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Preface

The major part of this book is based on lecture notes for the DTU course
02611 Optimization and Data Fitting. The notes were developed by
Kaj Madsen and Hans Bruun Nielsen together with their former IMM
colleague Ole Tingleff, Post Doc Kristian Jonasson and PhD student
Poul Erik Frandsen.

We are grateful to the co-authors of the lecture notes and to the many
students in Courses 02611 and 02610, who gave us constructive criticism
that helped improve the presentation.

The reader is assumed to have mathematical skills corresponding to
introductory university courses in calculus and linear algebra. Some of
the nontrivial, but necessary concepts are reviewed in Appendix A.

The book is organized as follows: Chapter 1 introduces some basic
concepts, that are used throughout the book. Chapters 2 – 4 deal with
unconstrained optimization of general functions, with Chapter 3 concen-
trating on Newton–type methods, and Chapter 4 is a short introduction
to direct search methods.

Chapters 5 – 7 discuss data fitting. In Chapters 5 – 6 we look at
least squares methods for linear and nonlinear fitting models, including
an introduction to statistical aspects, and special methods for fitting
with polynomials and cubic splines. Chapter 7 deals with fitting in the
L∞ norm and robust fitting by means of the L1 norm and the Huber
estimator.

Implementations of some of the algorithms discussed in the book are
available as follows,
Fortran and C: http://www2.imm.dtu.dk/∼km/F-pak.html

Matlab: http://www2.imm.dtu.dk/∼hbn/immoptibox

Kaj Madsen, Hans Bruun Nielsen

DTU Informatics – IMM
Technical University of Denmark
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Chapter 1

Introduction

Optimization plays an important role in many branches of science and
applications: economics, operations research, network analysis, optimal
design of mechanical or electrical systems, to mention a few. In this
book we shall discuss numerical methods for the solution of so-called
continuous optimization, where the problem is formulated in terms of
a real function of several real variables, and we want to find a set of
arguments that give a minimal function value. Such a problem may
arise from parameter estimation, and we take data fitting as a special
case of this.

Definition 1.1. The optimization problem. Let f : R
n 7→ R,

Find x̂ = argmin
x ∈ R

n
f(x) .

The function f is called the objective function or cost function and x̂ is
the minimizer .

The definition in terms of minimization is not en essential restriction.
A maximizer of a function f is clearly a minimizer for −f .

Example 1.1. In this example we consider functions of one variable. The
function

f(x) = (x− x̂)2

has a unique minimizer, x̂, see Figure 1.1.
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Figure 1.1. y = (x− x̂)
2
.

One minimizer.
x̂ x

y

The function f(x) = −2 cos(x − x̂) has infinitely many minimizers:
x = x̂+ 2pπ , where p is an integer; see Figure 1.2.

x̂ x

y

Figure 1.2. y = −2 cos(x − x̂). Many minimizers.

The function f(x) = 0.015(x − x̂)2 − 2 cos(x − x̂) has a unique global
minimizer , x̂. Besides that, it also has several so-called local minimizers,
each giving the minimal function value inside a certain region, see Fig-
ure 1.3.

x̂ x

y

Figure 1.3. y = 0.015(x− x̂)2 − 2 cos(x− x̂).
One global minimizer and many local minimizers.

The ideal situation for optimization computations is that the objec-
tive function has a unique minimizer, the global minimizer . In some
cases f has several (or even infinitely many) minimizers. In such prob-
lems it may be sufficient to find one of these minimizers. In many
applications the objective function has a global minimizer and several
local minimizers. It is difficult to develop methods which can find the
global minimizer with certainty in this situation. See, for instance, [8]
about a method for global optimization.

In the other parts of the book we concentrate on methods that can
find a local minimizer for the objective function. When such a point
has been found, we do not know whether it is a global minimizer or one
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of the local minimizers; we cannot even be sure that the algorithm will
find the local minimizer closest to the starting point. In order to explore
several local minimizers we can try several runs with different starting
points, or better still examine intermediate results produced by a global
minimizer.

We end this section with an example which demonstrates that opti-
mization methods based on too primitive ideas may be dangerous.

Example 1.2. We want the global minimizer of the function

f(x) = (x1 + x2 − 2)
2

+ 100(x1 − x2)
2
.

The idea (which we should not use) is the following:

“Make a series of iterations from a starting point x0. In each iteration
keep one of the variables fixed and seek a value of the other variable so as
to minimize the f -value”. Figure 1.4 shows the level curves or contours
of f , ie curves along which f is constant. We also show the first few
iterations.

x0

(1)

(2)

Figure 1.4. The method of Alternating Variables
fails to determine the minimizer of a quadratic.

After some iterations the steps begin to decrease rapidly in size. They can
become so small that they do not change the x-values, because they are
represented with finite precision in the computer, and the progress stops
completely, maybe far away from the solution. We say that the iterations
are caught in Stiefel’s cage.

The “method” is called the method of alternating variables or coordinate
search and it is a classical example of a method that should be avoided.
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1.1. Basic concepts

We need to be able to talk about the “length” of a vector v ∈R
n, for

instance the difference x− x̂ between the solution x̂ and an approxima-
tion x to it. For that purpose we use a norm ‖v‖. We make use of the
following three norms,

‖v‖1 = |v1| + · · · |vn| ,

‖v‖2 =
(
|v1|2 + · · · |vn|2

)1/2
,

‖v‖∞ = max {|v1|, . . . |vn|} .

(1.2)

Unless otherwise specified ‖v‖ without index on the norm is used as
shorthand for the 2-norm: ‖v‖ = ‖v‖2.

Next, we define the important concept of a local minimizer for the
function f : This is an argument vector that gives the smallest function
value inside a certain region, defined by ε:

Definition 1.3. Local minimizer.
x̂ is a local minimizer for f : R

n 7→ R if

f(x̂) ≤ f(x) for ‖x̂ − x‖ ≤ ε (ε > 0).

Except for the problems discussed in Chapter 5 we deal with nonlinear
objective functions f : R

n 7→ R. In general we assume that f has
continuous partial derivatives of second order (although we do not always
make use of them in the methods). Throughout the book we shall make
frequent use of the vector and matrix defined in Definitions 1.4 and 1.5
below.

Definition 1.4. Gradient. Let f : R
n 7→ R be differentiable with

respect to each component of its argument. The gradient of f is
the vector

∇f(x) ≡




∂f

∂x1
(x)

...

∂f

∂xn
(x)




.



1.1. Basic concepts 5

Definition 1.5. Hessian. Let f : R
n 7→ R be twice differentiable

with respect to each component of its argument. The Hessian of f
is the matrix

∇2f(x) ≡




∂2f

∂x1∂x1
(x) · · · ∂2f

∂x1∂xn
(x)

...
...

∂2f

∂xn∂x1
(x) · · · ∂2f

∂xn∂xn
(x)




.

Note that the Hessian ∇2f is a symmetric matrix.
The gradient and Hessian are used in Theorem 1.6, which is well

known from calculus. It tells about approximations to the value of f
when you change the argument from x to a neighbouring point x+h.

Theorem 1.6. 1st and 2nd order Taylor expansions.

If f : R
n 7→ R has continuous partial derivatives of second order,

then
f(x+h) = f(x) + hT ∇f(x) +O(‖h‖2) .

If f has continuous partial derivatives of third order, then

f(x+h) = f(x) + hT ∇f(x) + 1
2 hT ∇2f(x)h +O(‖h‖3) ,

∇f(x+h) = ∇f(x) + ∇2f(x)h + η , ‖η‖ = O(‖h‖2) .

The notation e(h) = O(‖h‖p) means that there are positive numbers
K1 and δ such that |e(h)| ≤ K1 · ‖h‖p for all ‖h‖ ≤ δ. In practice it is
often equivalent to |e(h)| ≃ K2 · ‖h‖p for h sufficiently small; here K2

is yet another positive constant.
We also use the “Big–O” notation in connection with computational

complexity. When we say that an algorithm has complexity O(nr) we
mean that when it is applied to a problem with n variables, it uses a
number of floating point operations of the form

C0n
r + C1n

r−1 + · · · +Cr ,

where r is a positive integer. When n is large, the first term dominates,
and – except if memory cache problems have dominating influence –
you will normally see that if you double n, it will take roughly 2r times
longer to execute.

The following theorem deals with a special type of functions that play
an important role in optimization algorithms for nonlinear functions.
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Theorem 1.7. Let A∈R
n×n, b∈R

n and c∈R be given. The
quadratic

f(x) = 1
2 xT A x + bT x + c

has the gradient and Hessian

∇f(x) = 1
2(A + AT )x + b , ∇2f(x) = 1

2(A + AT ) .

If A is symmetric, then these expression simplify to

∇f(x) = Ax + b , ∇2f(x) = A .

Proof. Obviously

f(x) = 1
2

n∑

r=1

xr

(
n∑

s=1

arsxs

)
+

n∑

r=1

brxr + c ,

and well-known rules for differentiation and the definition of inner
products between vectors in R

n give

∂f

∂xi
= 1

2

(
n∑

s=1

aisxs +
n∑

r=1

xrari

)
+ bi = 1

2

(
Ai,:x + AT

:,ix
)
+ bi .

This is the ith element in the vector ∇f(x), and the expression for
the whole vector follows.
Proceeding with the differentiation we see that the (i, j)th element
in the Hessian is

∂2f

∂xi∂xj
= 1

2 (aij + aji) .

This verifies the expression for ∇2f(x).

If A is symmetric, then 1
2 (A+AT ) = A, and this finishes the proof.

�

All optimization methods for general nonlinear functions are itera-
tive: From a starting point x0 the method produces a series of vectors
x0, x1, x2, . . . , which (hopefully) converge towards x̂, a local minimizer
for the given objective function f , ie

xk → x̂ for k → ∞ .

This is equivalent to the condition

ek → 0 for k → ∞ ,

where {ek} is the error
ek ≡ xk − x̂ .
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We cannot be sure that the errors decrease from the start, but the
condition for convergence is that after sufficiently many iterations, K,
we have decrease,

‖ek+1‖ < ‖ek‖ for k > K .

For some of the methods we can give results for how fast the errors
decrease when we are sufficiently close to x̂. We distinguish between

Linear convergence : ‖ek+1‖ ≤ c1‖ek‖ , 0 < c1 < 1 ,

Quadratic convergence : ‖ek+1‖ ≤ c2‖ek‖2 , c2 > 0 ,

Superlinear convergence : ‖ek+1‖/‖ek‖ → 0 for k → ∞ .

(1.8)

Example 1.3. Consider two iterative methods, one with linear and one with
quadratic convergence. At a given step they have both achieved the result
with an accuracy of 3 decimals: ‖ek‖ ≤ 0.0005. Further, let the two
methods have c1 = c2 = 0.5 in (1.8).

If we want an accuracy of 12 decimals, the iteration with quadratic con-
vergence will only need 2 more steps, whereas the iteration with linear
convergence will need about 30 more steps: 0.530 ≃ 10−9.

1.2. Convexity

Finally we introduce the concept of convexity . This is essential for a
theorem on uniqueness of a global minimizer and also for some special
methods.

A set D is convex if the line segment between two arbitrary points in
the set is contained in the set:

Definition 1.9. Convexity of a set. The set D ⊆ R
n is convex

if the following holds for arbitrary x,y ∈D ,

θx + (1−θ)y ∈ D for all θ ∈ [0, 1] .
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convex non-convex

Figure 1.5. A convex and a non-convex set in R
2.

Convexity of a function is defined as follows,

Definition 1.10. Convexity of a function. Let D⊆R
n be con-

vex. The function f is convex on D if the following holds for arbi-
trary x,y ∈D,

f(θx + (1−θ)y) ≤ θf(x) + (1−θ)f(y) for all θ ∈ [0, 1] .

f is strictly convex on D if

f(θx + (1−θ)y) < θf(x) + (1−θ)f(y) for all θ ∈]0, 1[ .

The figure shows a strictly

convex function between two

points x,y ∈D. The definition

says that f(xθ), with

xθ ≡ θx + (1−θ)y ,

is below the secant between the

points
(
0, f(x)

)
and

(
1, f(y)

)
,

and this holds for all choices of

x and y in D.

f(x)
f(y)

f(xθ)

0 1 θ

Figure 1.6. A strictly
convex function.

Definition 1.11. Concavity of a function. Assume that
D ⊆ R

n is convex. The function f is concave/strictly concave on
D if −f is convex/strictly convex on D.
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Definition 1.12. Convexity at a point. The function f is
convex on D if there exists ε> 0 such that for arbitrary y ∈D with
‖x − y‖<ǫ,

f(θx + (1−θ)y) ≤ θf(x) + (1−θ)f(y) for all θ ∈ [0, 1] .

f is strictly convex at x∈D if

f(θx + (1−θ)y) < θf(x) + (1−θ)f(y) for all θ ∈]0, 1[ .

It is easy to prove the following results:

Theorem 1.13. If D⊆R
n is convex and f is twice differentiable

on D, then

1◦ f is convex on D
⇔ ∇2f(x) is positive semidefinite for all x∈D.

2◦ f is strictly convex on D if ∇2f(x) is positive definite for all
x∈D.

Theorem 1.14. First sufficient condition. If D is bounded and
convex and if f is convex on D, then

f has a unique global minimizer in D .

Theorem 1.15. If f is twice differentiable at x∈D, then

1◦ f is convex at x∈D
⇔ ∇2f(x) is positive semidefinite.

2◦ f is strictly convex at x∈D if ∇2f(x) is positive definite.
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Chapter 2

Unconstrained
Optimization

This chapter deals with methods for computing a local minimizer x̂

of a function f : R
n 7→ R and starts by giving conditions that x̂ must

satisfy. Next we discuss the general framework of a good optimization
algorithm, including some basic tools such as line search and the trust
region idea, which are also applicable in special cases of f , discussed in
later chapters.

2.1. Conditions for a local minimizer

A local minimizer for f is an argument vector x̂ such that f(x̂) ≤ f(x)
for every x in some region around x̂, cf Definition 1.3.

We assume that f has continuous partial derivatives of second order.
The first order Taylor expansion for a function of several variables gives
us an approximation to the function value at a point x+h close to x, cf
Theorem 1.6,

f(x + h) = f(x) + hT ∇f(x) +O‖h‖2 , (2.1)

where ∇f(x) is the gradient of f , cf Definition 1.4. If the point x is a
local minimizer it is not possible to find an h so that f(x+h) < f(x)
when ‖h‖ is small. This together with (2.1) is the basis of the following
theorem.
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Theorem 2.2. Necessary condition for a local minimum.
If x̂ is a local minimizer for f : R

n 7→ R, then

∇f(x̂) = 0 .

The local minimizers are not the only points with ∇f(x) = 0. Such
points have a special name:

Definition 2.3. Stationary point. If ∇f(xs) = 0, then xs is
said to be a stationary point for f .

The stationary points are the local maximizers, the local minimizers
and “the rest”. To distinguish between them, we need one extra term
in the Taylor expansion. If f has continuous third derivatives, then

f(x + h) = f(x) + hT ∇f(x) + 1
2 hT ∇2f(x)h +O‖h‖3 , (2.4)

where the Hessian ∇2f(x) of the function f is a matrix containing the
second partial derivatives of f , cf Definition 1.5. For a stationary point
(2.4) takes the form

f(xs + h) = f(xs) + 1
2 hT ∇2f(xs) h +O‖h‖3 .

If the second term is positive for all h we say that the matrix ∇2f(xs) is
positive definite1). Further, we can take ‖h‖ so small that the remainder
term is negligible, and it follows that xs is a local minimizer. Thus we
have (almost) proved the following theorem.

Theorem 2.5. Second order necessary condition.
If x̂ is a local minimizer, then ∇2f(x̂) is positive semidefinite.

Sufficient condition for a local minimum.
Assume that xs is a stationary point and that ∇2f(xs) is positive
definite. Then xs is a local minimizer.

The Taylor expansion (2.4) is also used in the proof of the following
corollary,

Corollary 2.6. Assume that xs is a stationary point and that
∇2f(x) is positive semidefinite for x in a neighbourhood of xs.
Then xs is a local minimizer.

1) Positive definite matrices are discussed in Appendix A.2, which also gives tools
for checking definiteness.
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Now we are ready for the following corollary which can be used to
characterize a stationary point. Again the Taylor expansion (2.4) is used
in the proof.

Corollary 2.7. Assume that xs is a stationary point and that
∇2f(xs) 6=0. Then

∇2f(xs) xs

positive definite local minimizer
positive semidefinite local minimizer or a saddle point

negative definite local maximizer
negative semidefinite local maximizer or a saddle point

indefinite saddle point

A matrix is indefinite if it is neither definite nor semidefinite. If the
Hessian ∇2f(xs)= 0, then we need higher order terms in the Taylor
expansion in order to find the local minimizers among the stationary
points.

Example 2.1. We consider functions of two variables. Below we show the
variation of the function value near a local minimizer (Figure 2.1a), a
local maximizer (Figure 2.1b) and a saddle point (Figure 2.1c). It is a
characteristic of a saddle point that there exist two lines through xs with
the property that the variation of the f -value looks like a local minimum
along one of the lines, and like a local maximum along the other line.

a) minimum b) maximum

Figure 2.1. x∈R
2.

Surfaces z = f(x)
near a stationary point.

c) saddle point

The contours of our function look approximately like concentric ellipses
near a local maximizer or a local minimizer (Figure 2.2a), whereas the
hyperbolas shown in Figure 2.2b correspond to a saddle point.
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x̂

(1)

(2)

a) maximum or minimum

x̂

(1)

(2)

b) saddle point

Figure 2.2. Contours of a function near a stationary point.

2.2. Descent methods

As discussed in Section 1.1 we have to use an iterative method to solve
a nonlinear optimization problem: From a starting point x0 the method
produces a series of vectors x0, x1, x2, . . . , which in most cases con-
verges under certain mild conditions. We want the series to converge
towards x̂, a local minimizer for the given objective function f :Rn 7→R,
ie

xk → x̂ for k → ∞ .

In (almost) all the methods there are measures which enforce the
descending property

f(xk+1) < f(xk) . (2.8)

This prevents convergence to a maximizer and also makes it less probable
that we get convergence to a saddle point. We talk about the global
convergence properties of a method, ie convergence when the iteration
process starts at a point x0, which is not close to a local minimizer x̂.
We want our method to produce iterates that move steadily towards a
neighbourhood of x̂. For instance, there are methods for which it is
possible to prove that any accumulation point (ie limit of a subseries) of
{xk} is a stationary point (Definition 2.3), ie the gradients tend to zero:

∇f(xk) → 0 for k → ∞ .

This does not exclude convergence to a saddle point or even a maximizer,
but the descending property (2.8) prevents this in practice. In this
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“global part” of the iteration we are satisfied if the current errors do not
increase except for the very first steps. The requirement is

‖xk+1 − x̂‖ < ‖xk − x̂‖ for k > K .

In the final stages of the iteration where the xk are close to x̂ we expect
faster convergence. The local convergence results tell us how quickly we
can get a result which agrees with x̂ to a desired accuracy. See (1.8)
about the three types of convergence: linear, quadratic and superlinear.

2.2.1. Fundamental structure of a descent method

Example 2.2. This is a 2-dimensional minimization example, illustrated on
the front page. A tourist has lost his way in a hilly country. It is a foggy
day so he cannot see far and he has no map. He knows that his rescue is
at the bottom of a nearby valley. As tools he has a compass and his sense
of balance, which can tell him about the local slope of the ground.

In order not to walk in circles he decides to use straight strides, ie with
constant compass bearing. From what his feet tell him about the local
slope he chooses a direction and walks in that direction until his feet tell
him that he is on an uphill slope.

Now he has to decide on a new direction and he starts his next stride. Let
us hope that he reaches his goal in the end.

The pattern of events in this example is the basis of the algorithms
for descent methods, see Algorithm 2.9 below.

Algorithm 2.9. Descent method

Given starting point x0

begin
k := 0; x := x[0]; found := false {Initialise}
while (not found) and (k < kmax)

hd := search direction(x) {From x and downhill}
if (no such hd exists)

found := true {x is stationary}
else

Find “step length” α { see below}
x := x + αhd; k := k+1 {next iterate}
found := update(found) {Stopping criteria}

end
end

end
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The search direction hd must be a descent direction, see Section 2.2.2.
Then we are able to gain a smaller value of f(x) by choosing an appropri-
ate walking distance, and thus we can satisfy the descending condition
(2.8). In Sections 2.3 – 2.4 we introduce different methods for choosing
the appropriate step length, ie α in Algorithm 2.9.

Typically the stopping criteria include two or more from the following
list, and the process stops if one of the chosen criteria is satisfied.

1◦ : ‖xk+1−xk‖ ≤ ε1 ,

2◦ : f(xk)−f(xk+1) ≤ ε2 ,

3◦ : ‖∇f(xk)‖∞ ≤ ε3 ,

4◦ : k > kmax .

(2.10)

The first two criteria are computable approximations to what we really
want, namely that the current error is sufficiently small,

‖xk − x̂‖ ≤ δ1 ,

or that the current value of f(x) is sufficiently close to the minimal
value,

f(xk) − f(x̂) ≤ δ2 .

Both conditions reflect the convergence xk → x̂.
Condition 3◦ reflects that ∇f(xk)→ 0 for k→∞. We must emphasize

that even if one of the conditions 1◦ – 3◦ in (2.10) is satisfied with a
small ε-value, we cannot be sure that ‖xk − x̂‖ or f(xk)−f(x̂) is small.
Condition 4◦ is a must in any iterative algorithm. It acts as a “safe
guard” against an infinite loop that might result if there were errors in
the implementation of f or ∇f , or if for instance ε1 or ε3 had been
chosen so small that rounding errors prevent the other conditions from
being satisfied.

The first criterion is often split into two

1a) : ‖xk+1−xk‖ ≤ ε1a ,

1b) : ‖xk+1−xk‖ ≤ ε1r‖xk+1‖ ,

with the purpose that if x̂ is small, then we want to find it with the
absolute accuracy ε1a, while we are satisfied with relative accuracy ε1r
if x̂ is large. Sometimes these two criteria are combined into one,

1⋄ : ‖xk+1−xk‖ ≤ ε̃1(ε̃1 + ‖xk+1‖) . (2.11)
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This gives a gradual change from ε1a = ε̃21 when x̂ is close to 0, to
ε1r = ε̃1 when x̂ is large.

2.2.2. Descent directions

From the current point x we wish to find a direction which brings us
downhill, a descent direction. This means that if we take a small step
in that direction we get to a point with a smaller function value.

Example 2.3. Let us return to our tourist who is lost in the fog in a hilly
country. By experimenting with his compass he can find out that “half”
the compass bearings give strides that start uphill and that the “other
half” gives strides that start downhill. Between the two halves are two
strides which start off going neither uphill or downhill. These form the
tangent to the level curve corresponding to his position.

The Taylor expansion (2.1) gives us a first order approximation to
the function value in a neighbouring point to x, in direction h:

f(x+αh) = f(x) + αhT ∇f(x) +O(α2) , with α > 0 .

If α is not too large, then the first two terms will dominate over the last:

f(x + αh) ≃ f(x) + αhT ∇f(x) .

The sign of the term αhT ∇f(x) decides whether we start off uphill
or downhill. In the space R

n we consider a hyperplane H through the
current point and orthogonal to −∇f(x),

H = {x + h | hT ∇f(x) = 0} .

This hyperplane divides the
space into an “uphill” half
space and a “downhill” half
space. The latter is the half
space that we want; it has
the vector −∇f(x) pointing
into it. Figure 2.3 gives the
situation in R

2, where the
hyperplane H is just a line.

6
- (1)

(2)

HHHHHHHHHHH

H
�
�
�
�
�
���

�������1

.
x

−∇f(x)

h
θ

Figure 2.3. R
2 divided into a

“downhill” and an“uphill” half space.

We now define a descent direction. This is a “downhill” direction, ie,
it is inside the “good” half space:
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Definition 2.12. Descent direction.

h is a descent direction from x if hT ∇f(x) < 0 .

The vector h in Figure 2.3 is a descent direction. The angle θ between
h and the negative gradient is

θ = ∠(h,−∇f(x)) with cos θ =
−hT ∇f(x)

‖h‖ · ‖∇f(x)‖ . (2.13)

We state a condition on this angle,

Definition 2.14. Absolute descent method.

This is a method, where the search directions hk satisfy

θ <
π

2
− µ

for all k, with µ > 0 independent of k.

The discussion above is based on the equivalence between a vector in
R

2 and a geometric vector in the plane, and it is easily seen to be valid
also in R

3. If the dimension n is larger than 3, we call θ the “pseudo
angle” between h and −∇f(x). In this way we can use (2.13) and
Definition 2.14 for all n≥ 2. The restriction that µ must be constant in
all the steps is necessary for the global convergence result which we give
in the next section.

The following theorem will be used several times in the remainder of
the book.

Theorem 2.15. If ∇f(x) 6=0 and B is a symmetric, positive def-
inite matrix, then

h́ = −B∇f(x) and h̀ = −B−1∇f(x)

are descent directions.

Proof. A positive definite matrix B ∈R
n×n satisfies

uT B u > 0 for all u∈R
n, u 6=0 .

If we take u= h̃ and exploit the symmetry of B, we get

h́T ∇f(x) = −∇f(x)T BT ∇f(x) = −∇f(x)T B ∇f(x) < 0 .

With u= h̀ we get

h̀T ∇f(x) = h̀T (−B h̀ = −h̀T B h̀ < 0 .

Thus, the condition in Definition 2.12 is satisfied in both cases. �
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2.3. Line search

Once a descent direction has been determined, it must be decided how
long the step in this direction should be. In this section we shall intro-
duce the idea of line search. We study the variation of the objective
function f along the direction h from the current x,

ϕ(α) = f(x+αh), with fixed x and h . (2.16)

Figure 2.4 shows an example of the variation of ϕ(α) when h is a descent
direction. The obvious idea is to use what is known as exact line search:
Determine the step as α = αe, the local minimizer of ϕ shown in the
figure.

α

y

y = ϕ(0)
y = ϕ(α)

αe

Figure 2.4. Variation of the cost function along the search line.

Often, however, we are not only given h, but also a guess on α, for
instance α = 1, and it might be wasteful to spend a lot of function
evaluations in order to determine the local minimum in the direction
given by the fixed h. Experience shows that in general it is better to
use soft line search, which we shall describe now; we return to exact line
search in Section 2.3.2.

First we look at the slope of ϕ. Applying well-known rules of differ-
entiations to the function ϕ defined by (2.16) we get

dϕ

dα
=

∂f

∂x1

dx1

dα
+ · · · + ∂f

∂xn

dxn

dα
,

which is equivalent to

ϕ′(α) = hT ∇f(x+αh) . (2.17)

This means that
ϕ′(0) = hT ∇f(x) < 0 ,
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since h is a descent direction, cf Definition 2.12. Therefore, if α> 0
is very small, we are guaranteed to get to a point that satisfies the
descending condition (2.8), but we should guard against the step being
so short that the decrease in function value is unnecessarily small. On
the other hand, the figure shows that it may happen that ϕ(α) > ϕ(0)
if we take α too large.

The aim of soft line search is to find a “step length” αs such that we
get a useful decrease in the value of the cost function. Figure 2.5 shows
that in general there will be an interval of acceptable αs-values. This
interval is defined by the conditions

1◦ : ϕ(αs) ≤ λ(αs) = ϕ(0) + β1 ϕ
′(0) · αs ,

2◦ : ϕ′(αs) ≥ β2ϕ
′(0) ,

(2.18)

where 0<β1< 0.5 and β1<β2< 1. Often β1 is chosen very small, for
instance β1 = 10−3 and β2 is close to 1, for instance β2 = 0.99.

y

y = ϕ(0)
y = ϕ(α)

α

y = λ(α)

acceptable points

Figure 2.5. Acceptable points according to conditions (2.18).

Descent methods with line search governed by (2.18) are normally
convergent; see Theorem 2.19 below.

A possible outcome is that the method finds a stationary point (xk

with ∇f(xk)=0) and then it stops. Another possibility is that f(x)
is not bounded from below for x in the level set {x | f(x)<f(x0)}
and the method may “fall into the hole”. If neither of these occur,
the method converges towards a stationary point. The method being a
descent method often makes it converge towards a point which is not
only a stationary point but also a local minimizer.



2.3. Line search 21

Theorem 2.19. Consider an absolute descent method following
Algorithm 2.9 with search directions that satisfy Definition 2.14
and with line search controlled by (2.18).

If ∇f(x) exists and is uniformly continuous on the level set
{x | f(x) < f(x0)}, then for k → ∞ :

either ∇f(xk) = 0 for some k ,

or f(xk) → −∞ ,

or ∇f(xk) → 0 .

