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Chapter 1

Basic Optimal Control Problems

We present a motivating idea of optimal control theory in a classic applica-
tion from King and Roughgarden [104] on allocation between vegetative and
reproductive growth for annual plants. This plant growth model formulated
by Cohen [36] divides the plant into two parts: the vegetative part, consist-
ing of leaves, stems, and roots, and the reproductive part. The products of
photosynthesis (growth) are partitioned into these parts, and the rate of pho-
tosynthesis is assumed to be proportional to the weight of the vegetative part.
Let x:1(t) be the weight of the vegetative part at time ¢ and z3(t) the weight
of the reproductive part. Consider the following ordinary differential equation
model:

where the function u(t) is the fraction of the photosynthate partitioned to
vegetative growth. The natural evolution of the plant should encourage max-
imal growth of the reproductive part in order to ensure effective reproduction.
Therefore, the goal is to find a partitioning pattern control u(t) which maxi-
mizes the functional

T
/ In(zo(t)) dt.
0

The maximum season length is the upper bound T' on the time interval, and
it is assumed that all season lengths from zero to a fixed maximum have equal
probability of occurrence. The natural logarithm appears here because it is
believed the evolution of the plant favors reproduction in a nonlinear way.
This type of problem is called an optimal control problem, because we are
charged with finding an optimal control, i.e., a control which optimizes some
objective functional. We would say that this problem has two states, z; and
x2, and one control, u. King and Roughgarden used optimal control theory
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to solve this problem. Figure 1.1 gives an example of an optimal control for
the case 7' = 5.
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FIGURE 1.1:  The optimal photosynthate v* is shown on the left, and the
optimal vegetative and reproductive weights, 7 and z}, are on the right.

Analyzing such a problem with a variety of T values can give interesting
conclusions. Their analysis leads to the prediction that annual plants experi-
encing variable length seasons will exhibit graded strategies, with vegetative
and reproductive growth occurring simultaneously durin g part of the life cycle.
In other words, the plant will use all of its photosynthate for vegetative growth
and later will split it into some vegetative and some reproductive growth.

The goal of this book is to give an introduction to optimal control theory
as applied to biological models. Using optimal control theory, one can ad-

just controls in a system to achieve g, goal, where the underlying system can
include;

¢ Ordinary differential equations
e Partial differential equations
e Discrete equations

e Stochastic differential equations

il
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e Integro-difference equations

e Combination of discrete and continuous systems.

Our primary focus in this text is optimal control theory of ordinary differential
equations with time as the underlying variable. Optimal control of discrete
equations and PDEs is discussed in Chapters 23 and 25, respectively. For
other types of systems, see [10, 11, 128, 129, 182].

Optimal control theory is a powerful mathematical tool that can be used
to make decisions involving complex biological situations. For example, what
percentage of the population should be vaccinated as time evolves in a given
epidemic model to minimize the number of infected and the cost of imple-
menting the vaccination strategy? The desired outcome, or goal, depends
on the particular situation. Many times, the problem will include tradeoffs
between two competing factors. For another example, consider minimizing
a certain harmful virus population while keeping the level of the toxic drug
administered low. In such a case, we could model the levels of virus and drug
as functions of time appearing together in a system of ordinary differential
equations.

The behavior of the underlying dynamical system is described by a state
variable(s). We assume that there is a way to steer the state by acting upon it
with a suitable control function(s). The control enters the system of ordinary
differential equations and affects the dynamics of the state system. The goal
is to adjust the control in order to maximize (or minimize) a given objective
functional. A functional, for this text, refers to a map from a certain set, of
functions to the real numbers (an integral, for example). Often, this functional
will balance judiciously the desired goal with the required cost to reach it.
Here, the cost may not always represent money but may include side effects
or damages caused by the control. In general, the objective functional depends
on one or more of the state and the control variables. Frequently the objective
functional is given by an integral of the state and/or control variables. Other
types of functionals will be considered as well.

Many applications have several state variables and multiple control vari-
ables. The plant problem above has two state variables and one control vari-
able, and is a bit unusual in that the objective functional does not depend on
the control. Note that the control variables have imposed bounds of 0 and
1 and that the system and objective functional depend on the control u in a
linear way. Problems without control constraints (bounds) are usually easier
than those with bounds. Also, problems linear in the control are sometimes
trickier than those with a reasonable nonlinearity in the control dependence.

