A SIMPLE PROOF OF A THEOREM OF CALABI

XIAOJUN HUANG AND XIAOSHAN LI
Dedicated to John D'Angelo on the occasion of his 60th birthday

Abstract

We give a simple and more or less elementary proof of a classical result of E . Calabi on the global extension of a local holomorphic isometry into a complex space form.

1. Introduction

Let (M, ω) be a (connected) complex manifold equipped with a real analytic Kähler metric ω. Write $\left(S, \omega_{s t}\right)$ for one of the three complex space forms equipped with the standard canonical metrics $\omega_{s t}$. More precisely, when $S=$ \mathbb{C}^{n}, write $\omega_{s t}$ for the Euclidean metric; when S is the unit ball in $\mathbb{C}^{n}, \omega_{s t}$ is the Poincaré metric; and when S is the complex projective space $\mathbf{C P}^{n} \omega_{s t}$ stands for the Fubini-Study metric. In this short paper, we give a simple, self-contained and, more or less, elementary proof of the following celebrated theorem of Calabi [Ca] (see Theorems 2, 6, 9, 12 in [Ca]).

Theorem 1.1 (Calabi [Ca]). Assume the above notation. Let $U \subset M$ be a connected open subset and let $F: U \rightarrow S$ be a holomorphic isometric embedding in the sense that $F^{*}\left(\omega_{s t}\right)=\omega$ over U. Then F extends holomorphically along any continuous curve $\gamma:[0,1] \rightarrow M$ with $\gamma(0) \in U$. In particular, when M is simply connected, F extends to a globally defined holomorphic map from M into S. Moreover, let $G: U \rightarrow S$ be another holomorphic isometric embedding. Then F and G are different by a rigid motion in the sense that there is a holomorphic isometry T of $\left(S, \omega_{s t}\right)$ such that $G=T \circ F$.

[^0]
2. Proof of the theorem

Step I. We first prove the part for uniqueness (up to a rigid motion). We need only to consider the case when $S=\mathbf{C} \mathbf{P}^{N}$ equipped with the standard Fubini-Study metric and the other case can be done in the same way. Let $p \in U$ and consider a holomorphic chart near p with holomorphic coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$ and $0 \leftrightarrow p$. Let $F, G: U \rightarrow S$ be holomorphic isometric embeddings. Composing F and G with isometries of $S=\mathbf{C P}{ }^{N}$ if necessary, we can assume that $F(0)=G(0)=[1,0, \ldots, 0]$. For a small neighborhood U^{\prime} of 0 in U, we have $F\left(U^{\prime}\right), G\left(U^{\prime}\right) \subset\left\{\left[1, w_{1}, \ldots, w_{N}\right] \in \mathbf{C} \mathbf{P}^{N}\right\}$, which is identified in a nature way with \mathbb{C}^{N} with holomorphic coordinates $\left(w_{1}, \ldots, w_{N}\right)$. In what follows, we also identify a Kähler metric tensor with its associated positive $(1,1)$-Kähler form. Then in the $\left(w_{1}, \ldots, w_{n}\right)$-coordinates, the Fubini-Study metric can be written as $\omega_{s t}=i \partial \bar{\partial} \log \left(1+\sum_{j=1}^{N}\left|w_{j}\right|^{2}\right)$. Now, near 0, we can write $F=\left[1, f_{1}, \ldots, f_{N}\right], G=\left[1, g_{1}, \ldots, g_{N}\right]$ with $F(0), G(0)=[1,0, \ldots, 0]$ and f_{j}, g_{j} holomorphic near 0 .

