. 18, Int. Press, Somerville, MA, 
2011, pp. 225–270.

[33] N. Mok, Extension of germs of holomorphic isometries up to normalizing constants with respect to 
the Bergman metric, J. Eur. Math. Soc. 14 (5) (2012) 1617–1656.

[34] N. Mok, Holomorphic isometries of the complex unit ball into irreducible bounded symmetric do-
mains, Proc. Amer. Math. Soc. 144 (10) (2016) 4515–4525.

[35] N. Mok, S. Ng, Second fundamental forms of holomorphic isometries of the Poincaré disk into 
bounded symmetric domains and their boundary behavior along the unit circle, Sci. China Ser. A 
52 (12) (2009) 2628–2646.

[36] N. Mok, S. Ng, Germs of measure-preserving holomorphic maps from bounded symmetric domains 
to their Cartesian products, J. Reine Angew. Math. 669 (2012) 47–73.

[37] S. Ng, On Holomorphic Isometric Embeddings from the Unit Disk into Polydisks and Their Gener-
alizations, Ph.D. thesis, 2008.

[38] S. Ng, On holomorphic isometric embeddings of the unit disk into polydisks, Proc. Amer. Math. 
Soc. 138 (2010) 2907–2922.

[39] S. Ng, On holomorphic isometric embeddings of the unit n-ball into products of two unit m-balls, 
Math. Z. 268 (1–2) (2011) 347–354.

[40] Y. Ohwashi, E6 matrix model, Progr. Theoret. Phys. 108 (4) (2002) 755–782.
[41] A. Pressley, G. Segal, Loop Groups, Oxford Mathematical Monographs, 1986.
[42] F. Sottile, From enumerative geometry to solving systems of polynomials equations, in: Compu-

tations in Algebraic Geometry with Macaulay 2, in: Algorithms Comput. Math., vol. 8, Springer, 
Berlin, 2002, pp. 101–129.

[43] M. Umehara, Einstein Kähler submanifolds of a complex linear or hyperbolic space, Tohoku Math. 
J. (2) 39 (3) (1987) 385–389.

[44] J.A. Wolf, The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math. 120 
(1968) 59–148.

[45] M. Xiao, Y. Yuan, Complexity of holomorphic maps from the complex unit ball to classical domains, 
Asian J. Math. 22 (4) (2018) 729–759.

[46] M. Xiao, Y. Yuan, Holomorphic maps from the complex unit ball to Type IV classical domains, 
J. Math. Pures Appl., https://doi .org /10 .1016 /j .matpur .2019 .05 .009.

[47] Y. Yuan, On local holomorphic maps preserving invariant (p, p)-forms between bounded symmetric 
domains, Math. Res. Lett. 24 (6) (2017) 1875–1895.

[48] Y. Yuan, Y. Zhang, Rigidity for local holomorphic conformal embeddings from Bn into BN1 × · · ·×
BNm , J. Differential Geom. 90 (2) (2012) 329–349.

http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4C6F31s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4C6F31s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4C6F32s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4C6F32s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F31s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F31s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F32s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F32s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F32s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F33s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F33s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F33s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F34s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F34s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F35s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D6F35s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D4E31s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D4E31s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D4E31s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D4Es1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4D4Es1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4E67s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4E67s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4E6731s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4E6731s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4E6732s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4E6732s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib4Fs1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib5053s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib53s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib53s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib53s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib55s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib55s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib57s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib57s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib585931s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib585931s1
https://doi.org/10.1016/j.matpur.2019.05.009
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib59s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib59s1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib595As1
http://refhub.elsevier.com/S0001-8708(19)30501-8/bib595As1

	Volume-preserving mappings between Hermitian symmetric spaces of compact type
	1 Introduction
	2 Irreducible Hermitian symmetric spaces and their Segre varieties
	2.1 Segre varieties of projective subvarieties
	2.2 Canonical embeddings and explicit coordinate functions
	2.3 Explicit expression of the volume forms

	3 A basic property for partially degenerate holomorphic maps
	4 Proof of the main theorem assuming three extra propositions
	4.1 An algebraicity lemma
	4.2 Algebraicity and rationality with uniformly bounded degree
	4.3 Isometric extension of F

	5 Partial non-degeneracy: proof of Proposition (I)
	5.1 Spaces of type I
	5.2 Spaces of type IV

	6 Transversality and ﬂattening of Segre families: proof of Proposition (II)
	7 Irreducibility of Segre varieties: proof of Proposition (III)
	Appendix A Afﬁne cell coordinate functions for two exceptional classes of the Hermitian symmetric spaces of compact type
	Appendix B Proof of Proposition (I) for other types
	B.1 Spaces of type II
	B.2 Spaces of type III
	B.3 The exceptional class  M27
	B.4 The exceptional class  M16

	Appendix C Transversality and ﬂattening of Segre families for the remaining cases
	References