We will treat all these wrinkles, and more, in this book. First, we will
concentrate on the case of one control and one state, in which the controls do
not have any constraints on them. We will also initially focus on problems
in which the control enters the problem in a simple nonlinear way, mostly
quadratic.
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1.1 Preliminaries

Before beginning, we establish some definitions and concepts from analysis
and advanced calculus used throughout the book. It is also advantageous to
quickly review a few fundamental results. Wade [177] is an excellent source
for these and other basic analytical concepts. Biological terminology will be
presented as needed. For some background on models from an undergraduate
viewpoint, see the book by Mooney and Swift [146]. Mathematical biology
modelling for undergraduates (or graduate students totally new to this topic)
is covered in the classic book by Edelstein or the book by Jones and Slee-
man [53, 89]. For a beginning graduate student viewpoint, see the books by
Kot and Murray [107, 150].

DEFINITION 1.1 Let I C R be an interval (finite or infinite). We say
a finite-valued function v : I — R is piecewise continuous if it is continuous
at each t € I, with the possible exception of at most a finite number of t, and
if u 1s equal to either its left or right limit at everyt € I.

o
FIGURE 1.2: The graph to the left is an example of a piecewise continuous

function. The graph to the right is not, because the value of the function at
t* is not the left or right limit.

4
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Although somewhat nonstandard terminology, requiring piecewise contin-
uous functions to equal their left or right limits eliminates a great many
headaches farther down the road. In words, a piecewise continuous function
can have finitely many “jump discontinuities” from one continuous segment
to another. It cannot have a value that is an isolated single point (Figure 1.2).

Suppose u : I — R is piecewise continuous. Let g : R® — R be continuous
in three variables. Then, by the solution z of the differential equation

2'(t) = gt a(t), u(®)) (1.1)

it is meant a continuous function z : I — R which is differentiable, with z’
satisfying the above expression, wherever u is continuous. Equivalently, if
I = [a, b], then z satisfies

z(t) = z(a) +/ g(s,z(s),u(s)) ds.

An initial condition for z(a) will normally be specified.

DEFINITION 1.2 Letxz: I — R be continuous on I and differentiable
at all but finitely points of I. Further, suppose that x' is continuous wherever
it is defined. Then, we say x is piecewise differentiable.

Note, if u is piecewise continuous, and z satisfies (1.1), then z is piecewise
differentiable. Also, the actual value of u at its discontinuities is irrelevant in
determining x. Throughout this text, all controls considered will be piecewise
continuous, and we will not be concerned with values at discontinuities.

DEFINITION 1.3 Letk: I — R. We say k is continuously differentiable
if k' exists and is continuous on I.

DEFINITION 1.4 A function k(t) is said to be concave on [a,b] if

ak(ty) + (1 — a)k(ts) < k(aty + (1 — a)tz)

for all0 < a <1 and for any a < ti,ts <b

A function k is said to be convez on [a, b] if it satisfies the reverse inequality,
or equivalently, if —k is concave. The second derivative of a twice differentiable
concave function is non-positive; relating this to terminology used in calculus,
concave here is “concave down” and convex is “concave up.” If k is concave
and differentiable, then we have a tangent line property
L

k(tz) — k(t1) Zlftz — t1)k'(t2)
i
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for all a < t;,t, < b. In words, the slope of the secant line joining two points
is less than the slope of the tangent line at the left point, and greater than
the slope of the tangent line at the right point. See Figure 1.3.

a b
t

FIGURE 1.3: The graph of a concave function k(¢). The secant line and
tangent lines for two points t; and ¢y are shown.

Analogously, a function k(z,y) in two variables is said to be concave if

ak(@, 1) + (1 — a)k(z2, y2) < k(aw: + (1 — a)zz, a1 + (1 - a)ye)

for all 0 < o < 1 and all (z1,y1), (z2,92) in the domain of k. If k is such
a function and has partial derivatives everywhere, then the analogue to the
tangent line property is

k(x1,y1) — k(z2,y2) 2> (21 — 22)ka(z1,91) + (y1 — y2)ky(z1, 1)

for all pairs of points (x1,y1), (xq,y2) in the domain of .

DEFINITION 1.5 A function k is called Lipschitz if there exists a con-
stant ¢ (particular to k) such that |k(t1) — k(t2)| < c[ty — ta| for all points t,,
L2 in the domain of k. The constant ¢ is called the Lipschitz constant of k.

e —
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THEOREM 1.1 (Mean Value Theorem)
Let k be continuous on [a,b] and differentiable on (a,b). Then, there is some
zo € (a,b) such that k(b) — k(a) = k' (z0)(b — a).