The assumption that $F^{*}\left(\omega_{s t}\right)=G^{*}\left(\omega_{s t}\right)=\omega$ gives immediately that

$$
\begin{equation*}
\sum_{j=1}^{N}\left|f_{j}(z)\right|^{2}=\sum_{j=1}^{N}\left|g_{j}(z)\right|^{2}, \quad \text { or } \quad \sum_{j=1}^{N} f_{j}(z) \cdot \overline{f_{j}(\xi)}=\sum_{j=1}^{N} g_{j}(z) \cdot \overline{g_{j}(\xi)} \tag{2.1}
\end{equation*}
$$

for z, ξ in a neighborhood of $0 \in U$. By a lemma of D'Angelo [DA] (see also Calabi [Ca] Bochner-Martin [Section 5 of Chapter 2, BM] for some related results), from (2.1) we conclude F and G differ by a unitary matrix. More precisely, there is an $N \times N$ unitary matrix V such that $\left(g_{1}, \ldots, g_{N}\right)=$ $\left(f_{1}, \ldots, f_{N}\right) \cdot V$. Hence, we see that $F=G \cdot \operatorname{diag}(1, V)$, which proves that F and G differ by a rigid motion. Next, for completeness, we include in the following paragraph a detailed proof of the above mentioned lemma:

First, we define $\mathcal{H}_{F, p}:=\operatorname{span}_{\mathbf{C}}\left\{\left.D^{\alpha}\left(f_{1}, \ldots, f_{N}\right)\right|_{0}\right\}$, which is regarded as a Hermitian subspace of the stand complex Euclidean space \mathbb{C}^{N}. Here, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with each α_{j} a nonnegative integer, as usual, we define $D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial^{\alpha} z_{1} \cdots \partial^{\alpha_{n} z_{n}}}$. Notice that $F(z)=\sum_{|\alpha|>0} \frac{D^{\alpha} F(0)}{\alpha!} z^{\alpha}$ for $z \approx 0$. Hence, $\mathcal{H}_{F, p}$ is the smallest linear subspace of \mathbb{C}^{N} containing $F(z)$ for $z \approx 0$ and thus containing $F(z)$ for all $z \in U$ by the uniqueness of holomorphic functions. We can now similarly define $\mathcal{H}_{G, p}$. Write $u_{\alpha}=D^{\alpha}\left(f_{1}, \ldots, f_{N}\right)(0)$ and $v_{\alpha}=D^{\alpha}\left(g_{1}, \ldots, g_{N}\right)(0)$. Define $\mathcal{I}: \mathcal{H}_{F} \rightarrow \mathcal{H}_{G}$ by linearly extending the map sending u_{α} to v_{α}. To see \mathcal{I} is indeed a well-defined linear operator, it suffices to show that $\sum_{j} a_{j} u_{\alpha_{j}}=0$ if and only if $\sum_{j} a_{j} v_{\alpha_{j}}=0$ for $a_{j}^{\prime} s \in \mathbb{C}$. But this follows trivially from (2.1), for (2.1) gives that $u_{\alpha} \cdot \overline{u_{\beta}}=v_{\alpha} \cdot \overline{v_{\beta}}$ and thus $\left\|\sum_{j} a_{j} u_{\alpha_{j}}\right\|^{2}=\left\|\sum_{j} a_{j} v_{\alpha_{j}}\right\|^{2}$. Moreover, this also demonstrates that \mathcal{I} is a linear isometry from \mathcal{H}_{F} to \mathcal{H}_{G}, which of course can be extended to a unitary self-transformation of \mathbb{C}^{N}. By the Taylor expansion and by the linearity of
\mathcal{I}, we have $\mathcal{I}(F(z))=G(z)$. This thus shows that there is a $N \times N$ unitary matrix V such that $G(z)=F(z) \cdot V$ for $z \approx 0$.

Step II. We next present the proof for the extension part. We use all the notation set up above.