Proof. See [19, pp 30–33]. �

2.3.1. An algorithm for soft line search

Many researchers in optimization have proved their inventiveness by
producing new line search methods or modifications to known methods.
We shall present a useful combination of ideas with different origin.

The purpose of the algorithm is to find αs, an acceptable argument
for the function

ϕ(α) = f(x + αh) .

The acceptability is decided by the criteria (2.18), which express the
demands that αs must be sufficiently small to give a useful decrease in
the objective function, and sufficiently large to ensure that we have left
the starting tangent of the curve y = ϕ(α) for α ≥ 0, cf Figure 2.3.

The algorithm has two parts. First we find an interval [a, b] that
contains acceptable points, see Figure 2.6.

Figure 2.6. Interval [a, b]
containing acceptable points.

y

y = ϕ(0)
y = ϕ(α)

α

y = λ(α)

acceptable pointsa b
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In the second part of the algorithm we successively reduce the inter-
val: We find a point α in the strict interior of [a, b]. If both conditions
in (2.18) are satisfied by this α-value, then we are finished (αs =α).
Otherwise, the reduced interval is either [a, b] := [a, α] or [a, b] := [α, b],
where the choice is made so that the reduced [a, b] contains acceptable
points.

Algorithm 2.20. Soft line search

begin
α := 0; k := 0;
if ϕ′(0) < 0 {1◦}
a := 0; b := min{1, αmax}; stop := false {2◦}
while not stop and k < kmax

k := k+1
if ϕ(b) < λ(b) {3◦}
a := b
if ϕ′(b) < β2ϕ

′(0) and b < αmax {4◦}
b := min{2b, αmax}

else
stop := true

elseif a = 0 and ϕ′(b) < 0 {5◦}
b := b/10

else
stop := true

end
α := b; stop :=

(
a > 0 and ϕ′(b) ≥ β2ϕ

′(0)
)

or
(
b ≥ αmax and ϕ′(b) < β2ϕ

′(0)
) {6◦}

while not stop and k < kmax

k := k+1; Refine α and [a, b] {7◦}
stop := ϕ(α) ≤ λ(α) and ϕ′(α) ≥ β2ϕ

′(0)
end
if ϕ(α) ≥ ϕ(0) {8◦}
α := 0

end

We have the following remarks to Algorithm 2.20.

1◦ If x is a stationary point (∇f(x)= 0 ⇒ ϕ′(0)= 0) or if h is not
downhill, then we do not wish to move, and return α= 0.
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2◦ The initial choice b= 1 is used because in many optimization meth-
ods (for instance the Newton-type methods in Chapter 3) α= 1 is a
very good guess in the final iterations. The upper bound αmax must
be supplied by the user. It acts as a guard against overflow if f is
unbounded.

3◦ The value α = b satisfies condition 1◦ in (2.18), and we shall use it
as lower bound for the further search.

4◦ Condition 2◦ in (2.18) is not satisfied, but we can increase the right
hand end of the interval [a, b]. If αmax is sufficiently large, then
the series of b-values is 1, 2, 4, . . ., corresponding to an “expansion
factor” of 2. Other factors could be used.

5◦ This situation occurs if b is to the right of a maximum of ϕ(α). We
know that ϕ′(0)< 0, and by sufficient reduction of b we can get to the
left of the maximum. It should be noted that we cannot guarantee
that the algorithm finds the smallest minimizer of ϕ in case there
are several minimizers in [0, αmax].

6◦ Initialization for second part of the algorithm, if necessary. If α= b
satisfies both conditions in (2.18), or if αmax is so small that b is to
the left of the set of acceptable points in Figure 2.6, then we are
finished.

7◦ See Algorithm 2.21 below.

8◦ The algorithm may have stopped abnormally, for instance because
we have used all the allowed kmax function evaluations. If the current
value of α does not decrease the objective function, then we return
α= 0, cf 1◦.

The refinement can be made by the following Algorithm 2.21. The
input is an interval [a, b] which we know contains acceptable points, and
the output is an α found by interpolation. We want to be sure that the
intervals have strictly decreasing widths, so we only accept the new α
if it is inside [a+d, b−d], where d= 1

10 (b − a). The α splits [a, b] into
two subintervals, and we also return the subinterval which must contain
acceptable points.
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Algorithm 2.21. Refine

begin
D := b− a; c :=

(
ϕ(b) − ϕ(a) −D ∗ ϕ′(a)

)
/D2 {9◦}

if c > 0
α := a− ϕ′(a)/(2c)
α := min

{
max{α, a+0.1D}, b−0.1D}

}
{10◦}

else
α := (a+ b)/2

if ϕ(α) < λ(α) {11◦}
a := α

else
b := α

end

We have the following remarks to this algorithm.

9◦ The second degree polynomial

ψ(t) = ϕ(a) + ϕ′(a) · (t−a) + c · (t−a)2

satisfies ψ(a)=ϕ(a), ψ′(a)=ϕ′(a) and ψ(b)=ϕ(b). If c> 0, then ψ
has a minimum, and we let α be the minimizer. Otherwise we take
α as the midpoint of [a, b].

10◦ Ensure that α is in the middle 80% of the interval

11◦ If ϕ(α) is sufficiently small, then the right hand part of [a, b] contain
points that satisfy both of the constraints (2.18). Otherwise, [α, b]
is sure to contain acceptable points.

Finally, we give some remarks about the implementation of the algo-
rithm: The function and slope values are computed as

ϕ(α) = f(x+αh), ϕ′(α) = hT ∇f(x+αh) .

The computation of f and ∇f is the “expensive” part of the line search.
Therefore, the function and slope values should be stored in auxiliary
variables for use in acceptance criteria and elsewhere, and the implemen-
tation should return the value of the objective function and its gradient
to the calling programme, a descent method. They will be useful as
starting function value and for the starting slope in the next line search
(the next iteration). We shall use the formulation

xnew = line search(x,h) (2.22)

to denote the result x+αh of a line search from x in the direction h.
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2.3.2. Exact line search

An algorithm for exact line search produces a “step length” which is
sufficiently close to the true result, αs ≃ αe with

αe ≡ argminα≥0 ϕ(α) . (2.23)

The algorithm is similar to the soft line search in Algorithm 2.20.
The main differences are that the updating of a is moved from the line
before remark 4◦ to the line after this condition, and in the refinement
loop the expression for stop is changed to

stop :=
(
|ϕ′(α)| ≤ τ ∗ |ϕ′(0)|

)
or

(
b−a ≤ ε

)
. (2.24)

The parameters τ and ε indicate the level of errors tolerated; both should
be small, positive numbers.

An advantage of an exact line search is that (in theory at least) it can
produce its results exactly, and this is needed in some theoretical con-
vergence results concerning conjugate gradient methods, see Section 2.7.

The exact minimizer, as defined by (2.23), has ϕ′(αe)= 0. From (2.17),
ϕ′(α) = hT ∇f((x+αh), we see that either ∇f(x+αeh)= 0, which is a
perfect result (we have found a stationary point for f), or

∇f(x+αeh) ⊥ h . (2.25)

This shows that the exact line search will stop at a point where the local
gradient is orthogonal to the search direction.

Example 2.4. A “divine power” with a radar set follows the movements of
our wayward tourist. He has decided to continue in a given direction,
until his feet tell him that he starts to go uphill. The ”divine power” can
see that he stops where the given direction is tangent to a local contour.
This is equivalent to the orthogonality formulated in (2.25).

Figure 2.7. An exact line search
stops at y = x+αeh, where the
local gradient is orthogonal to
the search direction.

(1)

(2)

x

h

y

−∇f(y)
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In the early days of optimization exact line search was dominant.
Now, soft line search is used more and more, and we rarely see new
methods presented which require exact line search.

An advantage of soft line search over exact line search is that it is
the faster of the two. If the first guess on the step length is a rough
approximation to the minimizer in the given direction, the line search
will terminate immediately if some mild criteria are satisfied. The result
of exact line search is normally a good approximation to the result, and
this can make descent methods with exact line search find the local
minimizer in fewer iterations than what is used by a descent method
with soft line search. However, the extra function evaluations spent in
each line search often makes the descent method with exact line search
a loser.

If we are at the start of the iteration process with a descent method,
where x is far from the solution x̂, it does not matter much that the
result of the soft line search is only a rough approximation to the result;
this is another point in favour of the soft line search.

2.4. Descent methods with trust region

The methods in this chapter produce series of steps leading from the
starting point to the final result, we hope. Generally the directions of
the steps are determined by the properties of f(x) at the current iterate.
Similar considerations lead us to the trust region methods, where the
iteration steps are determined from the properties of a model of the
objective function inside a given region. The size of the region is modified
during the iteration.

In the methods that we discuss, the model is either the affine approx-
imation to f given by the 1st order Taylor expansion, Theorem 1.6:

f(x + h) ≃ q(h) = f(x) + hT ∇f(x) , (2.26)

or it is a quadratic approximation to f :

f(x + h) ≃ q(h) = f(x) + hT ∇f(x) + 1
2 hT H h , (2.27)

where H is a symmetric, positive definite matrix. In both cases q(h) is
a good approximation to f(x+h) only if ‖h‖ is sufficiently small. These
considerations lead us to determine the new iteration step as the solution
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to the following model problem,

htr = argmin
h ∈ T

{q(h)} ; T = {h | ‖h‖ ≤ ∆}, ∆ > 0 , (2.28)

where q(h) is given by (2.26) or (2.27). The region T is called the trust
region and ∆ is the trust region radius.

We use h= htr as a candidate for our next step, and reject the step
if it proves not to be downhill, ie if f(x+h) ≥ f(x). The gain in cost
function value controls the size of the trust region for the next step: The
gain is compared to the gain predicted by the approximation function,
and we introduce the gain ratio

̺ =
f(x) − f(x+h)

q(0) − q(h)
. (2.29)

By construction the denominator is positive, so a negative ̺ indicates an
uphill step. When ̺ is small (maybe even negative) our approximation
agrees poorly with f , and we should reduce ∆ in order to get shorter
steps, and thereby a better agreement between f(x+h) and the approx-
imation q(h). A large value for ̺ indicates a satisfactory decrease in
the cost function value and we can increase ∆ in the hope that larger
steps will bring us to the target x̂ in fewer iterations. These ideas are
summarized in the following algorithm.

Algorithm 2.30. Descent method with trust region

Given x0 and ∆0

begin
k := 0; x := x0; ∆ := ∆0; found := false {starting point}
repeat
k := k+1; htr := Solution of model problem (2.28)
̺ := gain factor (2.29)
if ̺ > 0.75 {very good step}

∆ := 2 ∗ ∆ {larger trust region}
if ̺ < 0.25 {poor step}

∆ := ∆/3 {smaller trust region}
if ̺ > 0 {reject step if ̺ ≤ 0}

x := x + htr

Update found {stopping criteria, for instance from (2.10)}
until found or k>kmax

end
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The numbers in the algorithm, 0.75, 2, 0.25 and 1/3 have been chosen
from practical experience. The method is not very sensitive to minor
changes in these values, but in the expressions ∆ := p1∗∆ and ∆ :=
∆/p2 the numbers p1 and p2 must be chosen so that the ∆-values cannot
oscillate.

There are versions of the trust region method where “̺< 0.25” initi-
ates an interpolation between x and x+h based on known values of f
and ∇f , and/or “̺> 0.75” leads to an extrapolation along the direction
h, a line search actually. Actions like this can be rather costly, and
Fletcher [19, Chapter 5] claims that the improvements in performance
may be marginal. In the same reference you can find theorems about
the global performance of methods like Algorithm 2.30.

2.5. The Steepest Descent method

Until now we have not answered an important question connected with
Algorithm 2.9: Which of the possible descent directions (see Defini-
tion 2.12) do we choose as search direction?

Our first considerations will be based purely on local first order infor-
mation. Which descent direction gives us the greatest gain in function
value relative to the step length? Using the first order Taylor expansion
from Theorem 1.6 we get the following approximation

f(x) − f(x+αh)

α‖h‖ ≃ −hT ∇f(x)

‖h‖ = ‖∇f(x)‖ cos θ ,

where θ is the pseudo angle between h and −∇f(x), cf (2.13). We see
that the relative gain is greatest when the angle θ = 0, ie when h = hsd,
given by

hsd = −∇f(x) . (2.31)

This search direction is called the direction of steepest descent . It gives
us a useful gain in function value if the step is so short that the third
term in the Taylor expansion

(
O(‖h‖2)

)
is insignificant. Thus we have

to stop well before we reach the minimizer along the direction hsd. At
the minimizer the higher order terms are large enough to have changed
the slope from its negative starting value to zero.

According to Theorem 2.19 a descent method based on steepest de-
scent and soft or exact line search is convergent. If we make a method
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using hsd and a version of line search that ensures sufficiently short steps,
then the global convergence will manifest itself as a very robust global
performance. The disadvantage is that the method will have linear final
convergence and this will often be exceedingly slow. If we use exact line
search together with steepest descent, we invite trouble.

Example 2.5. We test a steepest descent method with exact line search on
the function from Example 1.2,

f(x) = (x1 + x2 − 2)
2

+ 100(x1 − x2)
2
.

The gradient is

∇f(x) =

(
2(x1 + x2 − 2) + 200(x1 − x2)
2(x1 + x2 − 2) − 200(x1 − x2)

)
.

If the starting point is taken as x0 =
(
3 598/202

)
T , then the first search

direction is

hsd =

(
3200/202

0

)
.

This is parallel to the x1-axis. The exact line search will stop at a point
where the gradient is orthogonal to this. Thus the next search direction
will be parallel to the x2-axis, etc. This is illustrated in Figure 2.8, where
we represent the successive steepest descent directions by unit vectors,
hk+1 = hsd/‖hsd‖ where hsd = −∇f(xk).

x0

(1)

(2)

h1

h2

h3

h4

Figure 2.8. Slow progress of the Steepest Descent method
applied a quadratic

The iteration steps will be exactly as in Example 1.2. If we allow 100
iterations we are still a considerable distance from the minimizer x̂ =(
1 1

)
T : ‖x100 − x̂‖ ≃ 0.379. It takes 317 iterations to get the error

smaller than 5·10−3 and 777 iterations if we want 6 correct decimals. On
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a computer with unit roundoff εM = 2−53 ≃ 1.11·10−16 all the xk are
identical for k ≥ 1608 and the error is approximately 1.26·10−14.

This example shows how the final linear convergence of the steepest
descent method can become so slow that it makes the method completely
useless when we are near the solution. We say that the iterations are
caught in Stiefel’s cage.

The method is useful, however, when we are far from the solution.
It performs a little better if we ensure that the steps taken are small
enough. In such a version it is included in several modern hybrid meth-
ods, where there is a switch between two methods, one with robust
global performance and one with superlinear (or even quadratic) final
convergence. In this context the Steepest Descent method does a very
good job as the “global part” of the hybrid, see Sections 3.2 and 6.2.

2.6. Quadratic models

An important tool in the design of optimization methods is quadratic
modelling. The function f is approximated locally with a quadratic
function q of the form

q(x) = a+ bT x + 1
2 xT H x , (2.32)

where H is a symmetric matrix. Such a model could for instance be the
2nd order Taylor expansion from the current approximation x, but we
shall also see other origins of the model. Often the matrix H is required
to be positive definite.

Such a model can be used directly or indirectly. In the first case
we simply use the minimizer of q to approximate x̂ and then repeat the
process with a new approximation. This is the basis of the Newton–type
methods described in Chapter 3. For the conjugate gradient methods in
the next section the model function (2.32) will be employed indirectly.

A related concept is that of quadratic termination, which is said to
hold for methods that find the exact minimum of the quadratic (2.32)
in a finite number of steps. The steepest descent method does not have
quadratic termination, but all the methods discussed from the next sec-
tion do. Quadratic termination has proved to be an important idea and
worth striving for in the design of optimization methods.

Because of the importance of quadratic models we now take a closer
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look at the quadratic function (2.32). In Theorem 1.7 we showed that
its gradient and Hessian at x are

∇q(x) = H x + b , ∇2q(x) = H . (2.33)

Thus, the Hessian is independent of x.
If H is positive definite, then q has a unique minimizer,

x̂ = −H−1b . (2.34)

In the case n= 2 the contours of q are ellipses centered at x̂. The
shape and orientation of the ellipses are determined by the eigenvalues
and eigenvectors of H . For n= 3 this generalizes to ellipsoids, and in
higher dimensions we get (n−1)-dimensional hyper-ellipsoids. It is of
course possible to define quadratic functions with a non-positive definite
Hessian, but then there is no longer a unique minimizer.

Finally, a useful fact is derived in a simple way from (2.33): Multi-
plication by H maps differences in x-values to differences in the corre-
sponding gradients:

H(x − z) = ∇q(x) − ∇q(z) . (2.35)

2.7. Conjugate Gradient methods

Starting with this section we describe methods of practical importance.
The conjugate gradient methods are simple and easy to implement, and
generally they are superior to the steepest descent method, but Newton’s
method and its relatives (see the next chapter) are usually even better.
If, however, the number n of variables is large, then the conjugate gra-
dient methods may be more efficient than Newton–type methods. The
reason is that the latter rely on matrix operations, whereas conjugate
gradient methods only use vectors. Ignoring sparsity, Newton’s method
needs O(n3) operations per iteration step, Quasi-Newton methods need
O(n2), but the conjugate gradient methods only use O(n) operations per
iteration step. Similarly for storage: Newton-type methods require an
n×n matrix to be stored, while conjugate gradient methods only need
a few vectors.

The basis for the methods presented in this section is the following
definition, and the relevance for our problems is indicated in the next
example.
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Definition 2.36. Conjugate directions. A set of directions
corresponding to vectors {h1,h2, . . .} is said to be conjugate with
respect to a symmetric positive definite matrix A, if

hT
i A hj = 0 for all i 6= j .

Example 2.6. In R
2 we want to find the minimizer of a quadratic

q(x) = a+ bT x + 1
2xT Hx ,

where the matrix H is assumed to be positive definite. Figure 2.9 shows
contours of such a polynomial.

(1)

(2)

x

h1

hsd

hcg

Figure 2.9. In the 2-dimensional case, the second conjugate gradient
step determines the minimizer of a quadratic.

Remember how Examples 1.2 and 2.5 showed that the methods of Alter-
nating Directions and of Steepest Descent could be caught in Stiefel’s cage
and fail to find the solution x̂. The conjugate gradient method performs
better:

Assume that our first step was in the direction h1 = h1, a descent direc-
tion. Now we have reached position x after an exact line search. This
means that the direction h1 is tangent to the contour at x and that h1 is
orthogonal to the steepest descent direction hsd at x:

0 = hT
1 (−∇q(x)) = hT

1 (−b − H x) = hT
1 H (x̂ − x) .

In the last reformulation we used the fact that the minimizer satisfies
Hx̂ = −b. This shows that if we are at x after an exact line search
along a descent direction, h1, then the direction x̂−x to the minimizer
is conjugate to h1 with respect to H. We can further prove that the
conjugate direction is a linear combination of the search direction h1 and
the steepest descent direction, hsd, with positive coefficients, ie, it is in
the angle between h1 and hsd.
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In the remainder of this section we discuss conjugate gradient meth-
ods which can find the minimizer of a second degree polynomial in n
steps, where n is the dimension of the space.

2.7.1. Structure of a Conjugate Gradient method

Let us have another look at Figure 2.8 where the slow convergence of
the steepest descent method is demonstrated. An idea for a possible
cure is to generalise the observation from Example 2.6: take a linear
combination of the previous search direction and the current steepest
descent direction to get a direction toward the solution. This gives a
method of the following type.

Algorithm 2.37. Conjugate gradient method

begin
x := x0; k := 0; γ := 0; hcg := 0; found := · · · {1◦}
while (not found) and (k < kmax)

hprev := hcg; hcg := −∇f(x) + γ ∗ hprev

if ∇f(x)T hcg ≥ 0 {2◦}
hcg := −∇f(x)

xprev := x; x := line search(x,hcg); {3◦}
γ := · · · {4◦}
k := k+1; found := · · · {5◦}

end

We have the following remarks:

1◦ Initialization. We recommend to stop if one of the criteria

‖∇f(x)‖∞ ≤ ε3 or k > kmax (2.38)

is satisfied, cf (2.10). We may have started at a point x0 where
the first of these criteria is satisfied with x0 as a sufficiently good
approximation to x̂.

2◦ In most cases the vector hcg is downhill. This is not guaranteed, for
instance if we use a soft line search, so we use this modification to
ensure that each step is downhill.

3◦ New iterate, cf (2.22).

4◦ The formula for γ is characteristic for the method. This is discussed
in the next subsections.
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5◦ Check stopping criteria, cf 1◦.

The next theorem shows that a method employing conjugate search
directions and exact line search is very good for minimizing quadratics.
Theorem 2.41 shows that, if f is a quadratic and we use exact line search,
then a proper choice of γ gives conjugate search directions.

Theorem 2.39. If Algorithm 2.37 with exact line search is applied
to a quadratic like (2.32) with x∈R

n, and with the iteration steps
hi = xi − xi−1 corresponding to conjugate directions, then

1◦ The search directions hcg are downhill.

2◦ The local gradient ∇f(xk) is orthogonal to h1,h2, . . . ,hk.

3◦ The algorithm terminates after at most n steps.

Proof. According to Definition 2.12 the inner product between the
gradient ∇f(x) and hcg should be negative:

∇f(x)T hcg = −∇f(x)T ∇f(x) + γ∇f(x)T hprev

= −‖∇f(x)‖2
2 ≤ 0 .

In the second reformulation we exploited that the use of exact
line search implies that ∇f(x) and hprev are orthogonal, cf (2.25).
Thus, hcg is downhill (unless x is a stationary point, where ∇f(x) =
0), and we have proven 1◦.

This result can be expressed as

hT
i ∇f(xi) = 0 , i = 1, . . . , k ,

and by means of (2.35) we see that for j < k,

hT
j ∇f(xk) = hT

j

(
∇f(xj) + ∇f(xk) − ∇f(xj)

)

= 0 + hT
j H(xk − xj)

= hT
j H(hk + . . .+ hj+1) = 0 .

Here, we have exploited that the directions {hi} are conjugate with
respect to H, and we have proven 2◦.

Finally, H is non-singular, and it is easy to show that this implies
that a set of conjugate vectors is linearly independent. Therefore
{h1, . . . ,hn} span the entire R

n, and ∇f(xn) must be zero. �

We remark that if ∇f(xk)=0 for some k≤n, then the solution has
been found and Algorithm 2.37 stops.
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What remains is to find a clever way to determine γ. The approach
used is to determine γ in such a way that the resulting method will
work well for minimizing quadratic functions. Taylor’s formula shows
that smooth functions are locally well approximated by quadratics, and
therefore the method can be expected also to work well on more general
functions.

2.7.2. The Fletcher–Reeves method

The following formula for γ was the first one to be suggested:

γ =
∇f(x)T ∇f(x)

∇f(xprev)T ∇f(xprev)
, (2.40)

where xprev is the previous iterate. Algorithm 2.37 with this choice for
γ is called the Fletcher–Reeves method after the people who invented it
in 1964.

Theorem 2.41. If the Fletcher–Reeves method with exact line
search is applied to the quadratic function (2.32), and if ∇f(xk) 6=0
for k=1, . . . , n, then the search directions h1, . . . ,hn are conjugate
with respect to H .

Proof. See Appendix B.1. �

According to Theorem 2.39 this implies that the Fletcher–Reeves
method with exact line search used on a quadratic will terminate in at
most n steps.

Point 1◦ in Theorem 2.39 shows that a conjugate gradient method
with exact line search produces descent directions. Al-Baali [1] proved
that this is also the case for the Fletcher–Reeves method with soft line
search satisfying certain mild conditions. We return to this result in
Theorem 2.43 below.

2.7.3. The Polak–Ribière method

An alternative formula for γ is

γ =
(∇f(x) − ∇f(xprev))

T ∇f(x)

∇f(xprev)T ∇f(xprev)
. (2.42)

Algorithm 2.37 with this choice of γ is called the Polak–Ribière method.
It dates from 1971 (and again it is named after the inventors).
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For a quadratic (2.42) is equivalent to (2.40) (because then
∇f(xprev)

T ∇f(x) = 0, see (B.6) in Appendix B.1). For general func-
tions, however, the two methods differ, and experience has shown that
(2.42) is superior to (2.40). Of course the search directions are still
downhill if exact line search is used in the Polak–Ribière Method. For
soft line search there is however no result parallel to that of Al-Baali for
the Fleetcher–Reeves Method. In fact M.J.D. Powell has constructed
an example where the method fails to converge even with exact line
search (see [43, page 213]). The success of the Polak–Ribière formula is
therefore not so easily explained by theory.

Example 2.7. (Resetting). A possibility that has been proposed, is to reset
the search direction h to the steepest descent direction hsd in every nth
iteration. The rationale behind this is the n-step quadratic termination
property. If we enter a neighbourhood of the solution where f behaves
like a quadratic, resetting will ensure fast convergence. Another apparent
advantage of resetting is that it will guarantee global convergence (by
Theorem 2.19). However, practical experience has shown that the profit
of resetting is doubtful.

In connection with this we remark that the Polak–Ribière method has
a kind of resetting built in. Should we encounter a step with very little
progress, so that ‖x−xprev‖ is small compared with ‖∇f(xprev)‖, then
‖∇f(x) − ∇f(xprev)‖ will also be small and therefore γ is small, and
hcg ≃ hsd in this situation. Also, the modification before the line search
in Algorithm 2.37 may result in an occasional resetting.

2.7.4. Convergence properties

In Theorem 2.39 we saw that the search directions hcg of a conjugate
gradient method are descent directions and thus the θ of (2.13) satisfies
θ<π/2. There is no guarantee, however, that the µ of Definition 2.14
will stay constant, and Theorem 2.19 is therefore not directly applicable.

For many years it was believed that to guarantee convergence of a
conjugate gradient method it would be necessary to use a complicated
ad hoc line search, and perhaps make some other changes to the method.
But in 1985 Al-Baali managed to prove global convergence using a tra-
ditional soft line search.



2.7. Conjugate Gradient methods 37

Theorem 2.43. Let the line search used in Algorithm 2.37 satisfy
(2.18) with parameter values 0<β1<β2< 0.5. Then there is a c> 0
such that for all k

∇f(x)T hcg ≤ −c ‖∇f(x)‖2
2

and
lim

k→∞
‖∇f(x)‖2 = 0 .

Proof. See [1]. �

Finally, it has been shown, [12], that conjugate gradient methods
with exact line search have a linear convergence rate, as defined in (1.8).
This should be contrasted with the superlinear convergence rate that
holds for Quasi–Newton methods and the quadratic convergence rate
that Newton’s method possesses.

Example 2.8. Rosenbrock’s function,

f(x) = 100(x2 − x2
1)

2
+ (1 − x1)

2 ,

is widely used for testing optimization algorithms. Figure 2.10 shows
level curves for this function (and illustrates, why it is sometimes called
the “banana function”).

Figure 2.10. Contours of
Rosenbrock’s function.
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The function has one minimizer x̂ =
(
1 1

)
T (marked by a + in the

figure) with f(x̂)=0, and there is a “valley” with sloping bottom following
the parabola x2 = x2

1. Most optimization algorithms will try to follow this
valley. Thus, a considerable amount of iterations is needed, if we take the
starting point x0 in the 2nd quadrant.

Below we give the number of iteration steps and evaluations of f(x) and
∇f(x) when applying Algorithm 2.37 on this function. In all cases we
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use the starting point x0 =
(
−1.2 1

)
T , and stopping criteria given by

ε1 = 10−8, ε2 = 10−12 in (2.38). In case of exact line search we use τ =
ε = 10−6 in (2.24), while we take β1 = 0.01, β2 = 0.1 in Algorithm 2.20
for soft line search.

Method Line search # iterations # fct. evals
Fletcher–Reeves exact 343 2746
Fletcher–Reeves soft 81 276
Polak–Ribière exact 18 175
Polak–Ribière soft 41 127

Thus, in this case the Polak–Ribière method with soft line search performs
best. The performance is illustrated in Figure 2.11.

(1)

(2)

−1.2 1

1

0 10 20 30 40 50
1e−15

1e−10

 1e−5

  1  

 

 

f(x)
||∇ ||

Figure 2.11. Polak–Ribière method with soft line search
applied to Rosenbrock’s function.
Top: iteration path.
Bottom: f(xk) and ‖∇f(xk)‖∞.

Note the logarithmic ordinate axis.