Note that a Lipschitz function is automatically continuous and, in fact,
uniformly continuous. As such, this property is sometimes referred to as
Lipschitz continuity. It follows from an application of the mean value theorem
that if a function % : / — R is piecewise differentiable on a bounded interval
I, then k is Lipschitz.

1.2 The Basic Problem and Necessary Conditions

In our basic optimal control problem for ordinary differential equations, we
use u(t) for the control and x(t) for the state. The state variable satisfies a
differential equation which depends on the control variable:

xl(t) = g(t, .’E(t), 'u'(t))'

As the control function is changed, the solution to the differential equation
will change. Thus, we can view the control-to-state relationship as a map
u(t) — x = (u) (of course, z is really a function of the independent variable
t; we write @(u) simply to remind us of the dependence on %). Our basic
optimal control problem consists of finding a piecewise continuous control
u(t) and the associated state variable z(f) to maximize the given objective
functional, i.e.,

mﬁx/‘.. l Ft,z(t),u(t))dt

subject to  z'(t) = g(t, z(t), u(t)) ’

z(to) = xo and z({1) free. (1.2)

Such a maximizing control is called an optimal control. By z(t;) free, it is
meant that the value of z(f;) is unrestricted. For our purposes, [ and g will
always be continuously differentiable functions in all three arguments. Thus,
as the control(s) will always be piecewise continuous, the associated states
will always be piecewise differentiable.

The principle technique for such an optimal control problem is to solve &
set of “necessary conditions” that an optimal control and corresponding state
must satisfy. It is important to understand the logical difference between
necessary conditions and sufficient conditions of solution sets.
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Necessary Conditions : If u*(t), z*(t) are optimal, then the following
conditions hold ...

Sufficient Conditions : If u*(t), z*(t) satisfy the following conditions ...,
then w*(t), £*(¢) are optimal.

We will discuss sufficient conditions in the next chapter. For now, let us
derive the necessary conditions. Express our objective functional in terms of
the control:

t1
J(u)= [ f(t,z(t),u())dt,
to
where z = z(u) is the corresponding state.

The necessary conditions that we derive were developed by Pontryagin and
his co-workers in Moscow in the 1950’s [158]. Pontryagin introduced the idea
of “adjoint” functions to append the differential equation to the objective
functional. Adjoint functions have a similar purpose as Lagrange multipliers
in multivariate calculus, which append constraints to the function of several
variables to be maximized or minimized. Thus, we begin by finding appro-
priate conditions that the adjoint function should satisfy. Then, by differen-
tiating the map from the control to the objective functional, we will derive
a characterization of the optimal control in terms of the optimal state and
corresponding adjoint. So do not feel as if we are “pulling a rabbit out of the
hat” when we define the adjoint equation.

FIGURE 1.4: Pulling the adjoint out of the hat.
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Control
State

Time Time

FIGURE 1.5: The optimal control u* and state z* (in solid) plotted to-
gether with u¢ and z¢ (dashed).

Assume a (piecewise continuous) optimal control exists, and that u* is such
a control, with z* the corresponding state. Namely, J(u) < J(u*) < oo for all
controls u. Let h(t) be a piecewise continuous variation function and e € R a
constant. Then

ut(t) = u*(t) + eh(t)
is another piecewise continuous control.

Let z¢ be the state corresponding to the control u¢, namely, z¢ satisfies

%xf(t) = g(t, 2°(t), u(8)) (1.3)

wherever u° is continuous. Since all trajectories start at the same position,
we take z¢(tg) = xg (Figure 1.5).
It is easily seen that u¢(t) — u*(¢) for all t as € — 0. Further, for all ¢

Ous(t)
Oe

In fact, something similar is true for z°. Because of the assumptions made on
g, it follows that

= h(t).

€=0

at(t) — 2" (t)

]
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for each fixed t. Further, the derivative

o .
ot (t)

e=0

exists for each ¢t. The actual value of quantity will prove unimportant. We
need only to know that it exists.
The objective functional at u* is

T(u) = ], (2 (8), us () d.