For any $q \in U$, we can find a holomorphic isometry T_{q} of S such that $T_{q}(F(q))=[1,0, \ldots, 0]$. Also choose a holomorphic coordinates near q with $q \leftrightarrow 0$. We can then similarly define $\mathcal{H}_{F, q}$. Though $\mathcal{H}_{F, q}$ depends only on the choice of T_{q}, it is easy to see, from the uniqueness of holomorphic functions, that the complex dimension of $\mathcal{H}_{F, q}$ is independent of the choice of T_{q}, the holomorphic coordinates near q and the point $q \in U$ itself. We write this dimension as d_{F}. Again, from the uniqueness property for holomorphic functions, it is clear that if F^{*} is a holomorphic map from a domain $U^{*} \subset M$ into S, that is obtained by holomorphically continuing F along a certain curve, then $d_{F^{*}}=d_{F}$. Also, if $d_{F}<N$, then we can compose F with a certain holomorphic isometry T of S such that $T \circ F=\left[1, f_{1}, \ldots, f_{d_{F}}, 0, \ldots, 0\right]$ for $z \approx 0$. Now, to prove the theorem, we need only consider the map $\left[1, f_{1}, \ldots, f_{d_{F}}\right]$ from a small neighborhood of $p \in U$ into $\mathbf{C P}{ }^{d_{F}}$ equipped with the Fubini-Study metric. Hence, without loss of generality, we can assume at the beginning that $N=d_{F}$.

Let $\gamma:[0,1] \rightarrow M$ be a continuous curve with $\gamma(0) \in U$. Seeking a contradiction, suppose F does not extend holomorphically along γ. Then there is a point $c \in[0,1]$ such that F extends holomorphically along $\gamma([0, t])$ for $t<c$ but not along $\gamma([0, c])$. Choose $t_{j}(\in[0, c)) \rightarrow c^{-}$and let $F_{t_{j}}$ be a holomorphic map from a small neighborhood of $\gamma\left(t_{j}\right)$ in M into S, obtained by holomorphically continuing F along $\left[0, t_{j}\right]$. Let T_{j} be a holomorphic isometry of S such that $G_{j}:=T_{j} \circ F_{t_{j}}$ maps $\gamma\left(t_{j}\right)$ to $[1,0, \ldots, 0]$. Choose a holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$ in a neighborhood of $\gamma(c)$ with $\gamma(c) \leftrightarrow 0$ and write $G_{j}=\left[1, g_{j, 1}, \ldots, g_{j, N}\right]$ in a small neighborhood of $\gamma\left(t_{j}\right)$. Also, let $\phi(z, \bar{z})$ be a positive-valued real analytic function in a certain fixed neighborhood U_{0} of 0 such that $\omega=i \partial \bar{\partial} \log \phi(z, \bar{z})$ near $\gamma(c)$. Since $G_{j}^{*}\left(\omega_{s t}\right)=\omega$ over a small neighborhood of $\gamma\left(t_{j}\right)$ for $j \gg 1$, we get, near $\gamma\left(t_{j}\right)$, the following:

$$
\begin{equation*}
\partial \bar{\partial} \log \phi(z, \bar{z})=\partial \bar{\partial} \log \left(1+\sum_{k=1}^{N}\left|g_{j, k}\right|^{2}\right) . \tag{2.2}
\end{equation*}
$$

Now, we write $\phi(z, \bar{z})=\Re\left(h_{j}(z)\right)+\phi_{j}(z, \bar{z})$, where $h_{j}(z)$ is holomorphic in a certain fixed neighborhood U^{*} of $\gamma(c)$ (independent of j for $j \gg 1$) with $\Re\left(h_{j}(z)\right)>0$ over U^{*}. Also, over U^{*}, we have the following convergent power series expansion:

$$
\phi_{j}(z, \bar{z})=\sum_{|\alpha|,|\beta|>0} a_{\alpha \bar{\beta}}\left(z-z\left(\gamma\left(t_{j}\right)\right)\right)^{\alpha} \overline{\left(z-z\left(\gamma\left(t_{j}\right)\right)\right)^{\beta}} .
$$

Then, one easily derives the following equation

$$
\begin{equation*}
\sum_{k=1}^{N} g_{j, k}(z) \overline{g_{j, k}(\xi)}=\psi_{j}(z, \bar{\xi})=\frac{2 \phi_{j}(z, \bar{\xi})}{h_{j}(z)+\overline{h_{j}(\xi)}} \tag{2.3}
\end{equation*}
$$