2.7.5. Implementation aspects

To implement a conjugate gradient algorithm in a computer program,
some decisions must be made.

First, we must choose a formula for γ. We recommend the Polak–
Ribière formula.

Next, we need to specify the exactness of the line search. For Newton-
type methods it is usually recommended that the line search be quite
liberal, so for the line search in Algorithm 2.20 it is common to choose
the parameter values β1 = 0.001 and β2 =0.99. For conjugate gradient
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methods experience indicates that a line search with stricter tolerances
should be used, say β1 = 0.01 and β2 = 0.1.

We also have to specify the stopping criteria, and recommend to use
3◦ and 4◦ in (2.10). For methods with a fast convergence rate criterion
1◦ may be quite satisfactory, but its use for conjugate gradient methods
must be discouraged because their final convergence rate is only linear.

Finally some remarks on the storage of vectors. The Fletcher–Reeves
method may be implemented using three n-vectors of storage, x, g and
h. If these contain x, ∇f(x) and hprev at the beginning of the current
iteration step, we may overwrite h with hcg and during the line search
we overwrite x with x+αhcg and g with ∇f(x+αhcg). Before over-

writing the gradient, we find ∇f(x)T ∇f(x) for use in the denominator
in (2.40) for the next iteration. For the Polak–Ribière method we need
access to ∇f(x) and ∇f(xprev) simultaneously, and thus four vectors
are required, say x, g, gnew and h.

2.7.6. Other methods and further reading

Over the years numerous other conjugate gradient formulae and amend-
ments to the Fletcher–Reeves and Polak–Ribière method have been pro-
posed. We only give a short summary here, and refer the interested
reader to [19] and [43] for details and further information.

A possible amendment to the Polak–Ribière method is to choose γ =
max(γPR, 0), where γPR is the γ of (2.42). With this choice of γ it is
possible to guarantee global convergence with inexact line search. See
[43, page 213] for further discussion and references.

The conjugate gradient methods belong to a class of methods some-
times referred to as conjugate direction methods. Other examples of
these may be found in [19].

Finally we want to mention two classes of methods that have received
much attention in recent years. The first class is called limited mem-
ory Quasi-Newton methods, and the second class is truncated Newton
methods or inexact Newton methods. These are not conjugate direction
methods, but they are also aimed at solving large problems. See [43,
pp 233–234] for some discussion and further references.

2.7.7. The CG method for linear systems

Conjugate gradient methods are widely used to solve linear systems of
equations,

Ax = b ,
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where A is a large, sparse, symmetric and positive matrix. In the present
context, cf (2.34), the solution x̂ to this system is the minimizer of the
quadratic

q(x) = a− bT x + 1
2 xT A x .

Let x denote the current approximation to x̂, and let r denote the
corresponding negative gradient

r ≡ −∇q(x) = b − A x .

We recognize this as the residual vector corresponding to the approxi-
mation x, and the search direction can be expressed as

hcg = r + γ hprev .

The residual is an affine function of x, so that

x = xprev + αhcg ⇒ r = rprev − αAhcg .

The special form of the problem also implies that instead of having to
make a proper exact line search we have a closed form expression for
α = αe: The search direction and the gradient are orthogonal at the
minimizer of the line search function, hT

cgr = 0, so that

α =
(
hT

cgr
)/ (

hT
cgAhcg

)
. (2.44)

Actually, the present problem was the subject of Theorem 2.41, and
in the proof we show that not only are the search directions conjugate
with respect to A, but according to (B.5) – (B.6) we have the following
orthogonalities

rT
i rj = 0 and hT

i rj = 0for i 6= j .

This implies that the Fletcher–Reeves and the Polak–Ribière formulas
give identical values γ = rT r/rprev

T rprev. Further, since hcg = r −
γhprev, we see that (2.44) can be replaced by α = rT r/(hT

cgAhcg).
The theorem further tells us that we need at most n iterations before

r = 0, ie x = x̂. However, in applications it is often sufficient to find an
approximation x such that

‖r(x)‖ ≤ ε‖b‖ ,

where ε is a small, positive number specified by the user. Note that this
stopping criterion is of the type 3◦ in the list of stopping criteria given
in (2.10).
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Summarizing this discussion we can present the following specialized
version of the general CG algorithm in 2.37.

Algorithm 2.45. CG method for linear systems

begin
x := x0; k := 0; r := b − Ax

u = rT r; found :=
(
u ≤ ε2‖b‖2

)

while (not found) and (k < kmax)
if k = 0

hcg := r

else
hcg := r + (u/uprev)hcg

end
v := Ahcg; α := u/(hT

cgv)
x := x + αhcg; r := r − αv

uprev := u; u := rT r

k := k+1; found :=
(
u ≤ ε2‖b‖2

)

end

In an implementation of the method we need four n-vectors, x, r, h
and v. Each iteration involves one matrix-vector multiplication, to get
v, and 5 vector operations.

The vectors r0,v1,v2, . . . ,vk belong to the so-called Krylov subspace

K = span
(
r0,Ar0,A

2r0, . . . ,A
kr0

)
,

and the CG method is said to be an iterative Krylov method. It is not
the only one, however, and in recent years there has been much interest
in the further improvement of this class of very efficient methods for
approximate solution of large, sparse systems of equations. For a more
thorough discussion of CG methods for linear systems we refer to [23,
Chapter 10] and the monographs [24], [54].
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Chapter 3

Newton–Type Methods

The main goal of this chapter is to present a class of methods for un-
constrained optimization which are based on Newton’s method. This
class is called Quasi-Newton1) methods. This class includes some of the
best methods on the market for solving the unconstrained optimization
problem.

In order to explain these methods we first describe Newton’s method
for unconstrained optimization in detail. Newton’s method leads to
another type of methods known as Damped Newton methods, which
will also be presented.

3.1. Newton’s method

Newton’s method forms the basis of all Quasi-Newton methods. It is
widely used for solving systems of nonlinear equations, and until recently
it was also widely used for solving unconstrained optimization problems.
As it will appear, the two problems are closely related.

Example 3.1. In Examples 1.2 and 2.5 we saw the methods of alternat-
ing directions and steepest descent fail to find the minimizer of a simple
quadratic in two dimensions. In Section 2.7 we saw that the conjugate
gradient method finds the minimizer of a quadratic in n steps (n being
the dimension of the space), in two steps in Example 2.6.

Newton’s method can find the minimizer of a quadratic in n-dimensional
space in one step. This follows from equation (3.2) below. Figure 3.1 gives
the contours of our 2-dimensional quadratic together with (an arbitrary)
x0, the corresponding x1 and the minimizer x̂, marked by +.

1) From Latin, “quasi” = “nearly” (or “wanna be”)
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(1)

(2)

x0

x1

Figure 3.1. Newton’s method finds the minimizer
of a quadratic in one step.

The version of Newton’s method used in optimization is derived from
the 2nd order Taylor approximation from Theorem 1.6. This means
that in the neighbourhood of the current iterate x we use the quadratic
model

f(x + h) ≃ q(h)

≡ f(x) + hT ∇f(x) + 1
2hT ∇2f(x) h .

(3.1)

The idea now is to find the next iterate as a minimizer for the model q.
If ∇2f(x) is positive definite, then q has a unique minimizer at a point
where its gradient equals zero, ie where

∇q(h) = ∇f(x) + ∇2f(x) h = 0 . (3.2)

Hence, in Newton’s method the step to the next iterate is obtained as
the solution to this system, as shown in the following algorithm.

Algorithm 3.3. Newton’s method

begin
x := x0; {initialize}
repeat

Solve ∇2f(x) hn = −∇f(x) {find step}
x := x + hn {next iterate}

until stopping criteria satisfied
end

Newton’s method is well defined as long as ∇2f(x) remains non-
singular. Also, if the Hessian is positive definite, then it follows from
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Theorem 2.15 that hn is a descent direction. Further, if ∇2f(x) stays
positive definite in all the steps and if the starting point is sufficiently
close to a minimizer, then the method usually converges rapidly towards
such a solution. More precisely the following theorem holds.

Theorem 3.4. Let f be three times continuously differentiable
and let x be sufficiently close to a local minimizer x̂ with positive
definite ∇2f(x̂). Then Newton’s method is well defined in all the
following steps, and it converges quadratically towards x̂.

Proof. See Appendix B.2. �

Example 3.2. We shall use Newton’s method to find the minimizer of the
function2)

f(x) = 0.5 ∗ x2
1 ∗ (x2

1/6 + 1)

+x2 ∗ Arctan(x2) − 0.5 ∗ log (x2
2 + 1) .

(3.5)

We need the derivatives of first and second order for this function:

∇f(x) =

(
x3

1/3 + x1

Arctan(x2)

)
, ∇2f(x) =

(
x2

1 + 1 0
0 1/(1 + x2

2)

)
.

We can see in Figure 3.2 that in a region around the minimizer x̂ = 0 the
function looks very well-behaved and extremely simple to minimize.

Figure 3.2. Contours of the
function (3.5). The level
curves are symmetric
across both axes.

−0.5 1.5

−0.5

2.0

(1)

(2)

Table 3.2 gives results of the iterations with the starting point x0 =(
1 0.7

)
T . According to Theorem 3.4 we expect quadratic convergence.

If the factor c2 in (1.8) is of the order of magnitude 1, then the column
of xT

k would show the number of correct digits doubled in each iteration
step, and the f -values and step lengths would be squared in each iteration
step. The convergence is faster than this; actually for any starting point
x0 =

(
u v

)
T with |v| < 1 we will get cubic convergence; see the end of

the next example.

2) “log” is the natural (or Naperian) logarithm.
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k xT
k f ‖∇f‖ ‖hk‖

0 [1.0000000000, 0.7000000000] 8.11e-01 1.47e+00 1.13e+00

1 [0.3333333333, -0.2099816869] 7.85e-02 4.03e-01 3.79e-01

2 [0.0222222222, 0.0061189580] 2.66e-04 2.31e-02 2.30e-02

3 [0.0000073123, -0.0000001527] 2.67e-11 7.31e-06 7.31e-06

4 [0.0000000000, 0.0000000000] 3.40e-32 2.61e-16 2.61e-16

Table 3.2. Newton’s method applied to (3.5). x0 =
(
1 0.7

)
T .

Until now, everything said about Newton’s method is very promising:
It is simple and if the conditions of Theorem 3.4 are satisfied, then
the rate of convergence is excellent. Nevertheless, due to a series of
drawbacks the basic version of the method is not suitable for a general
purpose optimization algorithm.

The first and by far the most severe drawback is the method’s lack
of global convergence.

Example 3.3. With the starting point x0 =
(
1 2

)
T the Newton method

behaves very badly:

k xT
k f ‖∇f‖ ‖hk‖

0 [1.0000000000, 2.0000000000] 1.99e+00 1.73e+00 5.58e+00

1 [0.3333333333, -3.5357435890] 3.33e+00 1.34e+00 1.75e+01

2 [0.0222222222, 13.9509590869] 1.83e+01 1.50e+00 2.93e+02

3 [0.0000073123, -2.793441e+02] 4.32e+02 1.57e+00 1.22e+05

4 [0.0000000000, 1.220170e+05] 1.92e+05 1.57e+00 2.34e+10

Table 3.3. Newton’s method applied to (3.5). x0 =
(
1 2

)
T .

Clearly, the sequence of iterates moves rapidly away from the solution
(the first component converges, but the second increases in size with al-
ternating sign) even though ∇2f(x) is positive definite for any x∈R

2.

The reader is encouraged to investigate what happens in detail.
Hint: The Taylor expansion for Arctan(0+h) is

Arctan(0+h) =






h− 1
3h

3 + 1
5h

5 − 1
7h

7 + · · · for |h| < 1

sign(h)

(
π

2
− 1

h
+

1

3h3
− 1

5h5
+ · · ·

)
for |h| > 1 .

The next point to discuss is that ∇2f(x) may not be positive definite
unless x is close to the solution. This means that the Newton sequence
may head towards a saddle point or a maximizer, because the iteration
process is identical to the one used for solving the nonlinear system of
equations ∇f(x)= 0. Any stationary point of f is a solution to this sys-
tem. Also, ∇2f(x) may be ill-conditioned or singular so that the linear
system (3.2) cannot be solved without considerable errors in hn. Such
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ill-conditioning may be detected by a well designed matrix factorization
(for instance a Cholesky factorization as described in Appendix A.2),
but it still leaves the question of what to do in case ill-conditioning
occurs.

The need for second order derivatives may also be a major drawback
for Newton’s method. They must either be provided by the user or they
may be obtained by automatic differentiation. In the first case there
is a serious risk of errors in the derivation or implementation, leading
to malfunctioning of the optimization algorithm. We shall not discuss
the other choice, but refer to for instance [9]. With both choices the
evaluation of the 1

2n(n+1) different elements in ∇2f may be a costly
affair if n is large.

This discussion of advantages and disadvantages of Newton’s method
is summarized in Table 3.3, with the purpose of pointing out properties
to be retained and areas where improvements and modifications are
required.

Summary 3.6. Advantages and disadvantages of Newton’s
method for unconstrained optimization problems

Advantages

1◦ Quadratically convergent from a good starting point if ∇2f(x̂)
is positive definite.

2◦ Simple and easy to implement.

Disadvantages

1◦ Not globally convergent for many problems.

2◦ May converge towards a maximum or saddle point of f .

3◦ The system of linear equations to be solved in each iteration
may be ill-conditioned or singular.

4◦ Requires second order derivatives of f .
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3.2. Damped Newton methods

A simple idea to overcome the lack of robustness, disadvantage 1◦ in
Summary 3.6, is to combine Newton’s method with line search in which

the Newton step hn = −
[
∇2f(x)

]−1
∇f(x) is used as search direction.

In other words, the step x := x+hn in Algorithm 3.3 is replaced by

x := line search(x,hn) .

Provided that ∇2f(x) is positive definite, this method will work fine,
since in this case hn is a descent direction, cf Theorem 2.15. The main
difficulty arises when ∇2f(x) is not positive definite. The Newton step
can still be computed if ∇2f(x) is non-singular, and one may search
along ±hn with the sign chosen in each iteration to ensure a descent
direction. However, this rather primitive approach is questionable since
the quadratic model q(h), (3.1), will not even possess a unique minimum.

The more efficient modified Newton methods are constructed as either
explicit or implicit hybrids between the original Newton method and the
method of steepest descent. The idea is that the algorithm in some way
should take advantage of the safe, global convergence properties of the
steepest descent method whenever Newton’s method gets into trouble.
On the other hand the quadratic convergence of Newton’s method should
be obtained when the iterates get close enough to x̂, provided that the
Hessian is positive definite.

In this section we shall present such a method. In the typical iteration
we find the step hdn as the minimizer of the quadratic

qµ(h) = q(h) + 1
2µhT h

= f(x) + hT ∇f(x) + 1
2hT (∇2f(x) + µI)h ,

(3.7)

where µ≥ 0, so that large steps are penalized. The gradient of this
quadratic is

∇qµ(h) = ∇f(x) + (∇2f(x) + µ I)h ,

and by setting this gradient equal to zero we get the vector hdn as the
solution to the linear system

(∇2f(x) + µ I)hdn = −∇f(x) .

By comparison with (3.2) we see that if µ= 0, then hdn = hn, and if
∇2f(x) is positive definite, then this is a downhill step for f , and it is
the minimizer for q.
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In Appendix A.2 we show that if we choose µ sufficiently large, then
the matrix ∇2f(x)+µ I will be positive definite, and then the step hdn

is downhill according to Theorem 2.15. If µ is very big, then we get

hdn ≃ − 1

µ
∇f(x) ,

ie a short step in the steepest descent direction. As discussed earlier,
this is useful in the early stages of the iteration process, if the current
x is far from the minimizer x̂. On the other hand, if µ is small, then
hdn ≃ hn, the Newton step, which is good when we are close to x̂ (where
∇2f(x) is positive definite). Thus, by proper adjustment of the damping
parameter µ we have a method that combines the good qualities of the
steepest descent method in the global part of the iteration process with
the fast ultimate convergence of Newton’s method.

This discussion is summarized in the following framework for a damped
Newton method.

Algorithm 3.8. Damped Newton method

begin
x := x0; µ := µ0 {initialize}
repeat

Solve (∇2f(x) + µ I)hdn = −∇f(x) {find step}
x := x + αhdn {next iterate}
Adjust µ

until stopping criteria satisfied
end

There are several variants of this algorithms, differing in the way that
α is chosen and µ is updated during the process. In some variants the
parameter α is found by line search, and information gathered during
this may be used to update µ. Other variants exploit that µ has two
functions: it influences both the direction and the length of the step hdn,
and if f(x+hdn) < f(x), then x+hdn is our new iterate, ie α= 1. Other-
wise we let α= 0 but increase µ. These so-called Levenberg–Marquardt
type variants seem to be the most successful, and we shall give some
details later.

It is also possible to use a trust region approach, cf Section 2.4. See
for instance [19] or [44]. An interesting relation between a trust region
approach and Algorithm 3.8 is given in the following theorem, which
was first given by Marquardt (1963), [36].



50 3. Newton–Type Methods

Theorem 3.9. If the matrix ∇2f(x)+µI is positive definite, then

hdn = argmin
‖h‖ ≤ ‖hdn‖

{q(h)} ,

where q is given by (3.1)) and hdn is defined in Algorithm 3.8.

Proof. The vector hdn is the minimizer of qµ(h), (3.5). Now let

htr = argmin‖h‖≤‖hdn‖
{q(h)} .

Then q(htr) ≤ q(hdn) and hT
trhtr ≤ hT

dnhdn, so that

qµ(htr) = q(htr) + 1
2 µ hT

trhtr

≤ q(hdn) + 1
2 µ hT

dnhdn = qµ(hdn) .

However, the matrix ∇2f(x)+µI is assumed to be positive defi-
nite. This implies that the minimizer of qµ is unique, and therefore
htr = hdn. �

In a proper trust region method we monitor the trust region radius ∆.
The theorem shows that if we monitor the damping parameter instead,
we can think of it as a trust region method with the trust region radius
given implicitly as ∆ = ‖hdn‖.

In Levenberg–Marquardt type methods µ is updated in each iteration
step. Given the present value of the parameter, the Cholesky factoriza-
tion of ∇2f(x)+µI is employed to check for positive definiteness, and µ
is increased if the matrix is not significantly positive definite. Otherwise,
the solution hdn is easily obtained via the factorization.

The direction given by hdn is sure to be downhill, and we get the
“trial point” x+hdn (corresponding to α= 1 in Algorithm 3.8). As in
a trust region method (see Section 2.4) we can compare the changes in
the objective function f and the current approximation to it, q. More
specifically, we compute the gain ratio

̺ =
f(x) − f(x+hdn)

q(0) − q(hdn)
. (3.10)

A ̺-value close to one indicates that q was a good model and we may
reduce µ, ie the penalty on large steps. This may also be a good idea
whenever ̺> 1, because the gain in f was at least as large as the gain
predicted by q. Note that a decrease in µ not only allows larger steps,
but also turns the direction of hdn towards the direction given by hn, the
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Newton step, which gives quadratic convergence when x is sufficiently
close to x̂.

If, on the other hand, ̺ is small, we should increase µ with the twofold
objective of reducing the step length and turning it towards the steepest
descent direction, which is good when x is far from x̂.

We could use an updating strategy similar to the one employed in
Algorithm 2.30,

if ̺ > 0.75 then µ := µ/3

if ̺ < 0.25 then µ := µ ∗ 2
(3.11)

However, the discontinuous changes in µ when ̺ is close to 0.25 or
0.75 can cause a “flutter” that slows down convergence. Therefore, we
recommend to use the equally simple strategy given by

if ̺ > 0 then µ := µ ∗ max{1
3 , 1 − (2̺− 1)3}

else µ := µ ∗ 2
(3.12)

The two strategies are illustrated in Figure 3.3 and are further discussed
in [40] and in Section 6.2.

1

0 0.25 0.75 1

µnew/µ

̺

Figure 3.3. Updating of µ by (3.11) (dasheded line)
and by (3.12) (full line).

The initial value for µ should be chosen with respect to the size of
the elements in the initial Hessian. We recommend to let

µ0 = τ ‖∇2f(x0)‖∞ , (3.13)

where τ > 0 is chosen by the user. If τ ≥ 1, then the initial matrix
∇2f(x0) + µ0I is guaranteed to be positive definite.

In order to prove convergence for the whole procedure one should use
an x-updating of the form

if ̺ > δ then x := x + hdn ,
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where δ is a small positive number, δ=10−3, say. This implies that
if ̺≤ δ, then x is not changed (α= 0 in Algorithm 3.8), but µ will be
increased. In practice δ=0 is often used.

The method is summarized in Algorithm 3.15 below. We recommend
to use the stopping criteria

‖∇f(x)‖∞ ≤ ε1 or ‖hdn‖2 ≤ ε2(ε2 + ‖x‖2) . (3.14)

Algorithm 3.15. Levenberg–Marquardt type
damped Newton method

begin
x := x0; µ := µ0; found := false; k := 0; {initialize}
repeat

while ∇2f(x)+µI not pos. def. {using . . .}
µ := 2µ

Solve
(
∇2f(x)+µI

)
hdn = −∇f(x) {. . . Cholesky}

Compute gain factor ̺ by (3.10)
if ̺ > δ {f decreases}

x := x + hdn {new iterate}
µ := µ ∗ max{1

3 , 1 − (2̺− 1)3} {new µ}
else
µ := µ ∗ 2 {increase µ but keep x}

k := k+1; update found {see (3.14)}
until found or k > kmax

end

The simplicity of the original Newton method has disappeared in
the attempt to obtain global convergence, but this type of method does
perform well in general.

Example 3.4. Table 3.4 illustrates the performance of Algorithm 3.15 when
applied to the tricky function (3.5) with the poor starting point. We use
η = 0.5 in (3.13) and ε1 = 10−8, ε2 = 10−12 in (3.14).

k xT
k f ‖∇f‖∞ µ

0 [ 1.00000000, 2.00000000] 1.99e+00 1.33e+00 1.00e+00

1 [ 0.55555556, 1.07737607] 6.63e-01 8.23e-01 3.33e-01

2 [ 0.18240045, 0.04410287] 1.77e-02 1.84e-01 1.96e-01

3 [ 0.03239405, 0.00719666] 5.51e-04 3.24e-02 6.54e-02

4 [ 0.00200749, 0.00044149] 2.11e-06 2.01e-03 2.18e-02

5 [ 0.00004283, 0.00000942] 9.61e-10 4.28e-05 7.27e-03

6 [ 0.00000031, 0.00000007] 5.00e-14 3.09e-07 2.42e-03

7 [ 0.00000000, 0.00000000] 3.05e-19 7.46e-10

Table 3.4. Algorithm 3.15 applied to (3.5). xT
0 = [1, 2], µ0 =1.
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The solution is found without problems, and the columns with f and
‖∇f‖ show superlinear convergence, as defined in (1.8).

Example 3.5. We have used Algorithm 3.15 on Rosenbrock’s function from
Example 2.8. We use the same starting point, x0 =

(
−1.2 1

)
T , and

with τ = 10−2, ε1 = 10−10, ε2 = 10−12 we found the solution after 29
iteration steps. The performance is illustrated below

(1)

(2)

−1.2 1

1

0 5 10 15 20 25 30
1e−15

1e−10

 1e−5

  1  

 

 

f(x)
||∇ ||
µ

Figure 3.4. Damped Newton method
applied to Rosenbrock’s function.
Top: iteration path. Bottom: f(xk), ‖∇f(xk)‖∞ and µ.

The six stars in the iteration path indicates points, where the attempted
step was uphill, ie the current x is not changed, but µ is updated. After
passing the bottom of the parabola, the damping parameter µ is decreased
in most steps. As in the previous example we achieve superlinear final
convergence.

3.3. Quasi–Newton methods

The modifications discussed in the previous section make it possible to
overcome the first three of the main disadvantages of Newton’s method
shown in Summary 3.6. The damped Newton method is globally conver-
gent, ill-conditioning may be avoided, and minima are rapidly located.
However, the fourth disadvantage remains: The user must supply second
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derivatives, either by implementing analytically derived expressions or
by means of automatic differentiation. For large or complicated prob-
lems this may be a costly affair, and it often happens that we only benefit
from the quadratic convergence in the last few iterations.

In quasi–Newton methods the 2nd derivatives are not required. The
Newton equation (3.2),

∇2f(x) hn = −∇f(x) ,

is replaced by
B hqn = −∇f(x) , (3.16)

where the matrix B is an approximation to the Hessian ∇2f(x). This
matrix is modified during the iteration process, and many different
schemes have been proposed.

Possibly the most straight-forward quasi–Newton method is obtained
if the elements of the Hessian are approximated by finite differences, see
Appendix A.3. This can give a good approximation to the Hessian, but
it involves n extra evaluations of the gradient in each iteration. Further,
there is no guarantee that B is positive definite, and in order to get a
robust algorithm, it might for instance be combined with the damped
Newton method outlined in Algorithm 3.8.

The quasi–Newton methods that we shall discuss in the remainder of
this chapter avoid these unfruitful extra evaluations of the gradient and
the need for damping. First, however, we must mention that instead
of generating a sequence of B-matrices for use in (3.16) some quasi–
Newton methods work with a sequence of D-matrices such that the
search direction hqn is given by

hqn = −D ∇f(x) . (3.17)

Thus, the current D is an approximation to the inverse of ∇2f(x). We
shall discuss these two approaches in parallel. The modifications from
the current B (or D) are made by relatively simple updates, and for
each updating formula for B there is a similar updating formula for D

with the same computational cost. This means that the difference in
cost is that with formulation (3.16) we have to solve a linear system in
the n unknown components of hqn; this is a O(n3) process, whereas the
multiplication with D in (3.17) is a O(n2) process, ie it is cheaper for
large n.

The need for damping is avoided because the sequence of B (or D)
matrices are generated such that every matrix is positive definite, and
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Theorem 2.15 tells us that then every hqn is a descent direction. In
order to find a good step length we can use line search or a trust region
approach. We shall only discuss the former, and conclude this section
by giving the following framework.

Framework 3.18. Quasi–Newton method
with updating and line search

begin
x := x0; k := 0; found := · · · {1◦}
B := B0 (or D := D0 ) {2◦}
while (not found) and (k < kmax)

Solve Bhqn = −∇f(x) (or compute hqn := −D ∇f(x))
xnew := line search(x,hqn) {3◦}
Update found {1◦}
Update B to Bnew (or D to Dnew) {4◦}
x := xnew

end

We have the following remarks:

1◦ Initialization. We recommend to use the stopping criteria (3.14).

2◦ The choice B0 = I (or D0 = I) will make the iteration process start
like the steepest descent method, which has good global convergence
properties. With a good updating strategy the matrices will con-
verge to good approximations to ∇2f(x̂) (or the inverse of this),
and the process ends up somewhat like Newton’s method.

3◦ Some methods demand exact line search, others work fine with very
loose line search.

4◦ In the following we present the requirements to the updating and the
techniques needed in order for the sequence of B (or D) matrices

to converge towards ∇2f(x̂) (or
(
∇2f(x̂)

)−1
), respectively, x̂ being

the minimizer.

3.3.1. Updating formulas

In this subsection we start by looking at the requirements that should
be satisfied by an updating scheme for approximations to the Hessian
or its inverse. Later we discuss how to build in other desirable features
of the matrix sequence.
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Let x and B be the current iterate and approximation to ∇2f(x).
Given these, steps 1◦ and 2◦ of Framework 3.18 can be performed yield-
ing xnew. The objective is to calculate Bnew by a correction of B.
The correction must contain some information about the second deriva-
tives. Clearly, this information is only approximate, it is based on the
gradients of f at the two points. Now, consider the first order Taylor
approximation of the gradient around xnew,

∇f(x) ≃ ∇f(xnew) + ∇2f(xnew) (x − xnew) .

By rearranging we get an expression similar to (2.35),

∇f(xnew) − ∇f(x) ≃ ∇2f(xnew) (xnew − x) .

We require that the approximation Bnew satisfies the corresponding
equality

Bnewh = y with h = xnew − x ,

y = ∇f(xnew) − ∇f(x) .

(3.19)

This is the so-called quasi–Newton condition. The same arguments lead
to the alternative formulation of the quasi–Newton condition,

Dnew y = h . (3.20)

If n= 1, then we see that Bnew is an approximation to f ′′ at a point
between the current and the new iterate, and (3.19) tells that this ap-
proximation is the slope of the line between the points (x, f ′(x)) and
(xnew, f

′(xnew)) in the graph of f ′. Therefore condition (3.19) is some-
times referred to as the secant condition.