We are now ready to introduce the adjoint function or variable \. Let At)
be a piecewise differentiable function on [to,t1] to be determined. By the
Fundamental Theorem of Calculus,

/t | %WW@)J dt = A(t1)a(t1) — A(to)a(to),

which implies

/t b %[,\(t)xe(t)] dt + Mto)zo — A(t1)a“(t1) = 0.

Adding this 0 expression to our J(u¢) gives

76 = [ [f,70,0°0) + SO0 )]
+ )\(to).’L‘o — )\(tl)xe(tl)

- / [t @), u @) + N0 ) + MDa, 2°(),w(0)]

to

+ /\(to).’L‘o - )\(tl)xe(tl),

where we used the product rule and the fact that g(t, z¢, u) = L3¢ at all but
finitely many points. Since the maximum of J with respect to the control u
occurs at u*, the derivative of J(u) with respect to e (in the direction h) is
Zero, i.e.,

0= iJ(UE) — lim M
de =0 e—0 €
This gives a limit of an integral expression. A version of the Lebesgue Domi-
nated Convergence Theorem [162, 163, 171] allows us to move the limit (and
thus the derivative) inside the integral. This is due to the compact interval of
integration and the piecewise differentiability of the integrand. Therefore,

e T ——
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d €

e=0

= ] i % [f(t, z€(t), us(t) + N () (2) + Mg (t, z°(t), u“(t) dt]

0

e=0

— P03

e=0

Applying the chain rule to f and g, it follows

b Ozt ous Oxe ox¢ ou®
O=/ [fza—z+fu§+)\'(t)§+)\(t)(gz§ +9u§) dt
. =0 (1.4)
8‘,1;6
= A(t1) 5 )|
e=0

where the arguments of the f;, f., g5, and g, terms are (t,z*(t),u*(t)).
Rearranging the terms in (1.4) gives

0= /tl (fw + )\(t)gz + )\’(t)) 88:1:; (t) + (fu + )\(t)gu)h(t)J dt
to e=0 (15)
- A(tl)%i (t1)

We want to choose the adjoint function to simplify (1.5) by making the coef-
ficients of

oz*
50 (1)

e=0
vanish. Thus, we choose the adjoint function A(t) to satisfy

N(t) = =[Fa(t, z*(t),u* (1)) + M) gz (t, z*(£),u* )] (adjoint equation),
and the boundary condition

A(t1) =0 (transversality condition).

Now (1.5) reduces to

0= /tl (fu(t,x*(t),u*(t)) -I-)\(t)gu(t,x*(t),u*(t))) h(t) dt.

to




12 Opt-é.m.al Control Applied to Biological Models
As this holds for any piecewise continuous variation function A(t), it holds for

h(t) = fu(t, z*(t), u*(t)) + A)gu(t, z*(t), u*(t)).

In this case

0= / | (futt,2*(0), u*(®) + A(t)gu(t,x*(t)’“*(t)))Zdt’

to

which implies the optimality condition

Jult, 3™ (8),u* (£)) + A(t)gu (¢, z*(t),u"(t)) =0 forallty <t<t,.

These equations form a set of necessary conditions that an optimal control
and state must satisfy. In practice, one does not need to rederive the above
equations in this way for a particular problem. In fact, we can generate
the above necessary conditions from the Hamiltonian H, which is defined as
follows,

H(t,z,u, M) = f(t,z,u) + Ag(t,z,u)
= integrand + adjoint * RHS of DE.

We are maximizing H with respect to u at u*, and the above conditions can
be written in terms of the Hamiltonian:

OH
e Oat u* = f, +Ag, =0 (optimality condition),

OH
N = = N =—(fs +Xg2) (adjoint equation),
At1) =0 (transversality condition).

We are given the dynamics of the state equation:

/

OH
' =g(t,x,u) = % z(to) = zp.

1.3 Pontryagin’s Maximum Principle

These conclusions can be extended to a version of Pontryagin’s Maximum
Principle [158].
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THEOREM 1.2

If u*(t) and z*(t) are optimal for problem (1.2), then there ezists a piecewise
differentiable adjoint variable \(t) such that

H(t,z*(t),u(t), A(t)) < H(¢t, (), u" (t), A(?))
for all controls u at each time t, where the Hamiltonian H is
H = f(t,2(t),u®)) + Mt)g(t, z(t), u(t)),

and

OH(t,z*(t), u*(t), A1)
Ox ’

N(t) =~
A(t) =0.