Since $d_{F_{j}}=N$, there are $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$ such that

$$
u_{\alpha_{k}, j}:=\left.D^{\alpha_{k}}\left(g_{j, 1}, \ldots, g_{j, N}\right)\right|_{z=\gamma\left(t_{j}\right)}
$$

for $j=1, \ldots, N$ form a linearly independent family. Write A_{j} for the constant $N \times N$ matrix with $u_{\alpha_{k}, j}$ as its k th-row. Applying $D^{\alpha_{j}}$ to (2.3) and then substituting z by $\gamma\left(t_{j}\right)$, we get the following equation:

$$
A_{j} \cdot\left(\begin{array}{c}
\overline{g_{j, 1}(\xi)} \tag{2.4}\\
\vdots \\
\overline{g_{j, N}(\xi)}
\end{array}\right)=\left(\begin{array}{c}
\left.D^{\alpha_{1}} \psi_{j}(z, \bar{\xi})\right|_{z=\gamma\left(t_{j}\right)} \\
\vdots \\
\left.D^{\alpha_{N}} \psi_{j}(z, \bar{\xi})\right|_{z=\gamma\left(t_{j}\right)}
\end{array}\right) .
$$

Aprio, (2.4) only holds for $\xi \approx \gamma\left(t_{j}\right)$. However, since $\psi_{j}(z, \bar{\xi})$ is real-analytic for $z, \xi \in U^{*}$, the left-hand side of (2.4) is well defined and is holomorphic for $\xi \in U^{*}$. The crucial point for our simple proof is that the left-hand side is linear in $\overline{g_{j, k}}$ and thus no implicit function theorem is needed for solving $\overline{g_{j, k}}$. Hence, the solution is well defined over the same defining domain of the right-hand side, whenever the coefficient matrix A_{j} is invertible. A_{j} is indeed invertible by our arrangement, though its determinant may approach to 0 as $j \rightarrow \infty$. Hence, from (2.4), we conclude that $g_{j, k}$ extends to a holomorphic function, for each k and $j \gg 1$, to the fixed neighborhood U^{*} of $\gamma(c)$. That shows that F also admits a holomorphic continuation along γ all the way across $\gamma(c)$. This is a contradiction. The extension part is also proved.

Remark. (1) The same argument above (with a little more care on the convergence) also applies to the case when S is a Hilbert space form as obtained in the original paper of Calabi. (2) For late work along the lines of Calabi in [Ca], we refer the reader to [MN] and many references therein. (3) The simplicity for the argument here makes it applicable in other more complicated settings. We refer the reader to a recent preprint [HY].

References

[BM] S. Bochner and W. Martin, Several complex variables, Princeton University Press, Princeton, 1948. MR 0027863
[Ca] E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math. (2) 58 (1953), 1-23. MR 0057000
[DA] J. P. D'Angelo, Several complex variables and the geometry of real hypersurfaces, CRC Press, Boca Raton, FL, 1993. MR 1224231
[HY] X. Huang and Y. Yuan, Local holomorphic conformal maps between a class of Kähler manifolds; available at http://arxiv.org/abs/1305.3344.
[MN] N. Mok and S.-C. Ng, Germs of measure-preserving holomorphic maps from bounded symmetric domains to their Cartesian products, J. Reine Angew. Math. 669 (2012), 47-73. MR 2980451

Xiaojun Huang, Department of Mathematics, Hill Center-Bush Campus, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

E-mail address: huangx@math.rutgers.edu
Xiaoshan Li, School of Mathematics and Statistics, Wuhan University, Hubei 430072, China

E-mail address: xiaoshanli@whu.edu.cn

[^0]: Received December 30, 2011; received in final form May 25, 2012.
 The first author was supported in part by the NSF DMS-11-01481. The second author was supported by the Fundamental Research Funds for the Central Universities.

 2010 Mathematics Subject Classification. 32A, 32D, 32H, 32M.