For n> 1 the quasi–Newton condition is an underdetermined linear
system with n equations and the n2 elements in Bnew (or Dnew) as
unknowns. Therefore additional conditions are needed to get a well
defined method. Different quasi–Newton methods are distinguished by
the choice of these extra conditions. A common feature of the methods
that we shall describe is that they have the form

Bnew = B + WB (or Dnew = D + WD ) .

We say that Bnew is obtained by updating B. The correction matrix
W is constructed so that the the quasi-Newton condition is satisfied,
and maybe ensures desirable features, such as preservation of symmetry
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and positive definiteness. Also, it should be simple to compute the
correction, and in most methods used in practice, W is either a rank-
one matrix ,

Bnew = B + a bT ,

or a rank-two matrix ,

Bnew = B + a bT + u vT ,

where a, b,u,v ∈R
n. Hence W is an outer product of two vectors or

the sum of two such products. Often a = b and u= v; this is a simple
way of ensuring that W is symmetric.

Example 3.6. One of the first updating formulas to be thoroughly discussed
was Broyden’s rank-one formula, [6],

Bnew = B + a bT ,

The vectors a, b∈R
n are chosen so that they satisfy the quasi–Newton

condition (3.19), (
B + abT

)
h = y ,

supplied with the condition that(
B + abT

)
v = Bv for all v | vT h = 0 .

The rationale behind this is that we want to keep information already
in B, and after all we only have new information about 2nd derivatives
in the direction given by h. The reader can easily verify that the re-
sult is Broyden’s rank-one formula for updating the approximation to the
Hessian:

Bnew = B +
1

hT h

(
y − B h

)
hT . (3.21)

A formula for updating an approximation to the inverse Hessian may be
derived in the same way and we obtain

Dnew = D +
1

yT y

(
h − D y

)
yT . (3.22)

The observant reader will notice the symmetry between these two updat-
ing formulas. This is further discussed in Section 3.5.

Now, given some initial approximation B0 (or D0) (the choice of which
shall be discussed later), we can use (3.21) or (3.22) to generate the se-
quence needed in the framework 3.18. However, two important features
of the Hessian (or its inverse) would then be disregarded: We wish both
matrices B and D to be symmetric and positive definite. This is not
the case for (3.21) and (3.22), and thus the use of Broyden’s formula may
lead to steps which are not even downhill, and convergence towards saddle
points or maxima will often occur. Therefore, these formulas are never
used for unconstrained optimization.
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The formulas were developed for solving systems of nonlinear equations,
and they have several other applications, for instance in methods for least
squares problems and minimax optimization. We return to (3.21) in Sec-
tion 6.4.

3.3.2. Symmetric updating

The Hessian and its inverse are symmetric, and therefore it is natural
to require that also B and D be symmetric. We can obtain this for the
D-sequence if we start with a symmetric D0 and use rank-one updates
of the form

Dnew = D + u uT .

The quasi–Newton condition (3.20) determines u uniquely:

h = D y + u uT y ⇔ (uT y)u = h − D y ,

leading to

Dnew = D +
1

uT y
u uT with u = h − D y .

A similar derivation gives the symmetric rank-one updating formula for
approximations to ∇2f(x),

Bnew = B +
1

hT v
v vT with v = y − B h .

These formulas are known as the SR1 formulas. They have been
used very little in practice. Notice that the updating breaks down if
uT y = 0. This occurs if u=0, in which case we just take Dnew = D. It
also occurs if a nonzero u is orthogonal to y, and in this case there is
no solution. In implementations this is handled by setting Dnew = D

whenever |uT y| is too small.

Example 3.7. The SR1 formulas have some interesting properties. The most
important is that a quasi–Newton method without line search based on
SR1 updating will minimize a quadratic with positive definite Hessian in
at most n+1 iterations, provided that the search directions are linearly
independent and yT u remains positive. Further, in this case Dnew equals
∇2f(x∗)−1 after n+1 steps. This important property is called quadratic
termination, cf Section 2.6.

The observant reader will have noticed a disappointing fact: a rank-
one updating has not enough freedom to satisfy the quasi-Newton condi-
tion, preserve symmetry and the desirable property, that we mentioned
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many times: If B (or D) is positive definite, then we are sure that it
is nonsingular, and that the direction hqn computed by means of this
matrix is sure to be downhill. This property can be achieved by rank-
two updates, and and in the next two sections we describe two methods
based on that.

3.4. The DFP formula

This updating formula was proposed by Davidon in 1959 and was later
developed by Fletcher and Powell in 1963. A proper derivation of this
formula is very lengthy, so we confine ourselves to the less rigorous pre-
sentation given by Fletcher in [19].

A symmetric rank-two formula for updating the inverse Hessian can
be written as

Dnew = D + u uT + v vT .

We insert this in the quasi–Newton condition (3.20) and get

h = D y + u uT y + v vT y .

With two updating terms there is no unique determination of u and v,
but Fletcher points out that an obvious choice is to try

u = α h , v = βD y .

Then the quasi–Newton condition will be satisfied if uT y = 1 and
vT y =−1, and this yields the formula

Definition 3.23. DFP updating

Dnew = D +
1

hT y
h hT − 1

yT v
v vT ,

where h = xnew − x , y = ∇f(xnew) − ∇f(x) , v = D y .

The DFP formula dominated the field of quasi–Newton methods for
more than a decade, and it was found to work well. Traditionally it
is combined with exact line search, but it may also be used with soft
line search as we shall see in a moment. In general it is more efficient
than the conjugate gradient method, cf Section 2.7. A method with
this updating formula and exact line search has the following important
properties:

On quadratic objective functions with positive definite Hessian:
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1◦ it terminates in at most n iterations with Dnew =
(
∇2f(x̂)

)−1
,

2◦ it generates conjugate directions,

3◦ it generates conjugate gradients if D0 = I .

On general functions:

4◦ it preserves positive definite D-matrices if hqn
T y> 0 in all steps,

5◦ it gives superlinear final convergence,

6◦ it gives global convergence for strictly convex objective functions.

Here we have a method with superlinear final convergence. Methods
with this property are very useful because they finish the iteration with
fast convergence. Also, in this case

‖x̂ − xnew‖ ≪ ‖x̂ − x for k → ∞ ,

implying that ‖xnew − x‖ can be used to estimate the distance from x

to x̂.

Example 3.8. The proof of property 4◦ in the above list is instructive, and
therefore we give it here:

Assume that D is positive definite. Then its Cholesky factorization exists:
D = CT C, and for any non-zero z ∈R

n we use Definition 3.23 to find

zT Dnew z = xT D z +
(zT h)2

hT y
− (zT Dy)2

yT Dy
.

We introduce a =C z, b=C y and θ= ∠(a, b), cf (2.13), and get

zT Dnew z = aT a − (aT b)2

bT b
+

(zT h)2

hT y

= ‖a‖2
(
1 − cos2 θ

)
+

(zT h)2

hT y
.

If hT y> 0, then both terms on the right-hand side are non-negative. The
first term vanishes only if θ= 0, ie when a and b are proportional, which
implies that z and yare proportional, z = β y with β 6=0. In this case
the second term becomes (βyT h)2/hT y which is positive due to the basic
assumption. Hence, zT Dnew z > 0 for any non-zero z and Dnew is
positive definite.

The essential condition hT y> 0 is called the curvature condition be-
cause it can be expressed as

hT ∇f(xnew) > hT ∇f(x) . (3.24)
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Notice that this condition will be satisfied when xnew is found by a
successful line search: According to (2.17) – (2.18) we have

hT ∇f(xnew) = γ ϕ′(αs) > γ ϕ′(0) = hT ∇f(x) .

Here ϕ is the line search function from x in direction hcg, cf Section 2.3,
and γ = ‖h‖/‖hcg‖.

The DFP formula with exact line search works well in practice and has
been widely used. When the soft line search methods were introduced,
however, the DFP formula appeared less favourable because it sometimes
fails with a soft line search. In the next section we give another rank-
two updating formula which works better, and the DFP formula only has
theoretical importance today. The corresponding formula for updating
approximations to the Hessian itself is (see for instance [19, Section 3.2])

Definition 3.25. DFP updating for B

Bnew = B +
1

hT y

((
1 +

hT u

hT y

)
y yT − y uT − uyT

)
,

where h = xnew − x , y = ∇f(xnew) − ∇f(x) , u = B h .

Combining this with Definition 3.23, it is easy to see that if both B

and D symmetric, then also Bnew and Dnew are symmetric. It is not
difficult (but a bit tedious) to show that if B and D satisfy B D = I,
then also Bnew and Dnew are each other’s inverse.

3.5. The BFGS formulas

The final updating formulas to be discussed in this chapter are known as
the BFGS formulas. They were discovered independently by Broyden,
Fletcher, Goldfarb and Shanno in 1970. These formulas are the most
popular of all the updating formulas described in the literature.

As we saw with the DFP formula, the BFGS formulas are difficult to
derive directly from the requirements. However, they arrive in a simple
way through the concept of duality , which will be discussed briefly here.
Remember the quasi–Newton conditions (3.19) – (3.20):

Bnew h = y and Dnew y = h .

These two equations have the same form, except that h and y are inter-
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changed and Bnew is replaced by Dnew. This implies that any updating
formula for B which satisfies (3.19) can be transformed into an updating
formula for D. Further, any formula for D has a dual formula for B

which is found by the substitution D ↔ B and h ↔ y . Performing
this operation on the DFP formulas in definitions 3.23 and 3.23 yields
the following updating formulas,

Definition 3.26. BFGS updating for B

Bnew = B +
1

hT y
y yT − 1

hT u
u uT ,

where h = xnew − x , y = ∇f(xnew) − ∇f(x) , u = B h .

BFGS updating for D

Dnew = D +
1

hT y

((
1 +

yT v

hT y

)
h hT − hvT − v hT

)
,

where h and y are defined above and v = D y .

These updating formulas have much better performance than the
DFP formulas; see [43] for an excellent explanation why this is the case.
If we make the dual operation on the BFGS updates we return to the
DFP updatings, as expected. The BFGS formula produces a sequence
of B-matrices which converges to ∇2f(x̂) and the first DFP formula

produces D-matrices which converge to
(
∇2f(x̂)

)−1
.

The BFGS formulas are always used together with soft line search and
as discussed above the line search should be initiated with the full quasi–
Newton step in each iteration step, ie the initial α in Algorithm 2.20
should be one. Experiments show that it should be implemented with
a very loose line search; typical values for the parameters in (2.18) are
β1 = 10−4 and β = 0.9.

The properties 1◦ – 6◦ of the DFP formula also hold for the BFGS
formulas. Moreover, Powell has proved a better convergence result for
the latter formulas namely that they will also converge with a soft line
search on convex problems. Unfortunately, convergence towards a sta-
tionary point has not been proved for neither the DFP nor the BFGS
formulas on general nonlinear functions – no matter which type of line
search. Still, BFGS with soft line search is known as the method which
never fails to come out with a stationary point.
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3.6. Implementation of a quasi–Newton method

In this section we shall give some details of the implementation of a
quasi–Newton algorithm. We start by giving a version which is adequate
for student exercises and preliminary research, and finish by discussing
some modifications needed for professional codes. Based on the discus-
sion in the previous sections we have chosen a BFGS updating formula
for the inverse Hessian.

Algorithm 3.27. Quasi–Newton method
with BFGS updating

begin
x := x0; D := D0; k := 0; v := 0 {1◦}
while ‖∇f(x)‖ > ε and k < kmax and v < vmax

hqn := D (−∇f(x))
[xnew, dv] := line search(x,hqn) {2◦}
v := v + dv; k := k+1 {3◦}
h := xnew − x; y = ∇f(xnew) − ∇f(x)
if hT y > εM

1/2 ‖h‖2 ‖y‖2 {4◦}
Use (3.26) to update D

x := xnew

end

Remarks:

1◦ Initialize. k and v count iterations and number of function evalua-
tions, respectively, and we are given upper bounds on each of these,
kmax and vmax.
It is traditionally recommended to use D0 = I, the identity matrix.
This matrix is, of course, positive definite and the first step will be
in the steepest descent direction.

2◦ We recommend to use soft line search, for instance an implementa-
tion of Algorithm 2.20. It is important to notice that all the function
evaluations take place during the line search, and we assume that
the new function and gradient values are returned together with
xnew and the number dv of function evaluations used during the line
search.

3◦ Update iteration and function evaluation count.
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4◦ εM is the computer accuracy. This sharpening of the curvature con-
dition (3.24) is recommended by [14] as an attempt to keep the
D-matrices significantly positive definite.

For large values of n it may be prohibitive to store and work with
the n×n matrix D. In such cases it is often a good idea to use a limited
memory BFGS method. In such an algorithm one keeps a few, say
p, p≪ n, of the most recent h and y vectors and use these to compute
an approximation to hqn = −D ∇f(x). See [44, Chapter 9] for an
excellent presentation of these methods.

Example 3.9. We have tried different updating formulas and line search
methods to find the minimizer of Rosenbrock’s function, cf Examples 2.8
and 3.5. The line search parameters were chosen as in Example 2.8.

With the starting point x0 =
(
−1.2 1

)
T , the following numbers of

iteration steps and evaluations of f(x) and ∇f(x) are needed to satisfy
the stopping criterion ‖∇f(x)‖ ≤ 10−10.

Update by Line search # it. steps # fct. evals
DFP exact 23 295
DFP soft 31 93
BFGS exact 23 276
BFGS soft 36 40

The results are as expected: BFGS combined with soft line search needs
the smallest number of function evaluations to find the solution. This
choice is illustrated below. As in Figures 2.11 and 3.4 we show the iterates
and the values of f(xk) and ‖∇f(xk)‖∞. As with the Damped Newton
method we have superlinear final convergence.

The numbers of iterations and function evaluations are both slightly larger
than in Example 3.5. Note, however, that with Algorithm 3.27 each eval-
uation involves f(x) and ∇f(x), while each evaluation in the Damped
Newton Method also involves the Hessian ∇2f(x). For many problems
this is not available. If it is, it may be costly: we need to compute 1

2n(n+1)

elements in the symmetric matrix ∇2f(x), while ∇f(x) has n elements
only.
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Figure 3.5. BFGS with soft line search, applied to
Rosenbrock’s function.
Top: iterates xk. Bottom: f(xk) and ‖∇f(xk)‖∞.
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Chapter 4

Direct Search

4.1. Introduction

This chapter is a short introduction to a class of methods for uncon-
strained optimization, which use values of the objective function
f : R

n 7→ R, but rely on neither explicit nor implicit knowledge of the
gradient. These methods are known as direct search methods, and spe-
cial variants have names like pattern search methods, genetic algorithms,
etc.

Example 4.1. Probably the simplest method is the so-called coordinate search.
The basic ideas can be introduced by looking at the case n=1. Given a
starting point x and a step-length ∆, the basic algorithm is

if f(x+∆) ≥ f(x) then ∆ := −∆
while f(x+∆) < f(x) do x := x+ ∆

This is illustrated in Figure 4.1.

Figure 4.1. Basic
coordinate search.

x x+∆x−∆x−2∆· · ·
It follows that if |∆| is small, then then the location of the (local) mini-
mizer may involve many function evaluations. Therefore one should start
with a ∆ that reflects the expectation on the distance from the starting
guess x to the minimizer. To get better accuracy the algorithm can be
restarted from the currently best x with a reduced value for the step-
length. This is repeated until ∆ is sufficiently small.



68 4. Direct Search

Coordinate search consists in using the above algorithm consecutively in
the n coordinate directions, ie when we work in the jth direction, we
keep the other coordinates fixed. One has to loop several times through
the coordinates since a change in one variable generally will change the
minimizer with respect to the other variables. Typically, the step-length
is kept constant during a loop through the components, and is reduced
before the next loop.

The method is simple to implement, but it is not efficient. Also, there is
a severe risk that the iterates are caught i Stiefel’s cage, cf Examples 1.2
and 2.5. There are two reasons why we discuss this method. First, it gives
a simple introduction to some of the ideas used in the more advanced
methods described in the following sections. Second, we want to warn
against using this method except, maybe, to get a crude approximation
to the solution.

4.2. The Simplex method

This method is also known as the Nelder–Mead method, named after the
people who first gave a thorough discussion of it, [37]. An n-dimensional
simplex is formed by a set of n+1 points in R

n, the vertices. In a regular
simplex all distances between any two vertices is the same. A regular
simplex in R

2 is an equilateral triangle.
The basic idea in the simplex method is to take the vertex with

largest function value and get a new simplex by reflecting this point in
the hyperplane spanned by the other points.

Example 4.2. Figure 4.2 illustrates the behaviour of the basic simplex method
applied to Rosenbrock’s function from Example 2.8. We use a regular
simplex with side-length 0.25.

The point marked by a star is the first to be reflected in the opposite side,
and the reflections are marked by dotted lines. Progress stops because
the point marked by a box “wants” to be flipped back to its previous
position. The vertex indicated by a circle has the smallest value, and we
might proceed searching with a simplex that involves this vertex and has
a smaller side.
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Figure 4.2. Basic
simplex method. 0 0.2 0.4 0.6 0.8 1
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In n dimensions let v1, . . . ,vn+1 denote the vertices of the current
simplex and let vp be the vertex with largest function value. Then

vc =
1

n

∑

j 6=p

vj

is the centroid of the other vertices and vp is replaced by

vr = vc + αh , h = vc − vp , (4.1)

where α= 1 gives the reflected point. Advanced implementations allow
the simplex to change form during the iterations. It may expand in
directions along which further improvement is expected. If, for instance
, f(vr) < min{f(vi)} in the current simplex, we might try a new vertex
computed by (4.1) with α> 1. Similarly, 0<α< 1 leads to a contraction
of the simplex.

Example 4.3. We consider the same problem and the same initial simplex as
in Example 4.2, but now we use the ideas sketched above:

vr := vc + h

if f(vr) < min{f(vi)} then
vs := vc + 2h

if f(vs) < f(vr) then vr := vs

elseif f(vr) > maxj 6=p{f(vj)} then
vs := vc + (1/3)h
if f(vs) < f(vr) then vr := vs

end

Figure 4.3 shows the results. The trial points are marked by dots. As
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Figure 4.3. Simplex
method with expansions
and contractions. 0 0.2 0.4 0.6 0.8 1
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in Example 4.2 iterations stop when vp is the new vertex in the new
simplex, and we might start a new search with a simplex involving the
vertex marked by a circle, and which has reduced side-lengths. We refer
to [42, Section 2.6] for more information.

4.3. The method of Hooke and Jeeves

This is the classical example of a pattern search method : The algorithm
attempts to find a pattern in the computed function values and to exploit
this in the determination of the minimizer. The method can be explained
as follows.

Given a starting point x and a step length δ, the algorithm explores
the neighbourhood of x to find a better point x̃. Next explore around
the point z = x̃ + (x̃ − x), as indicated by the “pattern”. The process
is repeated as long as we get a better point. Eventually the function
value stops reducing, but then a reduction of the step-length may lead
to further progress. The combined algorithm may be expressed in terms
of an auxiliary function explore and a main procedure move.

We have the following remarks:

1◦ ej denotes the jth unit vector, equal to the jth column in the identity
matrix I.

2◦ Pattern move. x̃ is the currently best point, and z is a so-called
base point.
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Algorithm 4.2. Explore

Given x and ∆
begin

x̂ := x

for j = 1 to n do
x̂j := argmin{f(x̂−∆ej), f(x̂), f(x̂+∆ej)} {1◦}

end
end

Algorithm 4.3. Move

Given x and ∆
begin

x̂ := explore(x,∆)
repeat

if f(x̂) < f(x) then
z := x̂ + (x̂ − x); x := x̂ {2◦}

else
z := x; ∆ := ∆/2 {3◦}

end
x̂ := explore(z,∆)

until stop {4◦}
end

3◦ Progress stalled at x; try a smaller step-length.

4◦ Simple stopping criteria are: stop when ∆ is sufficiently small or
when the number of function evaluations has exceeded a given limit.

Example 4.4. The method is illustrated in Figure 4.4 for a hypothetical func-
tion f : R

2 7→ R.
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Figure 4.4. Hooke and Jeeves method.

Base points and the x̂-points are marked by ◦ and ⋆, respectively. Itera-
tion starts at the upper left base point and it is seen that the steps from
one x to the next may increase during the process. The last x̂ has a larger
function value than the currently best point, marked by an arrow, and a
new search with reduced step-length can be started from that point.

When implementing the method care should be taken to avoid re-
evaluation of f for the same argument. At 1◦ for j > 1 we already know
f(x̂) for the current x̂, and explore should return not only the final x̂ but
also the corresponding function value. A good implementation should
also allow the use of different step-lengths in different directions.

4.4. Final Remarks

There is an abundance of direct methods. Many of them use the basic
ideas outlined in the previous sections and deal with better choices of the
“generating set”, for instance Rosenbrock’s method, where the simple
coordinate directions of Hooke and Jeeves are replaced by a set of or-
thogonal directions in R

n, successively updated during the iterations; see
[42, Section 2.5]. Other methods involve considerations of the computer
architecture, for instance the parallel version of multi-directional search
described in [52]. A very readable discussion of convergence properties
of this type of methods is given in [53].

Genetic algorithms and random search methods have proven success-
ful in some applications, see for instance [28] and [5]. These methods do
not rely on a systematic generating set.
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This is also the case for methods that can be listed under the head-
ing surrogate modelling. Here the points xk and function values f(xk)
computed during the search are used to build and successively refine a
model of (an approximation to) the behaviour of the objective function;
see for instance [4], [50] and [32].
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Chapter 5

Linear Data Fitting

Given data points (t1, y1), . . . , (tm, ym), which are assumed to satisfy

yi = Υ(ti) + ei . (5.1)

Υ is the so-called background function and the {ei} are (measurement)
errors, often referred to as “noise”. We wish to find an approximation
to Υ(t) in the domain [a, b] spanned by the data abscissas. To do that
we are given (or we choose) a fitting model M(x, t) with arguments t
and the parameters x = (x1, . . . , xn)T . We seek x̂ such that M(x̂, t) is
the “best possible” approximation to Υ(t) for t∈ [a, b]. In all data fitting
problems the number of parameters is smaller than the number of data
points, n < m.

Example 5.1. As a simple example consider the data

ti yi

−1.5 0.80
−0.5 1.23

0.5 1.15
1.5 1.48
2.5 2.17

−1.5 2.5

2

t

y

Figure 5.1.

Figure 5.1 shows the data points and the model M(x, t) = x1t+ x2 with
the parameter values x1 = 0.2990, x2 = 1.2165.

This problem is continued in Example 5.5.

Example 5.2. The 45 data points shown by dots in Figure 5.2 can be fitted
with the model

M(x, t) = x1e
−x3t + x2e

−x4t . (5.2)
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In the figure we give the fit for two different choices of the parameters,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4
y

t

Figure 5.2. Data points and fitting model (5.2) ,

full line: x̃ =
(
4.00 −4.00 4 5

)T
,

dashed line: x̆ =
(
0.84, −0.66, 2, 4

)T
.

The first choice of parameters seems to be better than the other. Actually,
the data points were computed by adding noise to the values given by
Υ(ti) = M(x̃, ti), so in this case Υ(t) = M(x̂, t) with x̂ = x̃.

Example 5.3. Now we consider the first 20 of the data points in Example 5.2,
and try to fit them with a polynomial of degree d,

M(x, t) = x1t
d + x2t

d−1 + · · · + xdt+ xd+1 . (5.3)

(Note that the parameter vector has n = d+1 elements).

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

d = 3

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

d = 9

Figure 5.3. Data points and fit with polynomials.

The figure shows the “least squares fit” (which is defined in Section 5.1) for
two different choices of d. To the left we give the result for d = 3 (full line)
and also show Υ(t) (dashed line). It is seen that in this domain a degree 3
polynomial is a very good approximation to Υ. The other figure illustrates
that if we take d large, then we do not get the desired smoothing. The
polynomial is flexible enough to follow not only the background function
but also the noise.

This chapter is focussed on linear data fitting , ie on how to compute a
good estimate for the parameters in the model, when it depends linearly
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on the parameters. This means that the fitting model has the form

M(x, t) = x1φ1(t) + · · · + xnφn(t) , (5.4)

where the {φj} are given, so-called basis functions. The model (5.2)
is not linear since it depends nonlinearly on x3 and x4. We refer to
Chapter 6 about estimation of the parameters in nonlinear models.

Before specifying what is meant by “a good estimate” x∗ for the pa-
rameters, we want to mention that data fitting has two slightly different
applications,

Parameter estimation. Together with measurements of a physical
phenomenon we are given the model M(x, t). Often the parameters
have physical significance.

Data representation. We wish to approximate some data, which may
come from experiments. In this case we are free to choose the model for
approximating the background function, and should take the following
points into consideration in the choice of M ,

1◦ If x is close to x̂, then M(x, t) should be close to Υ(t).

2◦ The determination of x̂ should be robust against a few wild points,
ie points with exceptionally large errors.

3◦ The determination of x̂ should simple.

4◦ The evaluation of M(x, t) for given t should be simple.

5◦ Available software.

The two cases are closely related, especially as regards points 2◦, 3◦

and 5◦.

5.1. “Best” fit

A simple measure of the quality of the fit is provided by the vertical
distances between the data points and the corresponding values of the
model. These are the absolute values of the residuals, which depend on
the parameters in x,

ri = ri(x) ≡ yi −M(x, ti) . (5.5)
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By combining this with (5.1) we see that

ri(x) =
(
yi − Υ(ti)

)
+
(
Υ(ti) −M(x, ti)

)
≡ ei + αi . (5.6)

This shows that each residual is the sum of noise ei and approximation
error αi. By choosing x so that some measure of the {ri(x)} is mini-
mized, it is reasonable to expect that also the approximation errors are
small.

In this section we use a weighted p–norm to measure the {ri(x)}.
The commonly used norms are

‖W r‖1 = |w1r1| + · · · |wmrm| ,

‖W r‖2 =
(
|w1r1|2 + · · · |wmrm|2

)1/2
,

‖W r‖∞ = max {|w1r1|, . . . |wmrm|} ,

and the “best” set of parameters is defined as

x(w,p) = argmin
x ∈ R

n
{ Ωp(W ,x) ≡ ‖W r‖p } . (5.7)

Here, W = diag(w1, . . . , wm), where the weight wi ≥ 0 is small/large if
|ei| is expected to be large/small. We return to this aspect in Section 5.4.

In the remainder of this section we shall assume that all weights are
equal. It can be seen that x(βw,p) = x(w,p) for any scalar β, so that we
can use W = I in all cases with equal weights. Therefore we shall omit
W from the notation ( Ωp(x) = Ωp(I,x) and x(p) = x(I,p)) and only
need to discuss p. We say that x(p) is the Lp estimator.

The choice p = 2 is most widely used. This leads to the so-called
“least squares fit”, since it corresponds to minimizing the sum of the
squares of the residuals. In Example 5.5 and Section 5.2.1 we shall show
why it is so popular. This choice is sometimes called the L2-fit. In
some applications the L1-fit (“least absolute deviation”) or the L∞-fit
(“minimax-fit”) is preferred, see Chapter 7. In many cases x(p) is almost
independent of p. In the remainder of this book we normally use the
shorter notation x̂ for the least squares solution x(2).

Example 5.4. Consider the simple case, where n = 1 and M(x, t) = x, ie,
ri = yi − x. Then

(Ω2(x))
2

= (y1 − x)2 + · · · + (ym − x)2

= mx2 − 2(
∑
yi)x+

∑
y2

i .

This function (and therefore Ω2(x)) is clearly minimized by taking x =
x(2) defined by
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x(2) = 1
m

∑m
i=1 yi .

This is recognized as the mean (or average) of the {yi}. It is also easy to
see that

x(∞) = 1
2 (min{yi} + max{yi}) ,

while it takes a bit more effort to see that

x(1) = median(y1, . . . , ym) ,

where the median is the middle value; for instance median(5, 1, 2) = 2
and median(3, 5, 1, 2) = 2.5 .

These three estimates have different response to wild points . To see this,
let yK = max{yi} and assume that this changes to yK+∆, where ∆ > 0.
Then the three minimizers change to x(p)+δ(p), and it follows from the
above that

δ(2) =
∆

m
, δ(∞) =

∆

2
, δ(1) = 0 .

This indicates why the L1-estimator is said to be robust .

Example 5.5. The straight line in Figure 5.1 is the least squares fit with the
model M(x, t) = x1t+ x2. We find

x(2) =

(
0.299
1.216

)
with ‖r(x(2))‖2 = 0.388 .