We have already shown with this adjoint and Hamiltonian, H,, = 0 at u* for
each t. Namely, the Hamiltonian has a critical point, in the u variable, aF u* ‘for
each ?. It is not surprising that this critical point is a maximum considering
the optimal control problem. However, the proof of this theorem is quite
technical and difficult, and we omit it here. We refer the interested reader to
Pontryagin’s original text [158] and to Clarke’s book for extensions [35] The
earlier requirement of controls being everywhere equal to either their left or
right limits plays a pivotal role in the proof. Here, we state and prove the
result for a very specific case, for illustrative purposes.

THEOREM 1.3

Suppose that f(t,x,u) and g(t,z,u) are both continuously differentiable fync—
tions in their three arguments and concave in u. Suppose u* is an optimal
control for problem (1.2), with associated state x*, and \ a piecewise differ-
entiable function with A(t) > 0 for all t. Suppose for all tg <t < t;

0= Hu(ta z* (t)’ U*(t)’ )‘(t))

Then for all controls u and each tg <t < t1, we have

H(t,z*(t),u(t), A\(t)) < H(t,z*(t),u*(t), A(t)).

PROOF Fix a control u and a point in time tq < t < ;. Then,
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H(ta* (8),u"(8), M) — H{t, 2" (8), u(t), A1)
= [t @), w @) + Mgt 2" (0),w (1)
— [#6 (), u®) + ABg(t 2 (1), u(e)]

= [#t,2" @0 @) - (2" (1), u(t))]

+ () |9l (1), w (1) — g@x() wﬂ
> (u(8) = u(®)) fult, 2" (£),u" (1) + (w u(t)) gult, 2" (£), u* (1))
= (w(£) — u(t)) Ha(t, " (8), w" (1), (»

The transition from line 3 to line 4 is attained from applying the tangent line
property to f and g, and because A(t) > 0

An identical argument generates the same necessary conditions when the
problem is minimization rather than maximization. In a minimization prob-
lem, we are minimizing the Hamiltonian pointwise, and the inequality in Pon-
tryagin’s Maximum Principle in reversed. Indeed, for a minimization problem
with f, g being convex in u, we can derive

Ht, (1), u(t), M) > H(t,2* (), u" (8), A1)

by the same argument as in Theorem 1.3.

We have converted the problem of finding a control that maximizes (or
minimizes) the objective functional subject to the differential equation and
initial condition, to maximizing the Hamiltonian pointwise with respect to the
control. Thus to find the necessary conditions, we do not need to calculate
the integral in the objective functional, but only use the Hamiltonian. Later,
we will see the usefulness of the property that the Hamiltonian is maximized
pointwise by an optimal control.

We can also check concavity conditions to distinguish between controls that
maximize and those that minimize the objective functional [62]. If

0*d
— <0 atu*,
Ou?

then the problem is maximization, while
0%H
— >0 atu".
Au?

goes with minimization.

We can view our optimal control problem as having two unknowns, u* and
z*, at the start. We have introduced an adjoint variable A, which is similar to
a Lagrange multiplier. It attaches the differential equation information onto
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the maximization of the objective functional. The following is an outline of
how this theory can be applied to solve the simplest problems.

1. Form the Hamiltonian for the problem.

9. Write the adjoint differential equation, transversality boundary condi-
tion, and the optimality condition. Now there are three unknowns, u*,
* and .
H

3. Try to eliminate u* by using the optimality equation H, =0, i.e., solve
for u* in terms of z* and A.

4. Solve the two differential equations for z* and A with two boundary con-
ditions, substituting v* in the differential equations with the expression
for the optimal control from the previous step.

5. After finding the optimal state and adjoint, solve for the optimal control.

If the Hamiltonian is linear in the control variable u, it can be difficult to
solve for u* from the optimality equation; we will treat this case in Chapter 17.
If we can solve for u* from the optimality equation, we are then left with two
unknowns z* and A satisfying two differential equations with two boundary
conditions. We solve that system of differential equations for the optimal state
and adjoint and then obtain the optimal control. We will see in some simple
examples that the system can be solved analytically (by hand) and in other
examples that the system can be solved numerically.

When we are able to solve for the optimal control in terms of z* and X, we
will call that formula for u* the characterization of the optimal control. The
state equations and the adjoint equations together with the characterization
of the optimal control and the boundary conditions are called the optimality
system. For now, let us try to better understand these ideas with a few
examples.