For the same data we find

x(∞) =

(
0.313
1.190

)
with ‖r(x(∞))‖∞ = 0.197 ,

while the L1-fit is not unique: All

x(1) =

(
0.227
1.140

)
+ α

(
2
3

)
for 0 ≤ α ≤ 0.0579

give the same minimal value ‖r(x(1))‖1 = 0.770. This is illustrated in
Figure 5.4. To the left we show the minimax fit; note that r2 = −r3 =
r5 = ‖r(x(∞))‖∞. To the right the dashed lines correspond to the extreme
values of the L1-estimators. The solutions correspond to a line rotating
around the first data point, and for all lines in that angle it is realized
that r1 = 0 and the sum of the absolute values of the other residuals
is constant. The two extreme cases correspond to r4 = 0 and r5 = 0,
respectively.

Figure 5.5 shows level curves of the functions Ωp(x), p=1, 2,∞, cf page 3.
We give the curves corresponding to Ω1 = 0.78 + .15k, Ω2 = 0.4 + 0.1k
and Ω∞ = 0.22 + 0.1k for k = 0, 1, . . . , 9.

The figure shows that the least squares and the minimax problems have
well defined minima, while the long “valley” for p = 1 reflects that there
is not a unique L1 minimizer. The figure also shows that Ω2(x) is smooth,
while the level curves for the other two cases have kinks. This makes it
easier to compute x(2) than the other two estimators.
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Figure 5.4. L∞ and L1 fitting with a straight line.
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Figure 5.5. Contours for Ωp(x) = ‖r(x)‖p.

Finally, Figure 5.6 shows the fits when
the data point (t5, y5) is changed from
(2.5, 2.17) to (2.5, 4). The full and the
dash-dotted lines are the least squares
and minimax fits, respectively, and as in
Figure 5.4 the dashed lines border the
range of L1-fits. The parameter values
are

x(2) =

(
0.665
1.400

)
, x(∞) =

(
0.800
1.140

)
,

and x(1) can be expressed as above, ex-
cept that the α-range is increased to
0 ≤ α ≤ 0.102. As in Example 5.4 we
see that the L1-fit is more robust than
the other two.

−1.5 2.5

4

t

y

Figure 5.6. Wild point.
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5.2. Linear least squares fit

For a linear model (5.4),

M(x, t) = x1φ1(t) + · · · + xnφn(t) ,

the residuals (5.5) have the form

ri(x) = yi −
(
x1φ1(ti) + · · · + xnφn(ti)

)
.

This implies that



r1(x)
...

ri(x)
...

rm(x)




=




y1
...
yi
...
ym




−




φ1(t1) . . . φn(t1)
...

...
φ1(ti) . . . φn(ti)

...
...

φ1(tm) . . . φn(tm)






x1
...
xn



,

or
r(x) = y − F x , (5.8)

where F is the m×n matrix defined by (F )ij = φj(ti).

Example 5.6. The model (5.2) is linear if x3 and x4 are given. In that case we
can use (5.8) with n = 2 and the ith row in F is F i,: = (e−x3ti e−x4ti).
If the {ti} are equidistant with ti+1 = ti + h, then F i+1,: = gT .* F i,:,
where gT =

(
e−x3h e−x4h

)
and .* denotes element-wise (or Hadamard)

product.

The polynomial model (5.3) is linear; n = d+1, all (F )i,n = 1, and

F :,j = t .* F :,j+1 , j = d, d−1, . . . , 1 ,

where t is the vector t = (t1, . . . , tm)
T

and F :,j is the jth column in F .

5.2.1. Normal equations

The linear data fitting problem can be reformulated as follows: Given
the overdetermined linear system

F x ≃ y , F ∈ R
m×n, y ∈ R

m, m > n . (5.9)

We seek a vector x∈R
n such that Fx is as close as possible to y in

the least squares sense. This is obtained when x= x̂, a minimizer of the
objective function

f(x) = 1
2 ‖r(x)‖2

2 = 1
2 r(x)T r(x)

= 1
2 xT F T F x − xT F T y + 1

2 yT y .
(5.10)
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This is a function of the form discussed in Theorem 1.7. The matrix
A = F T F has the elements

(A)jk = F T
:,jF :,k =

m∑

i=1

φj(ti)φk(ti) = (A)kj . (5.11)

This shows that A is symmetric, AT = A, so ∇2f(x) = F T F for all x,
and the requirement that x̂ be a stationary point takes the form

∇f(x̂) = F T F x̂ − F T y = 0 . (5.12)

Now, for any u∈R
n

uT A u = uT F T F u = vT v ≥ 0 . (5.13)

This shows that A is positive semidefinite, cf Appendix A.2. Further, if
F ∈R

m×n (with n<m) has linearly independent columns (rank(F ) =
n), then u 6=0 ⇒ v = Fu 6=0, and (5.13) shows that uT A u> 0, ie,
A is positive definite in this case, implying a unique solution to (5.12).
Thus we have proved the following theorem.

Theorem 5.14. A least squares solution to the system (5.9) can
be found as a solution x̂ to the so-called normal equations,

Ax = b with A = F T F , b = F T y . (5.15)

If F has linearly independent columns, then x̂ is unique.

Thus, when the model is linear the parameters of the least squares fit
are determined by the linear, quadratic system of equations (5.15). The
determination of x(p) for any other choice of p is a nonlinear problem
and must be solved by iteration. This is part of the reason that least
squares fitting is so popular, and in the remainder of this chapter we
shall stick to that, but refer to Chapter 7 about other choices of norm.
Another reason for the popularity is that the statistical aspects are much
better understood in this case, see Section 5.3.

Example 5.7. With the data from Example 5.1 and the model M(x, t) =
x1t+ x2 we get

F =




−1.5 1
−0.5 1

0.5 1
1.5 1
2.5 1




, y =




0.80
1.23
1.15
1.48
2.17




,
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A =

(
11.25 2.5
2.5 5

)
, b =

(
6.405
6.830

)
.

As stated in Example 5.5, the solution to Ax = b is x̂ =
(
0.2990 1.2165

)T
.

Example 5.8. The jth column of F contains the values φj(ti), i = 1, . . . ,m.
Thus, a necessary condition for rank(A) = n is that the functions {φj} are
linearly independent. This is not sufficient, however. As a counterexample
let φj(t) = sin jπt, which are linearly independent, but if ti = i, i =
1, . . . ,m, then F = 0 with rank zero.

At the other extreme suppose that the basis functions are orthogonal over
the data abscissas, ie,∑m

i=1 φj(ti)φk(ti) = 0 for j 6= k .

According to (5.11) the matrix A is diagonal in this case, and the least
squares fit is given by

xj = bj/ajj = (
∑m

i=1 φj(ti)yi) /
∑m

i=1(φj(ti))
2 , j = 1, . . . , n .

Note that each component of x = x̂ is independent of the other compo-
nents. This is not true in the general case.

Provided that A is positive definite, the normal equations can be solved
efficiently and accurately via a Cholesky or an LDLT factorization, cf
Appendix A.2.

It is instructive to give an alternative derivation of the normal equa-
tions: The vector z = F x lies in R(F ), the range of F . This is the
subspace of R

m which is spanned by the columns of F . The situation is
illustrated below in the case m = 3, n = 2.
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Figure 5.7. Range and residual vector.

We wish to minimize the distance between the vectors F x and y as
measured by ‖r‖2 = ‖y−Fx‖2. However, ‖u‖2 is equal to the Euclidean
length of the geometric vector −→u whose coordinates are the elements of
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the vector u. The minimum length of −→r is obtained if this vector is
orthogonal to R(F ), ie zT r = 0 for every z ∈R(F ). This is equivalent
to the condition

F T r(x(2)) = 0 ,

and by inserting (5.8) we recognize this condition as the normal equa-
tions.

5.2.2. Sensitivity

Suppose that (5.9) is changed from Fx ≃ y to

(F + ∆)x ≃ y + δ , F ,∆ ∈ R
m×n, y, δ ∈ R

m,

with least squares solution x̂+γ. What can we say about γ if δ and ∆
are not known explicitly, but we are given bounds on the sizes of their
elements?

To answer that question we first note that from the above it follows
that the least squares solution to an overdetermined system of equations
is a linear function of the right-hand side. We shall express this as

x̂ = F †y , (5.16)

where F † ∈R
n×m is the so-called pseudo-inverse of F .

Next, for a general matrix B ∈R
m×n we introduce the condition num-

ber
κ(B) = ‖B‖2‖B†‖2 , (5.17)

where ‖B‖2 is the matrix norm

‖B‖2 = max
x6=0

{‖B x‖2/‖x‖2} . (5.18)

It can be shown that

‖B†‖2 = max
x6=0

{‖x‖2/‖B x‖2} .

The condition number is a measure of the linear independence of the
columns of B. If they are (almost) linearly dependent, then ‖B x‖2 can
be much smaller than ‖x‖2, so ‖B†‖2 and therefore κ(B) is (almost) ∞.

Now we are ready to answer the question at the start of this subsec-
tion:
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Theorem 5.19. Let Fx ≃ y and (F +∆)x ≃ y +δ have the least
squares solutions x̂ and x̂+γ, respectively, and let

η ≡ ‖F †‖2‖∆‖2 = κ(F )
‖∆‖2

‖F ‖2
.

If F has full rank and η < 1 then also F +∆ has full rank, and

‖γ‖2

‖x̂‖2
≤ κ

1 − η

( ‖δ‖2

‖F x̂‖2
+

‖∆‖2

‖F ‖2

(
1 + κ

‖r̂‖2

‖F x̂‖2

))
,

where κ = κ(F ) and r̂ = y − F x̂.

Proof. See [3, Section 1.4] or [30, Chapter 9]). �

The last term in the estimate of the relative change disappears if
∆ = 0 or if the problem is consistent , ie, if r̂ = 0 ⇔ y ∈R(F ), cf
Figure 5.7. Otherwise, it should be noted that the relative change in the
parameters may grow as (κ(F ))2.

5.2.3. Solution via orthogonal transformation

In this section we shall discuss an alternative method for computing the
least squares solution to the overdetermined system

F x ≃ y , F ∈ R
m×n, y ∈ R

m, m > n .

Given a vector u∈R
m and an orthogonal matrix Q∈R

m×m. The vec-
tor ũ = QT u is an orthogonal transformation of u. In Appendix A.4 we
show that an orthogonal transformation preserves the 2-norm, ‖QT u‖2 =
‖u‖2, and by proper choice of Q this can be used to simplify the least
squares problem.

This choice of Q is given by the QR factorization of the matrix F ,
cf (A.21),

F = Q

(
R

0

)
=
(

Q̂ Q̆

)(
R

0

)
= Q̂R . (5.20)

Here, Q∈R
m×m is an orthogonal matrix and R∈R

n×n is upper triangu-
lar. The two submatrices of Q consist respectively of the first n and the
last m−n columns, Q̂ = Q:,1:n and Q̆ = Q:,n+1:m. The last expression
in (5.20) is the so-called economy sized (or thin) QR-factorization.

The matrices Q̂∈R
m×n and Q̆∈R

m×(m−n) have orthonormal columns.
They satisfy

Q̂T Q̂ = I(n), Q̆T Q̆ = I(m−n), Q̂
T
Q̆ = 0 , (5.21)
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where the index on I gives the size of the identity matrix and 0 is the
n×(m−n) matrix of all zeros.1)

Now we can formulate the alternative method for finding the least
squares solution:

Theorem 5.22. Let the matrix F ∈R
m×n have the QR factoriza-

tion (5.20). Then the least squares solution to the overdetermined
system Fx ≃ y is found by back substitution in the upper triangu-
lar system

R x̂ = Q̂T y , (5.23)

and the corresponding residual satisfies

‖r(x̂)‖2 = ‖Q̆T y‖2 .

Proof. Using the norm-preserving property of an orthogonal transfor-
mation and the splitting of Q we see that

‖r(x)‖2 = ‖QT (y − F x) ‖2 =

∥∥∥∥
(

Q̂T y − Rx

Q̆T y

)∥∥∥∥
2

.

From this expression and the definition (A.1) of the 2-norm it fol-
lows that

‖r(x)‖2
2 = ‖Q̂T y − Rx‖2

2 + ‖Q̆T y‖2
2 , (5.24)

and the minimum norm is obtained when Q̂T y −Rx = 0, which is
equivalent to (5.23). The expression for the minimum norm of the
residual also follows from (5.24). �

Example 5.9. The least squares solution defined by Theorem 5.22 is identical
to the x̂ defined by the normal equations in Theorem 5.14,

Ax = b with A = F T F , b = F T y .

We express F by means of (5.20), and since Q̂T Q̂ = I, we get A =

RT Q̂T Q̂ R = RT R, so the normal equations are equivalent to
(
RT R

)
x̂ = RT Q̂T y .

We assume that F has full rank. Then (RT )−1 exists, and by multiplying
with it on both sides of the above equation we get (5.23). Thus, we
have shown that the two ways to compute x∗ give the same result –

1) The two matrices are not orthogonal: both Q̂ Q̂T ∈R
m×m and Q̆ Q̆T ∈R

m×m

are different from I(m).
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mathematically. The matrix A is symmetric and positive definite, and we
can use a Cholesky factorization A = CT C in the solution of the normal
equations. C is an upper triangular matrix, and it can be shown that
except for “row-wise sign” C is equal to R.

When the computation is done in finite precision the solution found via
orthogonal transformation is more accurate. In Appendix B.3 we show
that

κ(A) = (κ(F ))
2
. (5.25)

If the problem is ill-conditioned (ie κ(F ) is large), this may lead to
disastrous effects of rounding errors during the computation of x̂. Let
εM denote the machine precision. With respect to this the problem
must be considered as rank deficient if we use the normal equation with
κ(F )>∼ 1/

√
nεM. If the computation is done via orthogonal transforma-

tion, the results are reliable if κ(F )<∼ 1/(
√
mn εM). As an example let

εM = 2−53 ≃ 1.11·10−16, m= 100 and n=10 the two conditions are
κ(F )<∼ 3·107 and κ(F )<∼ 3·1014, respectively.

Example 5.10. In Matlab, let F and y hold the matrix and right-hand side
in the overdetermined system (5.9). Then the command

x = F \ y

returns the least squares solution, computed via orthogonal transforma-
tion.

5.2.4. Fundamental subspaces

In this section the QR factorization is related to the geometric approach
illustrated in Figure 5.7. The matrix F ∈R

m×n can be thought of as
the mapping matrix for a linear mapping R

n 7→ R
m, and we introduce

the following:2)

Definition 5.26. The four fundamental subspaces for the matrix
F ∈R

m×n are

Range of F : R(F ) = {y | y = F x, x ∈ R
n}

Range of F T : R(F T ) =
{
x | x = F T y, y ∈ R

m
}

Nullspace of F : N (F ) = {x ∈ R
n | F x = 0}

Nullspace of F T : N (F T ) =
{
y ∈ R

m | F T y = 0
}

These spaces are subspaces of R
m or R

n, and if F has rank p, p ≤
2) In Linear Algebra textbooks the nullspace is often denoted the kernel .
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min{m,n}, then the spaces have the following dimensions

R(F ) ⊆ R
m, dim(R(F )) = p ,

R(F T ) ⊆ R
n , dim(R(F T )) = p ,

N (F ) ⊆ R
n , dim(N (F )) = n−p ,

N (F T ) ⊆ R
m, dim(N (F T )) = m−p .

(5.27)

We shall discuss the two subspaces of R
m in the case where m ≥ n

and F has full rank, p = n.

Theorem 5.28. Let the matrix F ∈R
m×n have the QR factoriza-

tion

F = Q

(
R

0

)
=
(

Q̂ Q̆

)(
R

0

)
= Q̂R ,

and assume that rank(F ) = n ≤ m. Then R(F ) and N (F T ) are
spanned by the columns of Q̂ and Q̆, respectively:

R(F ) = span(Q:,1:n) , N (F T ) = span(Q:,n+1:m) .

Further, any vector y ∈R
m can be written as the sum of two or-

thogonal vectors, ŷ ∈R(F ) and y̆ ∈N (F T ),

y = ŷ + y̆ = Q̂ û + Q̆ ŭ , (5.29)

where the coordinates of y with respect to the basis given by the
columns in Q can be expressed as follows,

u = QT y , û = Q̂T y , ŭ = Q̆T y .

Proof. See Appendix B.4. �

Example 5.11. Now let y be the right-hand side in the overdetermined system
(5.9). The splitting (5.29) is illustrated in Figure 5.7 (for m= 3, n=2,
where −→z is the geometric vector corresponding to ŷ and r(x̂) = y̆. The
coordinates for ŷ are

û = R x̂ = Q̂T y .

This is seen to agree with (5.23). We return to the splitting in Section 5.3.
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5.3. Statistical aspects

This section deals with statistical aspects of linear data fitting. The
notation and basic concepts are introduced in Appendix A.7.

In linear data fitting we are given data points (ti, yi), i = 1, . . . ,m
and basis functions φj : R 7→ R, j = 1, . . . , n. We assume that

yi = Υ(ti) + ei , i = 1, . . . ,m , (5.30)

where Υ(t) is the background function and ei is an outcome of a random
variable Ei. We wish to approximate Υ(t) by the linear model

M(x, t) = x1φ1(t) + . . .+ xnφn(t) . (5.31)

The residual vector with components ri(x) = yi −M(x, ti) can be
expressed as

r(x) = y − F x = Υ + e − F x ,

where Υ = (Υ(t1) · · · Υ(tm))T , F ∈R
m×n has the elements (F )ij =

φj(ti), and e is an outcome of a random m-vector E with

E
[
E
]

= 0 , V
[
E
]

= E
[
E ET

]
= V .

5.3.1. Unweighted fit

First we consider the simplest case where

Assumption A0: V
[
E
]

= σ2 I

is satisfied, ie the errors are uncorrelated and all the Ei have the same
variance, σ2. It can be shown (see for instance [55]) that then the
maximum likelihood estimator of x is x̂ = argminx{‖r(x)‖2}, ie the
least squares solution discussed in Section 5.2. The estimator satisfies

F T r(x̂) = 0 .

We want to analyze statistical properties of the solution. In order
to simplify the analysis we introduce the QR factorization from Sec-
tion 5.2.3,

F = QR =
(

Q̂ Q̆

)(
R

0

)
= Q̂R .

According to (5.23) the vector x̂ solves the triangular system

R x̂ = û ; û = Q̂T y = Q̂T (Υ + e) , (5.32)
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and from (A.31) and the orthonormality of the columns in Q̂ it follows
that

E
[
û
]

= Q̂TΥ , V
[
û
]

= Q̂T
(
σ2I(m)

)
Q̂ = σ2I(n) . (5.33)

The indices indicate the different sizes of the identity matrices. Further,
from (5.32) we see that x̂ = R−1û, and (A.31) and (5.33) imply

E
[
X̂
]

= R−1E
[
Û
]

= R−1Q̂TΥ ,

and by applying (A.30) and exploiting that R−1 is upper triangular we
get

V
[
X̂j

]
= σ2

(
[R−1]2jj + · · · + [R−1]2jn

)
.

5.3.2. Estimating the variance

The residual r̂ = r(x̂) is orthogonal to the range of F , and as in Section
5.2.4 we see that it lies in span(Q̆),

r̂ = Ῠ + Q̆ ŭ , where Ῠ = Q̆ Q̆T Υ , ŭ = Q̆T e .

Similar to (5.33) we see that the vector ŭ ∈ R
m−n satisfies

E
[
Ŭ
]

= 0 , V
[
Ŭ
]

= σ2 I(m−n) , (5.34)

and by further application of the rules from Section A.7 we get

E
[
r̂
]

= Ῠ , (5.35)

E
[
r̂T r̂

]
= E

[
ῨT Ῠ + 2ῨT Q̆ ŭ + (Q̆ ŭ)T (Q̆ ŭ)

]

= ῨT Ῠ + 0 + E
[
ŭT Q̆T Q̆ ŭ

]

= ‖Ῠ‖2
2 + E

[
‖ŭ‖2

2

]
= ‖Ῠ‖2

2 + (m−n)σ2 . (5.36)

The vector Ῠ, the part of Υ which is orthogonal to R(F ), is identified
as the vector of approximation errors. If this is zero, it follows that

σ2 ≃ vn ≡ ‖r(x̂)‖2
2

m− n
. (5.37)

If Ῠ 6= 0, then (5.36) shows that the estimate vn defined by (5.37) can
be expected to give a value larger than σ2.
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Example 5.12. We have used polynomials of degree 0, 1, . . . , 9 (ie n =
1, 2, . . . , 10 parameters) to fit the 20 data points in Example 5.3. Fig-
ure 5.8 shows the values for the estimated variance, as computed by (5.37).

Figure 5.8. Variance estimates.
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We see that approximation error has marked influence on the first three
values, while vn ≃ 2.2·10−4 for n ≥ 4.

We give more examples of the behaviour of vn in Sections 5.6 and 5.7.

5.4. Weighted least squares

In this section we replace Assumption A0 by

Assumption A1: V
[
E ET

]
= diag(σ2

1 , . . . , σ
2
m) ,

where the σ2
i are known, except maybe for a common factor. Thus, we

still assume uncorrelated errors. We introduce weights

W = diag(w1, . . . , wm) with wi =
K

σi
,

where K is some constant, and see that the transformed problem

W y = W Υ + W e

satisfies E
[
(W E)(W E)T

]
= K2 I. Now we fit the data (5.30) with the

model (5.31) by means of weighted least squares,

x̂w = argminx{‖W (y − F x)‖2} . (5.38)

Proceeding as in Section 5.2.3 we compute the QR factorization of the
weighted matrix

WF = Q̂R ,

and find the solution by back substitution in
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R x̂w = Q̂T W y .

Further, we find that (5.33)–(5.34) hold with σ2 replaced by K2. This
means that

K2 ≃ vn ≡ 1

m− n

m∑

i=1

w2
i (yi −M(x̂w, ti))

2 . (5.39)

This estimate presumes that the approximation error is zero. If not,
then (5.39) is an overestimate of K2.

We end this section by some examples that may be helpful in the
proper choice of weights.

Example 5.13. Known variance. If the {yi} can be expected to have
the same absolute or the same relative error, then the relevant choice
of weights is wi = 1 and wi = 1/yi, respectively. If the errors can be
expected to follow a Poisson distribution (which, for instance, is the case
with results from a Geiger counter), the relevant weights are wi = 1/

√
yi.

Example 5.14. Estimate variance. The following algorithm, inspired by
[45, Section 3], may sometimes be useful for finding appropriate weights.

If the data points are sufficiently close, relative to the variation in the
background function, then a piecewise quadratic can give a good approxi-
mation to the local behaviour of Υ. To determine the piecewise quadratic
we select q, for instance q=2 or q= 3, and for i = q+1, . . . ,m−q we fit
a parabola to the data points (tj , yj), j = i−q, . . . , i−q. We can assume
that the “noise level is almost constant in this region, and use unweighted
fitting to determine the parabola, and (5.37) to compute s2i , an estimate
of the local variance.

Now, we have points (ti, si), i = q+1, . . . ,m−q, where si = σi + εi, with
σi being the local standard deviation, and εi comes from the errors in the
data. We can fit the points (ti, si) by some model S(z, t), and use this to
compute weights

wi =
1

S(ẑ, ti)
, i = 1, . . . ,m .

As a specific example consider the data3) in Figure 5.9.

3) The data is an OSL (optically stimulated luminescence) measurement performed
at Risø National Laboratory for Sustainable Energy.
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Figure 5.9. OSL data. Notice the logarithmic scale.

This kind of data is often fitted with weights wi = 1/
√
yi, cf Exam-

ple 5.13. However, the long, flat tail seems to include some wild points
with exceptionally small yi-values, and they would get undesirable large
weights.

Figure 5.10 shows the result of applying the above algorithm with q= 3
and the model

S(z, t) = z1 + z2e
z3t .

This is a nonlinear model, and we used the method from Example 6.20 to

get the least squares fit: ẑ =
(
19.7 1490 −1.89

)T
.
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Figure 5.10. Estimated standard deviation.

We return to this OSL problem in Example 6.22.

Example 5.15. Transformation of variables. Instead of {(ti, yi)}m
i=1 we

fit {(ti, ηi)}m
i=1, where ηi = ψ(yi).

We still assume that E
[
Yi

]
= Υ(ti), and (A.30) implies

V
[
ψ(Yi)

]
=
{
ψ ′(Υ(ti))

}2
V
[
Yi

]
.

Therefore, if E
[
w2

iE
2
i

]
= K2, then

ωi =
wi

|ψ ′(yi)|
, i = 1, . . . ,m (5.40)

are the relevant weights for the transformed problem.
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Example 5.16. Exponential fit. Suppose that all the yi > 0, and we
want to use the nonlinear model M(x, t) = x1e

x2t, ie we want to find the
parameters so that

x1e
x2ti ≃ yi , i = 1, . . . ,m . (5.41)

Taking the natural logarithm on both sides we get the linear problem

log x1 + x2 ti ≃ log yi , i = 1, . . . ,m . (5.42)

Thus, we use ψ(y) = log y ⇒ ψ ′(y) = 1/y. Therefore, if wi is the
appropriate weight for (5.41), then ωi = wiyi is the appropriate weight
for (5.42).

Example 5.17. Uncertainty in the abscissas. Instead of {(τi,Υi)} we are
given {(ti, yi)} with

ti = τi + di, E
[
Di

]
= 0, E

[
D2

i

]
= χ2

i ,

yi = Υ(τi) + ei, E
[
Ei

]
= 0, E

[
E2

i

]
= σ2

i ,

cf Figure 5.11 below.

τi

ei di

Υ

(ti, yi) Figure 5.11.

Uncertain abscissa.

By Taylor’s theorem we get

yi = Υ(τi) + ei ≃ Υ(ti) − diΥ
′(ti) + ei ,

so that V
[
Yi

]
≃ V

[
Ei

]
+
(
Υ′(ti)

)2
V
[
Di

]
. Therefore, in this case the

relevant weights are given by

wi =
K√

σ2
i + [Υ′(ti)]2χ2

i

, i = 1, . . . ,m . (5.43)

In practice we do not know Υ′(ti) but have to approximate it byM ′(x̂w, ti).
This implies that the determination of x̂w is a nonlinear problem, which
must be solved by iteration.

Instead of using the above approach this type of data fitting problem is
often handled by the “total least squares” method, based on minimizing
the sum of squares of orthogonal distances between data points and fitting
curve. In the unweighted cases this leads to

min
x,d

m∑

i=1

[
(yi −M(x, ti+di))

2
+ d2

i

]
.

See for instance [27].
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Example 5.18. Fit with constraints. Suppose that the fit M(x̂, t) has to
satisfy the constraints

M(x̂, ti) = Υi, i = m+1, . . . ,m+q ,

M ′(x̂, ti) = Υ′
i, i = m+q+1, . . . ,m+q+p ,

(5.44)

where prime denotes differentiation with respect to t and the {(ti,Υi)}m+q
i=m+1

and {(ti,Υ′
i)}m+q+p

i=m+q+1 are given. We assume that the constraints are lin-
early independent and that q+p < n, so that there still is freedom to
determine x so as to get close to the data points. The “best” x can be
found by an algorithm for general constrained optimization, see Chap-
ter ??. However, there are simple methods for this special case.

Method 1. (Assumes p = 0, ie, no constraint on M ′): Extend the
set of data {(ti, yi), wi}m

i=1 with {(ti,Υi), wi}m+q
i=m+1, where wi = w∞ for

i > m. In theory w∞ should be infinitely large, so that x̂w computed
by (5.38) gives Υi−M(x̂w, ti) = 0 for i > m. In practice it suffices that
w∞ > εM

−1 ·maxi≤m{wi}, where εM is the machine precision. See [49] for
a discussion of practical aspects.

Method 2. Let M(x, t) = µ(t) + ν(t)N(x, t) ⇒
M ′(x, t) = µ ′(t) + ν ′(t)N(x, t) + ν(t)N ′(x, t) ,

with the functions µ(t) and ν(t) chosen so that the constraints (5.44) are
satisfied for all N(x, t). If ν(ti) = 0 for i > m+q, then we do not need to
consider N ′. x̂w is found as the weighted least squares fit to

{(ti, ηi), ωi} = {
(
ti,
yi − µ(ti)

ν(ti)

)
, |ν(ti)|·wi}, i = 1, . . . ,m .

The weights were found by (5.40). Note that ν(ti) = 0 ⇒ ωi = 0, which
implies that the data point is ignored and we do not have problems with
the corresponding ηi being undefined.

Method 3. Combination of Methods 1 and 2: Use w∞ in points where
Υ′ is not given.

If, for instance, we are given the constraints Υ(0) = b, Υ′(0) = c, Υ(1) =
d, we may use

µ(t) = b, ν(t) = t and an extra data point (1, d), w∞ ,

or – without extra data points:

µ(t) = (d−b−c)t2 + ct+ b, ν(t) = t2(t−1) .
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5.5. Generalized least squares

In the general case the variance–covariance matrix

V
[
E
]

= E
[
E ET

]
= σ2 V

is not diagonal, but the following theorem holds.

Theorem 5.45. The variance–covariance matrix σ2 V is spsd:
symmetric and positive semidefinite.

Proof. Symmetry follows from E
[
EiEj

]
= E

[
EjEi

]
, and applying the

rules from Section A.7 to the linear function

u(y) = aT y = aT y + z with z = aT e ,

we find

E
[
Z2
]

= E
[
aT E ET a

]
= aT E

[
E ET

]
a = σ2 aT V a .

This is nonnegative, ie aT V a ≥ 0 for all a, and this is the condition
for V to be positive semidefinite. �

Because V is sspd, its Cholesky factorization

V = CT C

exists, cf Appendix A.2. Now assume that C is nonsingular (equiva-
lent to V being spd), then we can use the “de-correlation transforma-
tion”transformation, de-correlation

ỹ = C−T y = Υ̃ + ẽ , (5.46)

where Υ̃ = C−TΥ and ẽ = C−T e. The rules from Section A.7 imply
that E

[
Ẽ
]

= 0 and

E
[
Ẽ ĔT

]
= C−T E

[
E ET

]
C−1 = C−T (σ2V ) C−1 = σ2 I .

Therefore, the generalized least squares solution to the overdetermined
system Fx ≃ y can be found by applying orthogonal transformation, to
the modified system

F̃ x ≃ ỹ with F̃ = C−T F , ỹ = C−T y .

Note that the modified matrices are computed by forward substitution
in the lower triangular systems

CT F̃ = F , CT ỹ = y .

In cases where the correlation matrix V is singular, the computation
of the “best” fit is more complex, see for instance [3, Chapter 2].
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5.6. Fitting with polynomials

We finish this chapter by discussing two choices of basis functions for
data representation: polynomials and cubic splines. Both choices satisfy
requirements 3◦ – 5◦ on page 77. Further, we shall assume that the
background function is a “smooth” function, and such a function can
be approximated well with both choices, so also requirement 1◦ can be
satisfied.

We already discussed fitting with polynomials in several examples.
Given data points {(ti, yi)}m

i=1, we want to find a least squares fit with
a polynomial

M(x, t) = x1pn−1(t) + x2pn−2(t) + · · · + xnp0(t) , (5.47)

where each pk is a polynomial of degree k, implying that M(x, t) is a
polynomial of degree at most n−1. There is nothing special about this
problem if n were known: we just compute the least squares fit with basis
functions φj(t) = pn−j(t). In this section, however, we shall concentrate
on the data representation aspect, where n is not given beforehand.

If n is small, the polynomial may be too “stiff” to follow the variations
in the background function Υ, and (some of) the residuals, cf (5.6),

ri(x) =
(
yi − Υ(ti)

)
+
(
Υ(ti) −M(x, ti)

)
≡ ei + αi ,

will be dominated by approximation errors αi. For large n the poly-
nomial is so “elastic” that it follows not only Υ but also the noise,
cf Figure 5.3. The aim is to find n so that the level of approximation
errors is of the same order of magnitude as the “noise level”.4)

This goal may be reached interactively: Start with a low order poly-
nomial and increase n as long as a visual inspection of the data and fit
indicate a better approximation. In this context a plot of the residuals
may be helpful, it acts like a “magnifying glass”.

Example 5.19. Consider the data from Example 5.3. Figure 5.12 gives results
for increasing values of n.

The 1st degree polynomial (n = 2) is too stiff. One way to realize that
is that in most cases two neighbouring residuals have the same sign – we
say that there are “trends”.

4) The “noise level” will be made more precise on page ??.
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Figure 5.12. Fit with polynomials of degree 1, 2 and 3.

The trends seem to have disappeared
for n = 4, so this value might be a good
choice.

This choice is confirmed by the approx-
imation errors shown alongside. The
approximation P3 is significantly bet-
ter than P2 and has maximum error
slightly smaller than P4. 0 0.1 0.2 0.3 0.4
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Figure 5.13. Approximation
errors.

The proper choice of n can be quantified: As discussed in Section 5.3
we can compute the variance estimate (5.37)

vn =
1

m− n
‖r̂‖2

2 =
1

m− n

m∑

i=1

(ri(x̂))2 .

If n is too small, then vn > v, but (under certain statistical assumptions
about the {ei}) the value decreases for larger n and settles at an almost
constant value when we have passed the optimal value of n. This is
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where the level of approximation errors is below the noise level.
There are a number of statistical tests for trends. We shall only

present the following intuitive method, which assumes that the data
points are ordered by increasing value of ti: Compute the ratio between
the average product of two consecutive residuals and the variance esti-
mate,

Rn =
1

(m− 1)vn

m−1∑

i=1

r̂ir̂i+1 .

Statistics tell us that there is a trend if this ratio is larger than the
threshold 1/

√
2(m− 1), so we shall use the following measure of trend

Tn =
√

2(m− 1)Rn . (5.48)

A value Tn ≥ 1 indicates that the residuals are dominated by approxi-
mation errors. In other words, the polynomial is too stiff and should be
“softened” by increasing the degree.

Example 5.20. For the data in Examples 5.3 and 5.19 we have computed vn

and Tn for n = 1, . . . , 10. The results are shown in Figure 5.14.
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Figure 5.14. Values of vn (5.37), and Tn (5.48).
The first 20 data points from Figure 5.2.

As expected, vn starts by decreasing. For n ≥ 4 all the vn are almost
constant. Thus, this method gives the same optimal value n = 4 as
the interactive method in the previous example. Also the trend measure
suggests n = 4 as the best value, since this is the smallest n-value for
which Tn< 1.

A similar analysis with all the data from Figure 5.2 gives the results shown
in Figure 5.15.
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Figure 5.15. Values of vn (5.37), and Tn (5.48).
All 45 data points from Figure 5.2.

Here the estimated variance and trend measure agree on the choice n = 5.
The approximation errors for the cases n = 4, 5, 6 are shown in Figure 5.16.
n = 6 seems to be slightly better than n = 5. As in Figure 5.13 the error
is largest close to the ends of the domain of data abscissas; this is typical
for data fitting problems.
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Figure 5.16. Approximation errors.

Each pk in (5.47) is a polynomial of exact degree k, and since m > n
it follows that the matrix F has full rank, κ(F ) < ∞. The above dis-
cussion is independent of how we represent these basis functions, but for
practical computation this aspect is important, as we shall demonstrate
for data abscissas in the domain

[a, b] = [c−d, c+d]; c = 1
2 (a+ b), d = 1

2(b− a) . (5.49)

The simplest choice is to take simple polynomials, pk(t) = tk. Figure 5.17
shows them in the two domains [a, b] = [−1, 1] and [a, b] = [99, 101].
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Figure 5.17. Simple polynomials on [a, b],
normalized by division with pk(b).

This illustrates that if |c| ≫ d, then all tk for k ≥ 1 behave almost
like a first order polynomial for t ∈ [a, b]. Therefore the columns of F

are almost linearly dependent (if n > 2) and κ(F ) will be very large.
The discussion in Section 5.2.2 shows that then the computed results
are unreliable.

Example 5.21. Suppose we have m = 100 data points with the abscissas
equidistant in [a, b]. Then the condition numbers κ(F ) are as follows
(with “–” denoting that κ(F ) > 0.1/εM ≃ 4.5e+15. This indicates that
the efficient rank of F is less than n).

n [−1, 1] [0, 2] [9, 11] [99, 101] [999, 1001]

1 1 1 1 1 1
2 1.7e+00 3.7e+00 1.7e+02 1.7e+04 1.7e+06

3 3.7e+00 1.8e+01 3.4e+04 3.3e+08 3.3e+12

4 8.0e+00 1.0e+02 6.9e+06 6.4e+12 −
5 1.8e+01 6.0e+02 1.4e+09 − −
6 4.2e+01 3.8e+03 3.0e+11 − −
7 9.8e+01 2.4e+04 6.4e+13 − −
8 2.3e+02 1.6e+05 − − −
9 5.3e+02 1.1e+06 − − −
10 1.2e+03 7.4e+06 − − −
11 2.9e+03 5.1e+07 − − −
Table 5.6.1. κ(F ) for simple polynomials.

A simple cure is to replace the simple polynomials by

pk(t) =

(
t− c

d

)k

, k = 0, 1, . . . , n−1 , (5.50)

where c = 1
2 (min{ti} + max{ti}) and d = 1

2 (max{ti} − min{ti}), cf
(5.49). Essentially this corresponds to simple polynomials on [−1, 1]
irrespective of the domain of data abscissas. Figure 5.17 and Exam-
ple 5.21 indicate that here the problems with almost linear dependency
is much less pronounced.
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It is possible to generate {pk} so that they are orthogonal over the
given {ti}, cf Example 5.8, see for instance [18, Section 9.5]. This would
be advantageous in the present context where we have to recompute the
fit for several values of n. As a rule of thumb, however, we should never
use a polynomial of degree larger than 10 (n ≤ 11), and Example 5.21
indicates that the polynomials (5.50) are sufficiently linearly indepen-
dent. Further, it is relatively simple to update the QR factorization of
F when n is increased, ie when an extra column is added to F .

5.7. Fitting with cubic splines

In this section we shall discuss a tool which is suited for data fitting
in cases where we are not given a fitting model and where polynomials
are not suited. Throughout the section we shall use the data points in
Figure 5.18 as a representative example.

Figure 5.18. Data points
from a function with
different nature in
different regions.
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Example 5.22. If we try to use polynomial fitting, we get the variance esti-
mates and trend measures shown n Figure 5.19.

Even for n=20 the vn have not settled, and T20 ≃ 3.7 indicates that
there still is a trend. The (small) jump between v13 and v14 makes us
look closer at the case n=14, ie the least squares fit with a polynomial of
degree 13. This is shown in Figure 5.20, and we see that the middle part
is quite well approximated, except that we miss some details close to the
peak; we would need a polynomial of higher degree to fix that. At both
ends, however, the fit exhibits unexpected oscillations, indicating that the
degree is too high.
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Figure 5.19. Values of vn (5.37), and Tn (5.48).
The 101 data points from Figure 5.18.

Figure 5.20. Least squares
fit to the data in
Figure 5.18.
Degree 13 polynomial.
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The slow convergence of the variance estimates and trend measures,
and the simultaneous occurrence of subregions where the degree is too
low and other subregions where the degree is too high is typical for poly-
nomial fits to data where the background function has different nature
in different subregions.

For such problems it is better to use cubic splines.5) We start by giv-
ing a short introduction here. More details are given in Appendix A.8,
and for even more information see [18, Sections 5.11 – 5.12] or the mono-
graphs [13, 15]

5) For short: splines. More precisely: cubic spline functions.
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A cubic spline s is a piecewise cubic with breakpoints, so-called knots

a= τ0 τ1 τi−1 τi τi+1 τn−1 τn = b

Figure 5.21. Knots.

The spline and its first two derivatives are continuous on the whole
interval [τ0, τn], implying that we get a smooth curve, but in general
the piecewise constant s′′′(t) jumps as t passes one of the interior knots
τ1, . . . , τn−1. This property enables the spline to focus on the local nature
of Υ, with less influence from the global behaviour than a polynomial
has.

The spline with n knot intervals has n+3 degrees of freedom, and it
can be expressed as

s(t) =
n+3∑

j=1

cj Bj(τ , t) , τ0 ≤ t ≤ τn , (5.51)

where the Bj are so-called basis splines, B-splines for short. The values
of Bj(τ , t) depend on t and the knots τ . The formulation (5.51) is
convenient for determining a spline as a least squares fit to data points
{(ti, yi)}m

i=1 : The coefficients c =
(
c1 . . . cn+3

)
T are the least squares

solution to the overdetermined system

F c ≃ y ,
(
F
)
ij

= Bj(τ , ti) . (5.52)

Thus, for given knots, this is a problem of the form discussed in Sec-
tion 5.2. The proof of the following theorem is given in [10].

Theorem 5.53. Problem (5.52) has a unique least squares solu-
tion c∗ if m ≥ n+3 and a subset t̃1, . . . , t̃n+3 of the data abscissas
t1, . . . , tm satisfies

t̃k < τk < t̃k+4 for k = 1, . . . , n−1 .

In the quadratic case m = n+3 these conditions are known as the
Schoenberg-Whitney conditions.

Example 5.23. The B-splines have local support: Bj(τ , t) is nonzero only
for τj−4 < t < τj . Assuming that the data points are ordered such that
ti > ti−1, the matrix F has a “generalized” band structure. For the
distribution of knots and data abscissas shown below
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.

This structure can be exploited in the least squares solution.

Example 5.24. We want to fit the data in Figure 5.18 for 0≤ t≤ 10, and
the simplest choice is to take equidistant knots , τj = 10j

n , j=0, 1, . . . , n.
We have tried this for n=1, . . . , 20, and used (5.37) to get the variance
estimates shown to the left in Figure 5.22.
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Figure 5.22. Equidistant knots spline fit to the data in Figure 5.18.

n=15 seems to be a good choice, and the corresponding fit is shown to
the right. Comparing with the polynomial fit in Figure 5.20 we see some
improvement, but we still miss some details close to the peak and there
are undesirable oscillations at the ends.

In the remainder of this chapter we shall concentrate on the choice
of knots: their number and their positions. In applications τ0 = a and
τn = b will always be fixed, so it is the number and distribution of the
interior knots that we shall discuss.
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The problem can be treated as a nonlinear least squares problem:

x̂ = argmin
x ∈ R

2n+2



f(x) ≡ 1

2

m∑

i=1


yi −

n+3∑

j=1

cj Bj(τ , ti)




2
 ,

where x is the vector

x =

(
τ 1:n−1

c

)
.

This type of problem can be solved by one of the methods described
in Chapter 6. Experience shows, however, that quite often the results
are disappointing: either the computed x̂ is a local rather than global
minimizer and/or the conditions in Theorem 5.53 are violated.

Example 5.25. Before discussing a robust algorithm for computing a good
choice of knots we should mention that it often happens that the desired
fit has to satisfy some boundary conditions, for instance

d1,1s(τ0) + d1,2s
′(τ0) + d1,3s

′′(τ0) = d1,4 ,

d2,1s(τn) + d2,2s
′(τn) + d2,3s

′′(τn) = d2,4 ,
(5.54)

where the {dk,j} are given. Inserting (5.51) and exploiting (see Ap-
pendix A.8) that at the knot τ0 the only nonzero values of the B-splines

and their first two derivatives are B
(p)
1:3(τ , τ0) we see that the first condi-

tion in (5.54) is equivalent to

α1,1c1 + α1,2c2 + α1,3c3 = d1,4 ,
where

α1,j = d1,1Bj(τ , τ0) + d1,2B
′
j(τ , τ0) + d1,3B

′′
j (τ , τ0) .

Now, assume that α1,1 6= 0. Then it follows that the spline coefficients
must satisfy

c1 = γ1 − β1,2c2 − β1,3c3 , γ1 =
d1,4

α1,1
, β1,j =

α1,j

α1,1
. (5.55)

Similarly, cn+3 can be expressed in terms of d2,4 and cn+1:n+2, and when
we introduce these expressions in (5.52), we see that the reduced coefficient
vector z = c2:n+2 is the least squares solution to the modified system

F̃ z ≃ ỹ , (5.56)

where ỹ ∈R
m andF̃ ∈R

m×(n+1) are given by

ỹ := y − γ1 F :,1 − γ2 F :,n+3 ,

F̃ := F :,2:n+2 ,

F̃ :,1:2 := F̃ :,1:2 − F :,1β1,1:2 ,

F̃ :,n:n+1 := F̃ :,n:n+1 − F :,n+3β2,1:2 .

After having computed ẑ, the least squares solution to (5.56), the com-
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plete coefficient vector is given by ĉ2:n+2 = ẑ, and ĉ1 and ĉn+3 are then
computed by (5.55) and the similar expression at the other end. The
variance estimate is

vn =
‖ỹ − F̃ ẑ‖2

m− (n+1)
.

The difference between the denominator here and in Figure 5.22 is caused
by the conditions that reduce the number of degrees of freedoms by 2.

If we set all the di,j =0 except for d1,3 = d2,3 = 1 in (5.54), we get a so-
called natural spline, ie a spline that satisfies s′′(τ0) = s′′(τn) = 0. This
choice would dampen the oscillations at the ends in Figure 5.22.

5.8. An algorithm for choice of knots

If the background function were known, the following theorem gives a
hint about a good distribution of the knots:

Theorem 5.57. Let the function Υ be four times continuously
differentiable in the interval [τi−1, τi], and let s be a cubic spline
approximation. Then

max
τj−1≤t≤τj

|Υ(t) − s(t)| ≤ 1
384
Mjh

4
j + 1

4
E′

jhj + Ej ,

where
hj = τj − τj−1 , Mj = max

τj−1≤t≤τj

|Υ(4)(t)| ,

Ej = max
i=j−1,j

|Υ(τi) − s(τi)| , E′
j = max

i=j−1,j
|Υ′(τi) − s′(τi)| .

This theorem shows that the best we can hope for is a local error
proportional to h4

4Mj . In other words, the knots should be close where
the function Υ varies fast, while we can use larger knot spacing where
the variation is slower.

In data fitting we only know the data points. As in (5.6) we can write

ri = yi − s(ti) = yi−Υ(ti) + Υ(ti)−s(ti) ,
which we recognize as the sum of data error yi−Υ(ti) and approximation
error Υ(ti)−s(ti). The goal is to find n and the interior knots so that the
spline is sufficiently lax to follow the variations in Υ, but not so lax that
the effect of the errors yi−Υ(ti) dominate in any part of the region. Put
another way: we want to find the number and the distribution of the
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interior knots such that the “noise” and the approximation errors are of
the same order of magnitude, both locally and globally. The algorithm
that we present shares the main ideas with [47] and [11].

The basic idea is as follows: For a given n and knots τ 0:n compute
the fitting spline and estimate trends, ie indication of whether approx-
imation error dominates locally, Subsection 5.8.1. If this is the case,
insert a new knot (Subsection 5.8.2), ie increase n and we have a new
knot set with which the process is repeated.

5.8.1. Trends

The trend measure (5.48) is global, ie it includes all data point. We need
a measure for the local trend: Again we assume that the data points are
ordered by increasing value of ti. In the current knot set let pj denote
the number of data points in the jth knot interval, Ij = [τj−1, τj ]. The
local correlation of the residuals is defined as

Rj =





0 if pj < 2 ,

1

(pj−1)Vj

∑

tk,tk+1∈Ij

rkrk+1 otherwise, (5.58)

where Vj is the estimate of local variance,

Vj = max

{
V,

1

pj

∑

tk∈Ij

r2k

}
, V =

1

m− ν

m∑

i=1

r2i .

Here, V is the global variance, and ν = n+1 in case of fitting with two
boundary conditions, cf Example 5.25, otherwise ν = n+3.

Proceeding as we did in deriving (5.48), there is a local trend if Rj ≥
1/
√

2(pj − 1). In other words, we get the following measure of trend in
the jth knot interval,

Tj =

{
0 if pj ≤ 1

√
2(pj − 1)Rj otherwise

. (5.59)

A value Tj ≥ 1 indicates that locally the spline is too stiff. It may be
“softened” by inserting an extra knot in the interval [τj−1, τj ].

5.8.2. Knot insertion

There exist a number of strategies for inserting extra knots. Algo-
rithm 5.60 below describes a simple version, which often gives good
results.
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Algorithm 5.60. Knot insertion

Given data {ti, yi}m
i=1 and range [a, b] (with all ti ∈ [a, b]).

Choose initial n and knots (with τ0 = a and τn = b)
repeat

Compute fitting spline {Section 5.7}
if Vnew > Vold

return with previous knot set
Compute trends T1:n by (5.59)
M := argmax {Tj}
if TM ≥ 1

adjust knots and n {See below}
until TM < 1

Basically, the knot adjustment is to choose an interval – the kth (see
below) – insert a new knot in the middle of it (thus increasing n by one)
and maybe move the “old” knots τk−1 and τk a little, according to the
algorithm

if Tk−1 ≥ 1 then τk−1 := τk−1 − 0.1hk−1

if Tk+1 ≥ 1 then τk := τk + 0.1hk+1

Artificial variables T0 = Tn+1 = 0 ensure that the end knots stay fixed.
The interval chosen has Tk > 1, and if one or both of its neighbours

also show a need for “softening”, then this strategy attempts to satisfy
the needs also for the neighbour(s). In order to enhance this possibility
we compute

L := argmax {Tj | Tj−1 ≥ 1 and Tj+1 ≥ 1} ,

and choose

k =

{
L if TL ≥ max

{
1, 1

2TM

}

M otherwise
.

It should be noted that the trend measure (5.59) favours intervals
with many data points. This enhances the probability that the reduced
knot intervals still contain a fair amount of data points.

Example 5.26. We have used this algorithm to fit a natural spline to the
data of Figure 5.18. As the starting point we chose n=4 and equidistant
knots. We got the following results; the plots show the trend measures.
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n = 4 : V = 1.4003
M = L = k = 3.
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n = 6 : V = 0.3306
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Figure 5.23. Performance of Algorithm 5.60.
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The algorithm stops because
all Tj < 1. The final spline is
shown in Figure 5.24. Com-
paring this with Figures 5.20
and 5.22 we see that we
got rid of the oscillations at
the ends and have captured
details at the peak.

Figure 5.24. Resulting spline
fit to the data in Figure 5.18. t
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The data points were generated by adding noise with variance σ2 = 0.0225
to values of the function

Υ(t) = 2 − 0.1t+
2(t− 1)

(t− 4)4 + 1
.

The final value for V agrees
well with σ2. Figure 5.25
shows the residuals and the
error curve s(t) − Υ(t). Note
that the maximum error is
close to the standard devia-
tion

√
V = 0.153. 0 2 4 6 8 10

−0.4

−0.2

0

0.2

0.4

Figure 5.25.

Residuals yi − s(ti) (dots)
and error s(t) − Υ(t).
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Chapter 6

Nonlinear Least Squares
Problems

In this chapter we consider the problem:

Definition 6.1. Least squares problem

Let r : R
n 7→ R

m be a vector function and m≤n. Find x̂, a local
minimizer for

f(x) = 1
2 ‖r(x)‖2 = 1

2 r(x)T r(x) = 1
2

m∑

i=1

(ri(x))2 . (6.2)

Note that in this chapter ‖ · ‖ denotes the 2-norm. The factor 1
2 in the

definition of f(x) has no effect on x̂. It is introduced for convenience,
see page 115.

Example 6.1. An important source of least squares problems is data fitting,
where we are given data points (t1, y1), . . . , (tm, ym) and a fitting model

M(x, t) that depends on parameters x = (x1, . . . , xn)
T
. The ri(x) are

the residuals

ri(x) = yi −M(x, ti) , i = 1, . . . ,m ,

and x̂ is the least squares solution introduced in Section 5.1. By com-
parison with (5.7) we see that f(x) = 1

2 (Ω2(I,x)) 2. In this chapter we
shall discuss methods for problems where M and therefore ri depends
nonlinearly on x.

Example 6.2. Another application is in the solution of nonlinear systems of
equations,

r(x̂) = 0 , where r : R
n 7→ R

n . (6.3)
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This must be solved by iteration, and if we are given a good starting
guess x0, and the Jacobian J(x̂), see (6.5), of r(x̂) is nonsingular, then
Newton–Raphson’s method is a fast and accurate method, see for instance
[18, Section 4.8]. If these conditions are not satisfied, however, we are not
sure that the iterations converge, and if it does, the convergence may be
slow.

We can reformulate the problem in a way that enables us to use all the
“tools” that we are going to present in this chapter: A solution of (6.3) is
a global minimizer of the function f given in Definition 6.1, since f(x̂)=0
and f(x)> 0 if r(x) 6=0.

A simple approach is to combine Newton–Raphson’s method with line
search. The typical iteration step is

Solve J(xk)h = −r(xk) for h ,

xk+1 = xk + αk h ,
(6.4)

where αk is found by line search applied to the function ϕ(α) = f(xk+αh).

As a specific example we shall consider the following problem, taken
from [48],

r(x) =

(
x1

10x1

x1+0.1 + 2x2
2

)
,

with x̂ =0 as the only solution. The Jacobian is

J(x) =

(
1 0

(x1+0.1)−2 4x2

)
,

which is singular at the solution.

If we take x0 =
(
3 1

)T
and use the above algorithm with exact line

search, then the iterates converge to xc ≃
(
1.8016 0

)T
, which is not

a solution. On the other hand, if we use the simple Newton–Raphson
algorithm, ie (6.4) with αk = 1 in every step, then it is easily seen that

the iterates are xk =
(
0 yk

)T
with yk+1 = 1

2 yk, ie we have linear
convergence to the solution.

We shall return to this problem in a number of examples, to see how
different methods handle it.

Least squares problems can be solved by general optimization meth-
ods, but we shall present special methods that are more efficient for this
type of objective function. In many cases these methods achieve better
than linear convergence, sometimes even quadratic convergence, even
though they do not need implementation of second derivatives.

In all the methods described in this chapter we assume that every
ri(x) is continuously differentiable with respect to each of the indepen-
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dent variables xj , and define the Jacobian J(x) ∈ R
m×n with elements

(J(x))ij =
∂ri
∂xj

(x) . (6.5)

Example 6.3. The ith row of J(x) is the transpose of the gradient of the

function ri R
n 7→ R, J i,: = (∇ri)

T
.

In Example 5.2 we used the fitting model M(x, t) = x1e
−x3t + x2e

−x4t.
The ith row in the Jacobian is

J(x)i,: =
(
−e−x3ti −e−x4ti x1tie

−x3ti x2tie
−x4ti

)
.

If the fitting model is linear, then the residual vector has the form r =
y − F x, cf (5.8), and then J(x) = −F for all x.

Provided that the ri have continuous second partial derivatives, we
can write the Taylor expansion from x of f

f(x + h) = f(x) + hT ∇f(x) + 1
2 hT ∇2f(x) h +O(‖h‖3) ,

where ∇f and ∇2f are the gradient and Hessian of f , respectively.
From the first formulation in Definition 6.1 it follows that1)

(
∇f(x)

)
j

=
∂f

∂xj
(x) =

m∑

i=1

ri(x)
∂ri
∂xj

(x) .

This shows that the gradient of f is

∇f(x) = J(x)T r(x) . (6.6)

Next,

∂22

∂xj∂xk
(x) =

m∑

i=1

(
∂ri
∂xj

(x)
∂ri
∂xk

(x) + ri(x)
∂2ri

∂xj∂xk
(x)

)
,

showing that the Hessian of f is

∇2f(x) = J(x)T J(x) +

m∑

i=1

ri(x)∇2ri(x) . (6.7)

1) If we had not used the factor 1
2

in the definition of f , we would have got an
annoying factor 2 in many expressions.
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Example 6.4. For a linear data fitting problem r(x) = y − F x, implying
that ∇2ri(x) = 0, and by use of the result from Example 6.1 we see that
in that case we get

∇f(x) = −F T (y − F x) , ∇2f(x) = F T F .

The gradient is zero at the minimizer, and from the above expression we
see that ∇f(x) = 0 is equivalent to the normal equations (5.15).

The methods presented in this chapter are descent methods, ie they
are of the form given in the generic algorithm 2.9, and they take advan-
tage of the special form of the objective function f .

6.1. The Gauss–Newton method

This method is the basis of the very efficient methods we shall describe in
the following sections. It is based on implemented first derivatives of the
components of the vector function. In special cases it can give quadratic
convergence as the Newton-method does for general optimization, see
Chapter 3.

The Gauss–Newton method is based on an affine approximation to
the components of r (an affine model of r) in the neighbourhood of x :
Provided that r has continuous second partial derivatives, we can write
its Taylor expansion as

r(x+h) = r(x) + J(x)h +O(‖h‖2) .