Example 1.1 (from [100])

1
min/ u(t)? dt
0

subject to  z'(t) = z(t) +u(t), z(0) =1, z(1) free.

Can we see what the optimal control should be? The goal of the problem is
to minimize this integral, which does not involve the state. Only the integral
of control (squared) is to be minimized. Therefore, we expect the optimal
control is 0. We verify with the necessary conditions.

We begin by forming the Hamiltonian H

H=u?+ Mz +u).
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The optimality condition is

_on
T du

We see the problem is indeed minimization as

0 =2u+ X\ at u*=>u*=—%)\.

0’H
— =2>0.
ou?
The adjoint equation is given by
OH
)\, = —% =1\ = )\(t) = Ce‘—t,

for some constant ¢. But, the transversality condition is

A)=0=ce'=0=c=0.

Thus, A =0, so that u* = —A/2 = 0. So, z* satisfies 2’ = z and z(0) = 1.

Hence, the optimal solutions are

A=0, u'=0, z*(@)=¢,

and the state function is plotted in Figure 1.6.

)
] 1
Time

FIGURE 1.6: Optimal state for Example 1.1 plotted as a function of time.
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Example 1.2

1
min%/ 3x(t)% + u(t)? dt
“ 0

subject to  z'(t) = z(t) + u(t), z(0) = 1.

The % which appears before the integral will have no effect on the minimiz-
ing control and, thus, no effect on the problem. It is inserted in order to
make the computations slightly neater. You will see how shortly. Also, note
we have omitted the phrase “z(1) free” from the statement of the problem.
This is standard notation, in that a term which is unrestricted is simply not
mentioned. We adopt this convention from now on.

Form the Hamiltonian of the problem
3 1
H =224+ —u? + )+ u
2 2
The optimality condition gives
_OH

O0=—=u+Xatu* = u* ==\
ou

Notice % cancels with the 2 which comes from the square on the control w.

Also, the problem is a minimization problem as

8%H
—=1>0.
Ou? N

We use the Hamiltonian to find a differential equation of the adjoint A,

N(t) = _38—1;1 — “3z—x, A1) =0

Substituting the derived characterization for the control variable u in the
equation for z’, we arrive at

5 -GDE)

The eigenvalues of the coefficient matrix are 2 and —2. Finding the eigenvec-
tors, the equations for £ and X are

(i) t)=c; <_11) e + ¢y (;) e 2,

Using 2(0) = 1 and A(1) = 0, we find ¢; = 3coe™* and ¢y = ﬁ Thus,
using the optimality equation, the optimal solutions are
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3e4 3
* _ 2t —2t
" (t)_Sc—"Jrle T3eti1c
ot (1) = ™ e

=3 111° T 3ediyic

which are illustrated in Figure 1.7.

Time

State
Control

) sl
0 1
Time

FIGURE 1.7: Optimal control and state for Example 1.2.

1.4 Exercises

In the following exercises, write out the necessary conditions for each prob-
lem, then solve the optimality system (unless otherwise stated) to find the
optimal control and state.

Exercise 1.1 Write out the necessary conditions for the following problem
to be treated in Lab 1. Do not attempt to solve the resulting optimality
system.

Basic Optimal Control Problems 19

max /1 Axz(t) — Bu(t)®* dt
v Jo

il
subject to z'(t) = —Em(t)2 + Cu(t), z(0) = xo > —2,
A>0,B>0.

Exercise 1.2 Solve

2
min / tu(t)? + t2z(t) dt
g 1

subject to  z'(t) = —u(t), z(1) = 1.

Exercise 1.3  (from [100]) Solve

max /1 w®a(t) — u(t)? — o(t)? dt

subject to  z'(t) = z(t) + u(t), =(1) = 2.

Exercise 1.4 (from [100]) Solve

u

min /01 z(t)? + z(t) +u(t)? + u(t) dt

subject to  z'(t) = u(t), £(0) = 0.

Exercise 1.5 Let y(t) =t + 1. Solve

min % /0 (x(t) — y(1)* +ult)?dt

u

subject to  '(t) = u(t), z(0) = L.

Exercise 1.6 Formulate an optimal control problem for a population with
an Allee effect growth term, in which the control is the proportion of the
population to be harvested. This means that differential equation has an
Allee effect term. Choose an objective functional which maximizes revenue
from the harvesting while minimizing the cost of harvesting. The revenue is