This shows that

r(x+h) ≃ ℓ(h) ≡ r(x) + J(x)h (6.8)

is a good approximation for sufficiently small h. Inserting this in the
definition (6.2) of f we see that

f(x+h) ≃ L(h) ≡ 1
2 ℓ(h)T ℓ(h)

= 1
2 rT r + hT JT r + 1

2 hT JT J h

= f(x) + hT JTr + 1
2 hT JTJ h , (6.9)

where r = r(x) and J = J(x). The so-called Gauss–Newton step hgn

minimizes L(h),
hgn = argminh{L(h)} .
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The approximation L is a model of the behaviour of f close to the
current iterand. The model is of the form treated in Theorem 1.7, and
the gradient is

∇L(h) = JT r +
(
JT J

)
h , (6.10)

where again r =r(x) and J = J(x). The gradient is zero at a minimizer
for L, so we get the condition

(JT J)hgn = −JT r . (6.11)

Comparing this with (5.15) we see that (6.11) is the normal equations
for the overdetermined, linear system

ℓ(h) ≃ 0 ⇔ J h ≃ −r .

From the discussion in Section 5.2 it follows that if the columns in J

are linearly independent, then the matrix A = JT J is positive definite.
This implies that L(h) has a unique minimizer, which can be found
by solving (6.11). This does not, however, guarantee that x+hgn is a
minimizer of f , after all L(h) is only an approximation to f(x+h), but
Theorem 2.15 guarantees that the solution hgn is a descent direction.
Thus, we can use hgn for hd in Algorithm 2.9. The typical step is

Solve (JT J)hgn = −JT r

x := x + αhgn

where α is found by line search. The classical Gauss–Newton method
uses α= 1 in all steps. The method with line search can be shown to
have guaranteed convergence, provided that

1◦ {x | f(x) ≤ f(x0)} is bounded, and

2◦ the Jacobian J(x) has full rank in all steps.

Newton’s method for optimization has quadratic final convergence,
cf Theorem 3.4. This is normally not the case with the Gauss–Newton
method. To see that, we compare the search directions hn and hgn used
in the two methods,

∇2f(x)hn = −∇f(x) , ∇2L(0)hgn = −∇L(0) .

From (6.6) and (6.10) we see that the two right-hand sides are identical,

∇f(x) = ∇L(0) = J(x)T r(x) ,
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but (6.7) and (6.11) show that the coefficient matrices differ:

∇2f(x) = ∇2L(0) +
m∑

i=1

ri(x)∇2ri(x) . (6.12)

Therefore, if r(x̂)=0, then ∇2L(0)≃∇2f(x) for x close to x̂, and we
get quadratic convergence also with the Gauss–Newton method. We can
expect superlinear convergence if the functions {ri} have small curva-
tures or if the {|ri(x̂)|} are small, but in general we must expect linear
convergence. It is remarkable that the value of f(x̂) controls the con-
vergence speed.

Example 6.5. Consider the simple problem with n=1, m=2

r(x) =

(
x+ 1

λx2 + x− 1

)
. f(x) = 1

2 (x+1)2 + 1
2 (λx2+x−1)2 .

It follows that

f ′(x) = 2λ2x3 + 3λx2 − 2(λ−1)x ,

so x= 0 is a stationary point for f . Now,

f ′′(x) = 6λ2x2 + 6λx− 2(λ−1) .

This shows that if λ< 1, then f ′′(0)> 0, so x=0 is a local minimizer –
actually, it is the global minimizer.

The Jacobian is

J(x) =

(
1

2λx+ 1

)
,

and the classical Gauss–Newton method gives

xnew = x− 2λ2x3 + 3λx2 − 2(λ−1)x

2 + 4λx+ 4λ2x2
.

Now, if λ 6= 0 and x is close to zero, then

xnew = x+ (λ−1)x+O(x2) = λx+O(x2) .

Thus, if |λ|< 1, we have linear convergence. If λ< − 1, then the classi-
cal Gauss–Newton method cannot find the minimizer. For instance with
λ= −2 and x[0] = 0.1 we get a seemingly chaotic behaviour of the iterates,

k xk

0 0.1000
1 −0.3029
2 0.1368
3 −0.4680
...

...

Finally, if λ= 0, then xnew = x − x = 0, ie we find the solution in one
step. The reason is that in this case r is an affine function.
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Example 6.6. In the data fitting problem from Examples 5.2 and 6.3 we
used the fitting model M(x, t) = x1e

−x3t + x2e
−x4t. The ith row in the

Jacobian is

J(x)i,: =
(
−e−x3ti −e−x4ti x1tie

−x3ti x2tie
−x4ti

)
.

If the problem is consistent (ie r(x̂)=0), then the Gauss–Newton method
with line search will have quadratic final convergence, provided that x̂3 is
significantly different from x̂4. If x̂3 = x̂4, then rank(J(x̂))≤ 2, and the
Gauss–Newton method fails.

If one or more measurement errors are exceptionally large, then r(x̂) has
some large components, and this may slow down the convergence. If, on
the other hand, the errors behave like white noise, we can expect partial
cancelling of the terms ri(x̂)∇2ri(x̂) in the difference between ∇2f(x)
and ∇2L(0), and get superlinear final convergence.

In Matlab we can give a very compact function for computing r and J :
Suppose that x holds the current iterate and that the m×2 array ty holds
the coordinates of the data points. The following function returns r and
J containing r(x) and J(x), respectively.

function [r, J] = fitexp(x, ty)

t = ty(:,1); x = x(:);

E = exp(t * (-x(3:4)’);

r = ty(:,2) - E*x(1:2);

J = [-E (t*x(1:2)’).*E];

Example 6.7. If we use Newton–Raphson’s method to solve the problem from
Example 6.2, r(x̂)=0 with r : R

n 7→ R
n, the typical iteration step is

Solve J(x)hnr = −r(x); x := x + hnr .

The Gauss–Newton method applied to the minimization of f(x) =
1
2r(x)T r(x) has the typical step

Solve
(
J(x)T J(x)

)
hgn = −J(x)T r(x); x := x + hgn .

In this case J(x) is a square matrix, and if it is nonsingular, then
(
J(x)

)−T

exists, and it follows that hgn = hnr. Therefore, when applied to Powell’s
problem from Example 6.2, the Gauss–Newton method will have the same
troubles as discussed for Newton–Raphson’s method in that example.

These examples show that the Gauss–Newton method may fail, both
with and without a line search. Still, in many applications it gives
quite good performance, though it normally only has linear convergence
as opposed to the quadratic convergence from Newton’s method with
implemented second derivatives. In Sections 6.2 and 6.3 we give two
methods with superior global performance.
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6.2. The Levenberg–Marquardt method

Levenberg and later Marquardt, [31, 36] suggested to use a damped
Gauss–Newton method , cf Section 3.2. The step hlm is defined by the
following modification to (6.11),

(
JT J + µI

)
hlm = −JT r

with J = J(x), r = r(x), µ≥ 0 .
(6.13)

The damping parameter µ has several effects:

1◦ For all µ> 0 the coefficient matrix is positive definite, cf Appendix A.2,
and this ensures that hlm is a descent direction, cf Thedorem 2.15.

2◦ For large values of µ we get

hlm ≃ − 1

µ
JT r = − 1

µ
∇f(x) ,

ie a short step in the steepest descent direction. This is good if the
current iterate is far from the solution.

3◦ If µ is very small, then hlm ≃hgn, which is a good step in the final
stages of the iteration, when x is close to x̂. If f(x̂)= 0 (or very
small), then we can get (almost) quadratic final convergence.

Thus, the damping parameter influences both the direction and the
size of the step, and this leads us to make a method without a specific
line search. The choice of initial µ-value should be related to the size of
the elements in A[0] = J(x0)

T J(x0), for instance by letting

µ0 = τ · maxi{a[0]
ii } , (6.14)

where τ is chosen by the user. The algorithm is not very sensitive to
the choice of τ , but as a rule of thumb, one should use a small value,
for instance τ = 10−6 if x0 is believed to be a good approximation to x̂.
Otherwise, use τ = 10−3 or even τ = 1. During iteration the size of µ can
be updated as described in Section 3.2. The updating is controlled by
the gain ratio

̺ =
f(x) − f(xnew)

L(0) − L(hlm)
,

where xnew = x+hlm. In order to reduce cancellation error the numer-
ator

δf = f(x) − f(xnew) = 1
2 r(x)T r(x) − 1

2 r(xnew)T r(xnew)
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should be computed by the mathematically equivalent expression

δf = 1
2 (r(x) − r(xnew))T (r(x) + r(xnew)) . (6.15)

The denominator is the gain predicted by the affine model (6.9),

δL = L(0) − L(hlm)

= −hT
lmJT r − 1

2 hlm JT J hlm

= − 1
2 hT

lm

(
2JT r + (JT J + µI − µI)hlm

)

= 1
2 hT

lm (µhlm − ∇f)) . (6.16)

Note that both hT
lmhlm and −hT

lm∇f are positive, so L(0)−L(hlm) is
guaranteed to be positive.

A large value of ̺ indicates that L(hlm) is a good approximation to
f(x+hlm), and we can decrease µ so that the next Levenberg-Marquardt
step is closer to the Gauss–Newton step. If ̺ is small (maybe even
negative), then L(hlm) is a poor approximation, and we should increase
µ with the twofold aim of getting closer to the steepest descent direction
and reducing the step length. These goals can be met in different ways,
see Algorithm 6.18 and Example 6.7 below.

As discussed in connection with (2.10) – (2.11) we suggest to use the
following stopping criteria for the algorithm,

‖∇f(x)‖∞ ≤ ε1 ,

‖xnew − x‖2 ≤ ε2(‖x‖2 + ε2) ,

k ≥ kmax ,

(6.17)

where ε1 are small, positive numbers and kmax is an integer; all of these
are chosen by the user.

The last two criteria come into effect, for instance, if ε1 is chosen
so small that effects of rounding errors have large influence. This will
typically reveal itself in a poor accordance between the actual gain in
f and the gain predicted by the affine model L, and will result in µ
being augmented in every step. The updating strategy for µ is based
on (3.12), but modified so that consecutive failures of getting a smaller
f -value gives fast growth of µ, resulting in small ‖hlm‖, and the process
will be stopped by the second criterion in (6.17).

The algorithm is summarized below. We shall refer to it as the L–M
method .
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Algorithm 6.18. Levenberg–Marquardt method

Given x0, τ, ε1, ε2, kmax

begin
k := 0; ν := 2; x := x0

A := J(x)T J(x); g := J(x)T r(x)
found := (‖g‖∞ ≤ ε1); µ := τ ∗ max{aii}
while (not found) and (k <kmax)
k := k+1; Solve (A + µI)hlm = −g

if ‖hlm‖ ≤ ε2(‖x‖ + ε2)
found := true

else
xnew := x + hlm

̺ := δf/δL {computed by (6.15) and (6.16)}
if ̺ > 0 {step acceptable}

x := xnew

A := J(x)T J(x); g := J(x)T r(x)
found := (‖g‖∞ ≤ ε1)
µ := µ ∗ max{1

3 , 1 − (2̺− 1)3}; ν := 2
else
µ := µ ∗ ν; ν := 2 ∗ ν

end
end

end
end

Example 6.8. We already saw in connection with (6.11) that the Gauss–
Newton step hgn is the least squares solution to the linear problem

r(x) + J(x)h ≃ 0 .

Similarly, the L-M equations in (6.13) are the normal equations for the
augmented linear problem(

r(x)
0

)
+

(
J(x)√
µI

)
h ≃ 0 .

As discussed in Section 5.2, the most accurate solution is found via or-
thogonal transformation. However, the solution hlm is just a step in an it-
erative process, and needs not be computed very accurately, and since the
solution via the normal equations is “cheaper” to compute, this method
is often used.
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Example 6.9. The Rosenbrock problem from Examples 2.8, 3.5 and 3.9 can
be formulated as a system of nonlinear equations,

r(x) =
√

2 ·
(

10 ·
(
x2 − x2

1

)

1 − x1

)
.

It is easy to see that this system has the unique solution x̂ =
(
1 1

)
T ,

and this is the unique minimizer for f(x) = 1
2‖r(x)‖2.

In Figure 6.1 we illustrate the performance of Algorithm 6.18 applied to
this problem with the input x0 =

(
−1.2 1

)
T , τ = 10−3, ε1 = 10−8,

ε2 = 10−12 kmax = 100.

x1

x2

−1.2 1

1

0 5 10 15 20
1e−15

1e−10

 1e−5

  1  

 

 

f(x)
||∇ ||
µ

Figure 6.1. Rosenbrock function. Iteration path and
performance parameters.

The step from x0 is good, but from x1 the attempted step was uphill,
so a new step has to be computed with an increased value for µ. This
also happens at x5. Apart from that the iteration progresses nicely, and
stops after 15 computations of hlm because it has reached a point x =
x̂ − 10−9 ·

(
4.1 8.2

)
T with ‖∇f(x)‖∞ ≃ 1.7·10−9 ≤ ε1.

Rosenbrock’s problem is consistent, r(x̂) = 0, and therefore we can expect
quadratic final convergence. This is seen by the behavior of f(x) and
‖∇f(x)‖ in the last few iterations.

Example 6.10. We have used Algorithm 6.18 on the data fitting problem
from Examples 5.2 and 6.6 with the fitting model

M(x, t) = x1e
−x3t + x2e

−x4t .

Figure 5.2 indicates that both x3 and x4 are positive and thatM(x̂, 0)≃ 0.

These conditions are satisfied by x0 =
(
1 −1 1 2

)T
. Further, we used
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τ = 10−3, ε1 = 10−8, ε2 = 10−14 kmax = 100. The algorithm stopped

after 62 iteration steps with x ≃
(
4 −4 4 5

)T
, corresponding to the

fit shown by full line in Figure 5.2 The performance is illustrated below.
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Figure 6.2. L-M method applied to the problem from Example 5.2.

This problem is not consistent, so we could expect linear final conver-
gence. The final iterations indicate a much better (superlinear) conver-
gence. The explanation is that the ∇2ri(x) are slowly varying functions
of ti, and the ri(x̂) have “random” sign, so that the contributions to the
“forgotten term” in (6.12) almost cancel each other. Such a situation
occurs frequently in data fitting applications.

For comparison, Figure 6.3 shows the performance with the classical up-
dating strategy for µ, (3.11). From step 5 to step 68 we see that each
decrease in µ is immediately followed by an increase, and the norm of the
gradient has a rugged behaviour. This slows down the convergence, but
the final stage is as in Figure 6.2.
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µ

Figure 6.3. L-M method with classical µ-updating strategy.

Example 6.11. Figure 6.4 illustrates the performance of Algorithm 6.18 ap-
plied to Powell’s problem from Examples 6.2 and 6.7. The starting point
is x0 =

(
3 1

)
T , and we use τ = 1, ε1 = ε2 = 10−15, kmax = 100.
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0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−8

10
0

10
8

 

 

f(x)
||∇ ||
µ

Figure 6.4. The L-M method applied to Powell’s problem.

The iteration process seems to stall between steps 22 and 30. This is an
effect of the (almost) singular Jacobian matrix. After that there seems to
be linear convergence. The iteration is stopped by the “safeguard” at the
point x =

(
-3.82e-08 -1.38e-03

)
T . This is a better approximation to

x̂= 0 than we found in Example 6.7, but we want to be able to do even
better; see Example 6.10.

6.3. Powell’s Dog Leg method

As the Levenberg–Marquardt method, this method works with combi-
nations of the Gauss–Newton and the steepest descent directions. Now,
however, controlled explicitly via the radius of a trust region, cf Sec-
tion 2.4. Powell’s name is connected to the algorithm because he pro-
posed how to find an approximation to htr, defined by (2.28):

htr = argmin
h ∈ T

{q(h)} ; T = {h | ‖h‖ ≤ ∆}, ∆ > 0 ,

where q(h) is an approximation to f(x+h).
Given r : R

n 7→ R
m. At the current iterate x the Gauss–Newton step

hgn is a least squares solution to the linear system

J(x)h ≃ −r(x) .

The steepest descent direction is given by

hsd = −g = −J(x)T r(x) .

This is a direction, not a step, and to see how far we should go, we look
at the affine model

r(x+αhsd) ≃ r(x) + αJ(x)hsd

⇓
f(x+αhsd) ≃ 1

2‖r(x) + αJ(x)hsd‖2

= f(x) + αhT
sd J(x)T r(x) + 1

2α
2‖J(x)hsd‖2 .



126 6. Nonlinear Least Squares

This function of α is minimal for

α = − hT
sd J(x)T r(x)

‖J(x)hsd‖2
=

‖g‖2

‖J(x)g‖2
. (6.19)

Now we have two candidates for the step to take from the current
point x: a =αhsd and b= hgn. Powell suggested to use the following
strategy for choosing the step, when the trust region has radius ∆. The
last case in the strategy is illustrated in Figure 6.5.

if ‖hgn‖ ≤ ∆
hdl := hgn

elseif ‖αhsd‖ ≥ ∆
hdl := (∆/‖hsd‖)hsd

else
hdl := αhsd + β(hgn − αhsd)

with β chosen so that ‖hdl‖ = ∆ .

(6.20)

Figure 6.5. Trust region
and Dog Leg step.2)

∆
x

a = αhsd

b = hgn

hgn

With a and b as defined above, and c = aT (b−a) we can write

P (β) ≡ ‖a + β(b−a)‖2 − ∆2 = ‖b−a‖2β2 + 2cβ + ‖a‖2 − ∆2 .

We seek a root for this second degree polynomial, and note that P→+∞
for β→−∞; P (0) = ‖a‖2−∆2 < 0; P (1) = ‖hgn‖2−∆2 > 0. Thus, P
has one negative root and one root in ]0, 1[. We seek the latter, and the

2) The name Dog Leg is taken from golf: The fairway at a “dog leg hole” has a
shape as the line from x (the tee point) via the end point of a to the end point
of hdl (the hole). Mike Powell is a keen golfer!
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most accurate computation of it is given by

if c ≤ 0

β =
(
−c+

√
c2 + ‖b−a‖2(∆2 − ‖a‖2)

)/
‖b−a‖2

else

β =
(
∆2 − ‖a‖2

) /(
c+

√
c2 + ‖b−a‖2(∆2 − ‖a‖2)

)
.

As in the Levenberg-Marquardt method we can use the gain ratio

̺ = (f(x) − f(x+hdl))
/
(L(0) − L(hdl))

to monitor the iteration. Again, L is the linear model

L(h) = 1
2‖r(x) + J(x)h‖2 .

In the L-M method we used ̺ to control the size of the damping pa-
rameter. Here, we use it to control the radius ∆ of the trust region. A
large value of ̺ indicates that the linear model is good. We can increase
∆ and thereby take longer steps, and they will be closer to the Gauss–
Newton direction. If ̺ is small, maybe even negative, then we reduce ∆,
implying smaller steps, closer to the steepest descent direction. Below
we summarize the algorithm.

We have the following remarks.

1◦ Initialization. x0 and ∆0 should be supplied by the user.

2◦ We use the stopping criteria (6.17) supplemented with
‖r(x)‖∞≤ ε3, reflecting that r(x̂)= 0 in case of m=n, ie a nonlin-
ear system of equations.

3◦ See Example 6.12 below.

4◦ Corresponding to the three cases in (6.20) we can show that

L(0)−L(hdl) =





f(x) if hdl = hgn

∆(2‖αg‖ − ∆)

2α
if hdl =

−∆

‖g‖ g

1
2α(1−β)2‖g‖2 + β(2−β)f(x) otherwise

5◦ The strategy in Algorithm 2.30 is used to update the trust region
radius.
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Algorithm 6.21. Dog Leg method

Given x0, ∆0, ε1, ε2, ε3, kmax 1◦

begin
k := 0; x := x0; ∆ := ∆0; g := J(x)T r(x)
found := (‖r(x)‖∞ ≤ ε3) or (‖g‖∞ ≤ ε1) 2◦

while (not found) and (k <kmax)
k := k+1; Compute α by (6.19)
hsd := −αg; Solve J(x)hgn ≃ −r(x) 3◦

Compute hdl by (6.20)
if ‖hdl‖ ≤ ε2(‖x‖ + ε2)

found := true
else

xnew := x + hdl

̺ := (f(x) − f(xnew))/(L(0) − L(hdl)) 4◦

if ̺ > 0
x := xnew; g := J(x)T r(x)
found := (‖r(x)‖∞≤ ε3) or (‖g‖∞≤ ε1)

if ̺ > 0.75 5◦

∆ := max{∆, 3∗‖hdl‖}
elseif ̺ < 0.25

∆ := ∆/2; found := (∆≤ ε2(‖x‖ + ε2)) 6◦

end

6◦ Extra stopping criterion. If ∆ ≤ ε2(‖x‖+ε2), then (6.17) will surely
be satisfied in the next step.

Example 6.12. In Example 6.8 we briefly discussed the computation of the
step hlm and argued that we might as well compute it via the normal
equations formulation. Provided that µ is not very small, the matrix
is reasonably well conditioned, and there will be no excessive effects of
rounding errors.

The Dog Leg method is intended perform well also on nonlinear systems
of equations, ie where the system J(x)h ≃ −r(x) is a square system of
linear equations

J(x)h = −r(x) ,

with the solution h=hNR, the Newton–Raphson step, cf Example 6.2.
The Jacobian J may be ill-conditioned (even singular), in which case
rounding errors tend to dominate the solution. This problem is worsened
if we use the formulation (6.11) to compute hgn.



6.3. Powell’s Dog Leg method 129

In the implementation dogleg in immoptibox the vector hgn is computed
with respect to these problems. If the columns of J(x) are not significantly
linearly independent, then the least squares solution h is not unique, and
hgn is computed as the h with minimum norm. Some details of this
computation are given in Appendix A.6.

Example 6.13. Figure 6.6 illustrates the performance of Algorithm 6.21 ap-
plied to Powell’s problem from Examples 6.2, 6.7 and 6.11. The starting
point is x0 =

(
3 1

)
T , and we use ∆0 = 1, and the stopping criteria

given by ε1 = ε2 =10−15, ε3 =10−20, kmax = 100.
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Figure 6.6. The Dog Leg method applied to Powell’s problem.

The iteration stopped after 37 steps because of a small gradient, and
returned x =

(
3.72·10−34 1.26·10−9

)
T , which is quite a good approxi-

mation to x̂= 0. As in Figure 6.4 we see that the ultimate convergence
is linear (caused by the singular J(x̂)), but considerably faster than with
the Levenberg-Marquardt method.

Example 6.14. We have used Algorithm 6.21 on the data fitting problem
presented in Example 5.2. As in Example 6.10 we use the starting point

x0 =
(
−1, −2, 1, −1

)T
, and take ∆0 =1 and the stopping criteria given

by ε1 =10−8, ε2 = ε3 = 10−12, kmax = 100. The algorithm stopped after

30 iterations with x ≃
(
−4, −5, 4, −4

)T
. The performance is illustrated

below. As in Figure 6.2 we note a very fast ultimate rate of convergence.
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Figure 6.7. Dog Leg method applied to the problem from Example 5.2.
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The last two examples seem to indicate that the Dog Leg method
is considerably better than the Levenberg-Marquardt method. This is
true when the least squares problem arises from a system of nonlinear
equations. The Dog Leg method is presently considered as the best
method for solving systems of nonlinear equations.

For general least squares problems the Dog Leg method has the same
disadvantages as the L-M method: the final convergence can be expected
to be linear (and slow) if f(x̂) 6= 0. For a given problem and given
starting guess x0 it is not possible to say beforehand which of the two
methods will be the faster.

6.4. A secant version of the L–M method

The methods discussed in this chapter assume that the vector function
r is differentiable, ie the Jacobian

J(x) =

(
∂ri
∂xj

)

exists. In many practical optimization problems it happens that we
cannot give formulae for the elements in J , for instance because r is given
by a “black box”. The secant version of the L–M method is intended
for problems of this type.

The simplest remedy is to replace J(x) by a matrix G obtained by
numerical differentiation: The (i, j)th element is approximated by the
finite difference approximation, cf Appendix A.3,

∂ri
∂xj

(x) ≃ gij ≡
ri(x+δe(j)) − ri(x)

δ
, (6.22)

where e(j) is the unit vector in the jth coordinate direction and δ is
an appropriately small real number. With this strategy each iterate x

needs n+1 evaluations of r, and since δ is probably much smaller than
the distance ‖x−x̂‖, we do not get much more information on the global
behavior of r than we would get from just evaluating r(x). We want
better efficiency.

Example 6.15. Let m=n= 1 and consider one nonlinear equation

f : R 7→ R. Find x̂ such that f(x̂) = 0 .

For this problem we can write the Newton–Raphson algorithm (6.4) in
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the form
f(x+h) ≃ ℓ(h) ≡ f(x) + f ′(x)h

Solve the linear problem ℓ(h) = 0

xnew := x+ h

(6.23)

If we cannot implement f ′(x), then we can approximate it by

(f(x+δ) − f(x))/δ

with δ chosen appropriately small. More generally, we can replace (6.23)
by

f(x+h) ≃ λ(h) ≡ f(x) + g h with g ≃ f ′(x)

Solve the linear problem λ(h) = 0

xnew := x+ h

(6.24)

Suppose that we already know xprev and f(xprev). Then we can fix the
factor g (the approximation to f ′(x)) by requiring that

f(xprev) = λ(xprev − x) .
This gives

g = (f(x) − f(xprev)) / (x− xprev) ,

and with this choice of g we recognize (6.24) as the secant method , see for
instance [18, pp 70f]. The main advantage of the secant method over an
alternative finite difference approximation to Newton–Raphson’s method
is that we only need one function evaluation per iteration step instead of
two.

Now, consider the linear model (6.8) for r : R
n 7→ R

m,

r(x+h) ≃ ℓ(h) ≡ r(x) + J(x)h .

We will replace it by

r(x+h) ≃ λ(h) ≡ r(x) + Gh ,

where G is the current approximation to J(x). In the next iteration we
need Bnew so that

r(xnew+h) ≃ r(xnew) + Gnewh .

Especially, we want this model to hold with equality for h = x−xnew,
ie

r(x) = r(xnew) + Gnew(x−xnew) . (6.25)

This gives us m equations in the m·n unknown elements of Gnew, so
we need more conditions. Broyden, [6], suggested to supplement (6.25)
with

Gnewv = Gv for all v ⊥ (x−xnew) . (6.26)
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It is easy to verify that conditions (6.25)–(6.26) are satisfied by the
updating formula discussed in Example 3.6:

Definition 6.27. Broyden’s rank one update

Gnew = G + uhT ,
where

h = xnew − x , u =
1

hT h
(r(xnew) − r(x) − Gh) .

Comparing with Example 6.15 we see that condition (6.25) corre-
sponds to the secant condition in the case n= 1. We say that this
approach is a generalized secant method.

A brief sketch of the central part of Algorithm 6.18 with this modi-
fication has the form

Solve (GT G + µI)hslm = −GT r(x)

xnew := x + hslm

Update G by Definition 6.27

Update µ and x as in Algorithm 6.18

Powell has shown that if the set of vectors x0,x1,x2, . . . converges
to x̂ and if the set of steps {hk ≡ xk−xk−1} satisfy the condition that
{hk−n+1, . . . ,hk} are linearly independent (they span the whole of R

n)
for each k≥n, then the set of approximations {Gk} converges to J(x̂),
irrespective of the choice of G0.

In practice, however, it often happens that the previous n steps do
not span the whole of R

n, and there is a risk that after some iterations
the current G is such a poor approximation to the true Jacobian, that
−GT r(x) is not even a downhill direction. In that case x will stay
unchanged and µ is increased. The approximation G is changed, but
may still be a poor approximation, leading to a further increase in µ,
etc. Eventually the process is stopped by hslm being so small that the
second criterion in (6.17) is satisfied, although x may be far from x̂.

A number of strategies have been proposed to overcome this problem,
for instance to make occasional recomputations of G by finite differences.
In Algorithm 6.29 below we supplement the updatings determined by
Definition 6.27 with a cyclic, coordinate-wise series of updatings: Let h

denote the current step, and let j be the current coordinate number. If
the pseudo angle θ between h and e(j) is “large”, then we compute a
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finite difference approximation to the jth column of J . More specific,
this is done if

cos θ =
|hT e(j)|

‖h‖ · ‖e(j)‖
< γ ⇔ |hj | < γ‖h‖ . (6.28)

Experiments indicated that the (rather pessimistic) choice γ= 0.8 gave
good performance. With this choice we can expect that each iteration
step needs (almost) two evaluations of the vector function r.

Now we are ready to present the algorithm:

Algorithm 6.29. Secant version of the L–M method

begin
k := 0; x := x0; G := G0; j := 0; µ := µ0 {1◦}
g := GT r(x); found = ( ‖g‖∞ ≤ ε1 )
while (not found) and (k < kmax)
k := k+1; Solve (GT G + µI)h = −g

if ‖h‖ ≤ ε2(‖x‖ + ε2)
found := true

else
j := mod(j, n)+1; if |hj | < 0.8‖h‖ {2◦}

Update G by (6.22), using xnew = x + η e(j) {3◦}
xnew := x + h; Update G by 6.27
Update µ as in Algorithm 6.18
if f(xnew) < f(x)

x := xnew

g := GT r(x); found := ( ‖g‖∞ ≤ ε1 ) {4◦}
end

Comments:

1◦ Initialization. µ0 is computed by (6.13). x0, τ , parameters in the
stopping criteria (6.17) and the relative step δ (see 3◦ below) to
use in (6.22) are input, and G0 is either input or it is computed
by (6.22).

2◦ Cf (6.28). mod(j, n) is the remainder after division by n.

3◦ The step η is given by
if xj = 0 then η := δ2 else η := δ|xj | .
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4◦ Whereas the iterate x is updated only if the descending condition
is satisfied, the approximation G is updated in every step. There-
fore the approximate gradient g may change also when r(x) is un-
changed.

Example 6.16. We have applied Algorithm 6.29 to the Rosenbrock problem
from Example 6.9. If we use the same starting point and stopping criteria
as in that example, and take δ=10−7 in the difference approximation
(6.22), we find the solution after 29 iteration steps, involving a total of
53 evaluations of r(x). For comparison, the “true” L–M algorithm needs
only 17 steps, implying a total of 18 evaluations of r(x) and J(x).

We have also used the secant algorithm on the data fitting problem from
6.10. With δ=10−7 and the same starting point and stopping criteria
as in Example 6.10 the secant version needed 145 iterations, involving a
total of 295 evaluations of r(x). For comparison, Algorithm 6.18 needs
62 iterations.

These two problems indicate that Algorithm 6.29 is robust, but they also
illustrate a general rule of thumb: If gradient information is available, it
normally pays to use it.

In many applications the numbers m and n are large, but each of the
functions fi(x) depends only on a few of the elements in x. In such cases
most of the ∂fi

∂xj
(x) are zero, and we say that J(x) is a sparse matrix .

There are efficient methods exploiting sparsity in the solution of the
equation (GT G + µI)h = −g, see for instance [17]. In the updating
formula in Definition 6.27, however, normally all elements in the vectors
h and u are nonzero, so that Gnew will be a dense matrix . It is outside
the scope of this book to discuss how to cope with this; we refer to [21],
[51] and [44, Chapter 9].

6.5. A secant version of the Dog Leg method

The idea of using a secant approximation to the Jacobian can, of course,
also be used in connection with the Dog Leg method from Section 6.3.
In this section we shall consider the special case of m=n, ie in the solu-
tion of nonlinear systems of equations. Broyden, [6], not only gave the
formula from Definition 6.27 for updating the approximate Jacobian. He
also gave a formula for updating an approximate inverse of the Jacobian,
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K ≃ J(x)−1. The two formulas are

Gnew = G +
1

hT h

(
y − G h

)
hT ,

Knew = K +
1

vT y

(
h − K y

)
vT ,

where

h = xnew − x , y = r(xnew) − r(x) , v = K h .

(6.30)

With these matrices the steepest descent direction hsd and the Gauss–
Newton step hgn (which is identical to the Newton step in this case, cf
Example 6.7) are approximated by

hssd = −GT r(x) and hsgn = −Kr(x) . (6.31)

Algorithm 6.21 is easily modified to use these approximations. The
initial G =G0 can be found by the difference approximation (6.22), and
K0 can be computed as G−1

0 . It is easy to verify that then the current
G and K satisfy GK = I .

Like the secant version of the L–M method, this method needs extra
updates to keep G and K as good approximations to the current Jaco-
bian and its inverse. We have found that the strategy discussed around
(6.28) also works well in this case. It should also be mentioned that the
denominator in (3.22) may be zero or very small. If

|hT Dy| < √
εM ‖h‖ ,

then K is not updated, but computed as K = G−1.
Each update with (3.22) “costs” 10n2 flops3)and the computation of

the two step vectors by (6.31) plus the computation of α by (6.19) costs
6n2 flops. Thus, each iteration step with the gradient–free version of
the Dog Leg method costs about 16n2 flops plus evaluation of r(xnew).
For comparison, each step with Algorithm 6.21 costs about 2

3n
3+6n2

flops plus evaluation of r(xnew) and J(xnew). Thus, for large values of
n the gradient-free version is cheaper per step. However, the number of
iteration steps is often considerably larger, and if the Jacobian matrix
is available, then the gradient version is normally faster.

Example 6.17.We have used Algorithm 6.21 and the gradient–free Dog Leg
method on Rosenbrock’s function r : R

2 7→R
2, given by

3) One “flop” is a simple arithmetic operation between two floating point numbers.
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r(x) =

(
10(x2 − x2

1)
1 − x1

)
,

cf Example 6.9. The function has one root, x̂ =
(
1 1

)
T , and with both

methods we used the starting point x0 =
(
−1.2 1

)
T and ε1 = 10−10,

ε2 =10−14, kmax =100 in the stopping criteria (6.17), and δ=10−7 in
(6.22). Algorithm 6.21 stopped at the solution after 17 iterations, ie after
18 evaluations of r and its Jacobian. The secant version also stopped at
the solution; this needed 28 iterations and a total of 49 evaluations of r.

6.6. Final remarks

We have discussed a number of algorithms for solving nonlinear least
squares problems. It should also be mentioned that sometimes a refor-
mulation of the problem can make it easier to solve. We shall illustrate
this claim by examples, involving ideas that may be applicable also to
your problem.

Example 6.18. Weighted least squares. First, we want to point out that
we have presented methods for unweighted least squares problems. As
discussed in Sections 5.1 and 5.4, it may be appropriate to look for x̂w, a
local minimizer for

f(x) = 1
2 ‖Wr(x)‖2 = 1

2

m∑

i=1

(wiri(x))
2
, (6.32)

for given weights {wi}. Many implementations of the algorithms, for
instance the Matlab functions in immoptibox, do not explicitly allow
for weights. This, however, is no restriction: The program calls a user-
supplied function, which for a given x should return r(x) and maybe also
the Jacobian J(x). For a weighted problem you simply let your function
return Wr(x) and WJ(x).

Example 6.19. Change of variables. In Powell’s problem from Examples
6.2, 6.7, 6.11 and 6.13 the variable x2 occurs only as x2

2. We can change
the variables to z =

(
x1 x2

2

)
T , and the problem takes the form: Find

z∗ ∈R
2 such that r(z∗)=0, where

r(z) =

(
z1

10z1

z1+0.1 + 2z2

)
with J(z) =

(
1 0

(z1+0.1)−2 2

)
.

This Jacobian is nonsingular for all z. The Levenberg–Marquardt algo-
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rithm 6.18 with starting point z0 =
(
3 1

)
T , τ =10−16 and ε1 =10−12,

ε2 = 10−16 in the stopping criteria (6.17) stops after 4 iterationss with
z ≃

(
2.84e-21 -1.42e-19

)
T . This is a good approximation to z∗ = 0.

Example 6.20. Exponential fit. In Examples 6.3, 6.6, 6.10 and 6.14 we
demonstrated the performance of some algorithms when applied to the
data fitting problem from Example 5.2, with the fitting model (slightly
reformulated from the previous examples)

M(x, t) = x3e
x1t + x4e

x2t .

The parameters x3 and x4 appear linearly, and we can reformulate the
model to have only two parameters,

M(x, t) = c1e
x1t + c2e

x2t ,

where, for given x, the vector c = c(x)∈R
2 is found as the least squares

solution to the linear problem

F c ≃ y ,

with F = F (x)∈R
m×2 given by the rows (F )i,: = (ex1ti ex2ti). The

associated residual vector is

r(x) = y − F (x) c(x) .

It can be shown that the Jacobian is

J = −FG − H [c] ,

where, for any vector u we define the diagonal matrix [u] = diag(u), and

H = [t] F , G =
(
F T F

)−1 (
[HT r] − HT F [c]

)
.

Algorithm 6.18 with the same poor starting guess as in Example 6.10,
x0 =

(
−1 −2

)
T , τ =10−3 and ε1 = ε2 = 10−8 finds the solution x ≃(

−4 −5
)

T after 13 iteration steps; about 1

5
of the number of steps

needed with the 4-parameter model.

This approach can be generalized to any model, where some of the pa-
rameters occur linearly. It has the name separable least squares, and is
discussed for instance in [22] and [41].

Example 6.21. Scaling. This example illustrates a frequent difficulty with
least squares problems: Normally the algorithms work best when the
problem is scaled so that all the (nonzero) components of x̂ are of the
same order of magnitude.

Consider the so-called Meyer’s problem

ri(x) = yi − x1 exp

(
x2

ti + x3

)
, i=1, . . . , 16 ,
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with ti =45+5i and

i yi i yi i yi

1 34780 7 11540 12 5147
2 28610 8 9744 13 4427
3 23650 9 8261 14 3820
4 19630 10 7030 15 3307
5 16370 11 6005 16 2872
6 13720

The minimizer is x̂ ≃
(
5.61·10−3 6.18·103 3.45·102

)T
with

f(x̂) ≃ 43.97.

An alternative formulation is

ρi(x) = 10−3yi − z1 exp

(
10z2
ui + z3

− 13

)
, i=1, . . . , 16 ,

with ui = 0.45+0.05i. The reformulation corresponds to

z =
(
10−3e13x1 10−3x2 10−2x3

)T
,

and the minimizer is

z∗ ≃
(
2.48 6.18 3.45

)T

with 1
2 ‖ρ(z∗)‖2

2 ≃ 4.397·10−5.

If we use Algorithm 6.18 with τ =1, ε1 =10−6, ε2 =10−10 and the equiv-
alent starting vectors

x0 =
(
2·10−2 4·103 2.5·102

)T
, z0 =

(
8.85 4 2.5

)T
,

then we need 175 iterations with the first formulation, and 88 iterations
with the well-scaled reformulation.

Example 6.22. Multiexponential fit. We wish to fit the data in Figure 5.9
(repeated in Figure 6.9) with the model

M(c, z, t) =

p∑

j=1

cj e
zjt . (6.33)

This means that the parameter vector

x =

(
z

c

)

has n = 2p elements. This is a data representation problem, and similar
to the discussion with polynomials and splines, Sections 5.6 – 5.8, we
have no prior knowledge of the number of terms that we can use without
dominating effect of “noise”.

In Example 5.14 we saw that it was relevant to use a weighted fit, and
that the appropriate weights were given by
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wi =
(
19.7 + 1490e−1.89ti

)−1
.

Figure 6.8 shows the weighted residuals for the weighted least squares fits
with one and two terms in (6.33).

0 10 20 30 40
−40

−20

0

20

40
p = 1

0 10 20 30 40
−6

−3

0

3

6
p = 2

Figure 6.8. Weighted residuals for p=1 and p=2.

We see a very clear trend for p=1, and a less pronounced trend for p=1.
For p=3 (not shown) we cannot see a trend, so p=3 ∼ n=6 seems a
good choice.

As in Section 5.6 we can quantify the trend. Now, however, we should
replace ri by wiri, so that (5.48) is modified to

Tn =
√

2(m− 1)Rn ,
where

vn =
1

m−n

m∑

i=1

(wir̂i)
2
, Rn =

1

(m− 1)vn

m−1∑

i=1

wir̂iwi+1r̂i+1 .

We got the following results

p n vn Tn

1 2 249 22.0
2 4 1.70 6.62
3 6 1.04 −1.54
4 8 1.03 −2.09

We see significant decreases from v2 to v4 and from v4 to v6, while the
decrease from v6 to v8 is insignificant. So the variance estimates indicate
that we should use p=3 ∼ n=6. This is corroborated by the trend
measure: T6 is the first Tn smaller than one.

The resulting fitting model is

M(ĉw, ẑw, t)) = 99.3e−0.00611t + 7310e−0.983t + 32700e−2.05t .

Its is shown in Figure 6.9.



140 6. Nonlinear Least Squares

5 10 15 20 25 30 35 40
10

2

10
3

10
4

10
5

 

 

Data points
Multiexp. fit

Figure 6.9. Fit to OSL data with 3 terms in (6.33).



Chapter 7

Fitting in other Norms

In this chapter we discuss methods for parameter estimation in cases,
where the definition of “best” is different from the (weighted) least
squares, cf Section 5.1. More precisely, we are given a vector function
r : R

n 7→ R
m and we want to find x̂ that minimizes some measure of

r(x), for instance ‖r(x)‖1 or ‖r(x)‖∞. These two cases are treated in
the first two sections, and in the rest of the chapter we discuss a method
which can be thought of as a hybrid between the least squares and the
least absolute deviation definitions of “best”.

The function r may depend nonlinearly on x, and we present al-
gorithms of Gauss–Newton type, cf Section 6.1, based on successive
approximations by first order Taylor expansions,

ri(x+h) ≃ ℓi(h) ≡ ri(x) + ∇ri(x)T h , i = 1, . . . ,m ,
m

r(x+h) ≃ ℓ(h) ≡ r(x) + J(x)h ,
(7.1)

where ∇ri ∈R
n is the gradient of ri and J ∈R

m×n is the Jacobian of
r. It has the rows J i: = (∇ri)

T . In the first two sections we combine
the Gauss–Newton method with a trust region approach, cf Section 2.4.
The generic algorithm is

Algorithm 7.2. Generic algorithm

Given starting point x and trust region radius ∆
while not stop

ĥ = argmin‖h‖∞≤∆ L(h)

̺ =
(
(f(x) − f(x+ĥ)

)
/
(
L(0) − L(ĥ)

)

if ̺ ≥ 0.75 then ∆ := ∆ ∗ 2
if ̺ ≤ 0.25 then ∆ := ∆/3

if ̺ > 0 then x := x + ĥ
end
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The functions f and L are defined by f(x) = ‖r(x)‖p and L(h) =
‖ℓ(h)‖p, respectively. Combining these definitions with (7.1) we see
that L(0) = f(x).

7.1. Fitting in the L∞ norm

We seek a minimizer x̂ of the function

f(x) = ‖r(x)‖∞ = max
i

|ri(x)| .

Hald and Madsen [25] proposed to use Algorithm 7.2. The linearized
problem

ĥ = argmin
‖h‖∞ ≤ ∆

{
L(h) ≡ ‖r(x) + J(x)h‖∞

}

is solved by an LP algorithm, cf Appendix A.9. To get an LP formulation
of the problem, we introduce the variable hn+1 = L(h) and the extended
vector

h̃ =

(
h

hn+1

)
∈ R

n+1 .

Now ĥ can be found by solving the problem

minimize hn+1

subject to −∆ ≤ hi ≤ ∆

−hn+1 ≤ ri(x) + ∇ri(x)T h ≤ hn+1

}
i = 1, . . . , n

See [25] for further information. This simple linear programming formu-
lation is enabled by the change of the trust region definition from the
2–norm discussed in Section 2.4 to the ∞–norm used here.

7.2. Fitting in the L1 norm

We seek a minimizer x̂ of the function

f(x) = ‖r(x)‖1 =
m∑

i=1

|ri(x)| .

In some applications the solution is referred to as the least absolute
deviation fit.
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Hald and Madsen [26] proposed to use Algorithm 7.2. The linearized
problem

ĥ = argmin
‖h‖∞ ≤ ∆

{
L(h) ≡ ‖r(x) + J(x)h‖1

}

is solved by an LP algorithm: We introduce auxiliary variables hn+i,
i= 1, . . . ,m, and the extended vector

h̃ =




h

hn+1
...

hn+m


 ∈ R

n+m .

Now ĥ can be found by solving the problem

minimize
m∑

i=1

hn+i

subject to −∆ ≤ hi ≤ ∆

−hn+i ≤ ri(x) + ∇ri(x)T h ≤ hn+i

}
i = 1, . . . ,m

See [26] for further information.

Example 7.1. When r is an affine function, r(x) = y−Fx, the gradients are
constant, and the LP formulation is

minimize
∑m

i=1 xn+i

subject to −xn+i ≤ yi − F i,: x ≤ xn+i , i = 1, . . . ,m .

This formulation is the background for the Barrodale–Roberts algorithm
[2], which is often used for robust parameter estimation with linear fitting
models, cf Examples 5.5 and 7.3.

7.3. Huber estimation

This approach combines the smoothness of the least squares estimator
with the robustness of the L1-estimator, cf Example 5.5.



144 7. Fitting in other Norms

For a function r : R
n 7→ R

m the Huber estimator xγ is defined by1)

xγ = argmin
x

{
fγ(x) ≡

m∑

i=1

φγ(ri(x))
}
, (7.3)

where φγ is the Huber function,

φγ(u) =





1

2γ
u2 if |u| ≤ γ ,

|u| − 1
2 γ if |u| > γ .

(7.4)

Figure 7.1. Huber function
(full line) and the scaled L2

function 1
2γu

2 (dotted line).
−γ 0 γ u

1
2γ

φγ

The threshold γ is used to distinguish between “small” and “large”
function values (residuals). Based on the values of the ri(x) we define
a generalized sign vector s = sγ(x) and an “activity matrix” W =
W γ(x) = diag(w1, . . . , wm). Note that wi = 1− s2i .

ri(x) < −γ |ri(x)| ≤ γ ri(x) > γ

si(x) −1 0 1

wi(x) 0 1 0

(7.5)

Now the objective function in (7.3) can be expressed as

fγ(x) =
1

2γ
rT W r + rT s − 1

2 γ sT s , (7.6)

where we have omitted the argument (x) and index γ on the right-hand
side. The gradient is

∇fγ =
1

γ
JT (W r + γ s) . (7.7)

1) Strictly speaking, it is misleading to discuss this approach under the heading
“other norms”: fγ in (7.3) is not a norm: the triangle inequality is not satisfied.
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At a minimizer the gradient must be zero. Thus, a necessary condition
for xγ being a minimizer of fγ is that it satisfies the equation

J(x)T (W γ(x)r(x) + γ sγ(x)) = 0 . (7.8)

7.3.1. Linear Huber estimation

First consider an affine function

r(x) = y − F x , (7.9)

where y ∈R
m and F ∈R

m×n are constant. It follows from (7.5) that
si(x) = 0 for all x between the two hyperplanes ri(x) = −γ and ri(x) =
γ. These 2m hyperplanes divide Rn into subregions {Dk}. Inside each
subregion sγ(x) and W γ(x) are constant, so fγ is a piecewise quadratic.
The gradient is

∇fγ(x) = −1

γ
F T
(
W (x)(y − F x) + γ s(x)

)
. (7.10)

It varies continuously across the hyperplanes, while the Hessian

∇2fγ(x) =
1

γ
F T W (x)F ≡ H(x) (7.11)

is constant in the interior of each Dk and jumps as x crosses one of the
dividing hyperplanes.

Example 7.2. Consider the affine function r : R
2 7→ R

3 given by

r(x) =




1.5
2.0

−3.5



−




−0.5 2.0

3.0 −1.0
−1.0 0.5



x ,

and let the threshold γ = 0.5.

In R
2 a hyperplane is a straight line, and Figure 7.2 below shows the lines,

along which ri(x) = 0 (full lines); the dividing hyperplanes, ri(x) = ±γ
(dotted lines) and two of the subregions are indicated by hatching. For

x∈Dk we have s =
(
0 −1 −1

)T
, while s =

(
−1 1 −1

)T
for x∈Dj.
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Figure 7.2. Dividing
hyperplanes in R

2.
0 1 2 3 4
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r2 = 0

r3 = 0
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The square indicates the Huber solution for γ= 0.5, xγ =
(
1.116 1.143

)
T

with sγ =
(
0 0 −1

)T
. For comparison, the circle marks the least

squares solution to r(x) ≃ 0: x(2) =
(
1.337 1.415

)
T .

With a slight modification of (5.13) we can show that the Hessian
(7.11) is positive semidefinite. This implies that if we find a stationary
point xs, ie ∇fγ(xs) = 0, then it is a minimizer for fγ : xγ = xs. We
use Newton’s method with line search to find a stationary point.

Algorithm 7.12. Linear Huber

Given starting point x and threshold γ
repeat

Find v by solving H(x)v = −∇fγ(x)
x := line search(x,v)

until stop

The line search is very simple: ϕ(α) = fγ(x + αv) is a piecewise
quadratic in the scalar variable α, so α∗ is a root for ϕ′, which is piecewise
linear; the coefficients change when x+αv passes a dividing hyperplane
for increasing α. The stopping criterion is that sγ(x+α∗v) = sγ(x).
See [33] and [38] about details and efficient implementation.

Example 7.3. The function (7.9) may be the residual from data fitting with a
linear model, cf Chapter 5. Peter Huber [29] introduced his M-estimator
as a method for reducing the effect of wild points, cf Example 5.5, and
from (7.8) we see that this is achieved by replacing a large ri by just the
threshold γ times the sign of this wild point residual.
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Example 7.4. Suppose that γ is changed to δ and that sδ(xδ) = sγ(xγ) = s,
and therefore W δ(xδ) = W γ(xγ) = W . Then it follows from (7.8) and
(7.10) that the Huber solution is a linear function of the threshold,

xδ = xγ + (γ−δ)
(
F T W F

)−1

F T s . (7.13)

Let x(2) denote the least squares solution to r(x) ≃ 0. This is also the
Huber solution (with s = 0) for all γ ≥ γ∞ ≡ ‖r(x(2))‖∞. For γ < γ∞
one or more ri will be “large”, so s changes.

Madsen and Nielsen [34] showed that there exists a γ0> 0 such that sγ(x∗
γ)

is constant for γ≤ γ0 and used this together with (7.13) to develop an
efficient method for linear L1 estimation. This might replace the LP
algorithm used to solve the linearized problems in Section 7.2.

7.3.2. Nonlinear Huber Estimation

Now consider a function r that depends nonlinearly on x. We must
use iteration to find the minimizer xγ of fγ . At the current iterate x

we use the approximation (7.1) and the corresponding approximation to
the objective function

fγ(x + h) ≃ L(h)

=
1

2γ
ℓT W ℓ + ℓT s − 1

2 γ sT s ,

where ℓ = ℓ(h) = f(x) + J(x)h and s and W are given by (7.5) with
r(x) replaced by ℓ(h).

As in Sections 7.1 and 7.2 we can combine this Gauss–Newton model
with a trust region approach, cf [27]. Instead we shall describe a Leven-
berg–Marquardt like algorithm, cf 6.18, see Algorithm 7.14.

The linearized problem at 1◦ is solved by a slight modification of
Algorithm 7.12 with starting point v = 0. Note that L(0) = fγ(x).
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Algorithm 7.14. Nonlinear Huber

Given starting point x, threshold γ and µ> 0. ν= 2
while not stop

ĥ = argminh

{
L(h) + 1

2µh
Th
}

{1◦}
̺ := (fγ(x) − fγ(x+ĥ))/(L(0) − L(ĥ))
if ̺ > 0 {step acceptable}

x := x + ĥ

µ := µ ∗ max{1
3 , 1 − (2̺− 1)3}; ν := 2

else
µ := µ ∗ ν; ν := 2 ∗ ν

end
end

end

Finally, we give two examples of modified Huber functions with re-
duced influence from positive components of r.

φ̂γ(u) =





|u| − 1
2γ for u < −γ ,

1

2γ
u2 for −γ ≤ u ≤ 0 ,

0 for u > 0 .

φ̃γ(u) =





1

2γ
u2 for u ≤ γ ,

u− 1
2γ for u > γ .

−γ 0 γ u

1
2γ

φ̂γ

−γ 0 γ u

1
2γ

φ̃γ

Figure 7.3. One-sided Huber functions.one-sided Huber function

See [39] about implementation and some applications of these func-
tions.



Appendix A. Some
Mathematical Background

A.1. Norms and condition number
For a vector x∈R

n the Hölder p-norm is defined by

‖x‖p = (|x1|p + · · · + |xn|p)1/p
, for p ≥ 1 .

In the book we use three different p–norms:

‖x‖1 = |x1| + · · · + |xn| ,
‖x‖2 =

√
x2

1 + · · · + x2
n ,

‖x‖∞ = maxi{|xi|} .
(A.1)

If we do not give the p–value, we mean the 2–norm, and we sometimes make
use of the identity

‖x‖2 = ‖x‖2
2 = = xT x , (A.2)

which is easily verified.

For a matrix A∈R
m×n the induced p–normis defined by

‖A‖p = max
x 6=0

{‖A x‖p

‖x‖p

}
= max

‖v‖p=1
{‖A v‖p} . (A.3)

Corresponding to the three vector norms in (A.1) it can be shown that

‖A‖1 = maxj {‖a1j| + · · · + |amj |} ,

‖A‖2 =
√

maxλj(A
T A) ,

‖A‖∞ = maxi {|ai1| + · · · + |ain|} .

(A.4)

In the expression for the 2–norm λj is the jth eigenvalue of the matrix M =

AT A. In Appendix A.2 we show that this matrix has real, non-negative eigen-
values. For a symmetric matrix we have

‖A‖2 = max{|λj(A)|} if AT = A . (A.5)

The symmetry of A implies that it is square, m=n.
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The Frobenius norm of matrix A is defined by

‖A‖F =
(∑m

i=1

∑n
j=1 a

2
ij

)1/2
.

This is recognized as the 2–norm of the vector in R
mn obtained by stacking the

columns of A.

The condition number κp(A) of a full rank matrix A∈R
m×n is defined by

κp(A) = ‖A‖p

/
min
x6=0

{‖A x‖p

‖x‖p

}
= ‖A‖p max

Ax 6=0

{ ‖x‖p

‖A x‖p

}
.

If A is square and nonsingular, then we get the equivalent formulation

κp(A) = ‖A‖p ‖A−1‖p ,

and if A is symmetric, it follows from (A.5) and well-knows facts about the
eigenvalues of the inverse matrix, that

κ2(A) = max{|λj(A)|}
/

min{|λj(A)|} . (A.6)

A.2. Symmetric, Positive Definite Matrices
The matrix A∈R

n×n is symmetric if A = AT , ie if aij = aji for all i, j.

Definition A.7. The symmetric matrix A∈R
n×n is

positive definite if xT A x > 0 for all x ∈ R
n, x6=0 ,

positive semidefinite if xT A x ≥ 0 for all x ∈ R
n, x6=0 .

Some useful properties of such matrices are listed in Theorem A.8 below.
The proof can be found by combining theorems in almost any textbook on
linear algebra and on numerical linear algebra.

A unit lower triangular matrix L is characterized by ℓii = 1 and ℓij = 0
for j>i. Note, that the LU factorization A = LU is made without pivoting.
Also note that points 4◦–5◦ give the following relation between the LU and the
Cholesky factorization

A = L U = L D LT = CT C ,
showing that

C = D1/2LT , with D1/2 = diag(
√
uii) .

The Cholesky factorization can be computed directly (ie without the interme-
diate results L and U) by Algorithm A.10 below, which includes a test for
positive definiteness.
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Theorem A.8. Let A∈R
n×n be symmetric and let A = L U ,

where L is a unit lower triangular matrix and U is an upper trian-
gular matrix. Further, let {(λj ,vj)}n

j=1 denote the eigensolutions
of A, ie

Avj = λjvj , j = 1, . . . , n . (A.9)

Then

1◦ The eigenvalues are real, λj ∈ R, and the eigenvectors {vj}
form an orthonormal basis of R

n.

2◦ The following statements are equivalent

a) A is positive definite (positive semidefinite)

b) All λj > 0 ( λj ≥ 0 )

c) All uii > 0 ( uii ≥ 0 ) .

If A is positive definite, then

3◦ The LU factorization is numerically stable.

4◦ U = D LT with D = diag(uii).

5◦ A = CT C, the Cholesky factorization. C ∈R
n×n is upper tri-

angular.

Algorithm A.10. Cholesky factorization

begin
k := 0; posdef := true {Initialisation}
while posdef and k < n
k := k+1; d := akk −∑k−1

i=1 c
2
ik

if d > 0 {test for pos. def.}
ckk :=

√
d {diagonal element}

for j := k+1, . . . , n

ckj :=
(
akj −

∑k−1
i=1 cijcik

)
/ckk {superdiagonal elements}

else
posdef := false

end

The “cost” of this algorithm is about 1
3n

3 flops. Once C is computed, the
system Ax = b can be solved by forward and back substitution in
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CT z = b and C x = z ,

respectively. Each of these steps costs about n2 flops.
From (A.9) it follows immediately that

(A + µI)vj = (λj + µ)vj , j = 1, . . . , n

for any µ∈R. Combining this with 2◦ in Theorem A.8 we see that if A is
symmetric and positive semidefinite and µ > 0, then the matrix A+µI is
also symmetric and it is guaranteed to be positive definite. Combining this
with (A.6) we see that the condition number can be expressed as

κ(A+µI) =
max{λj} + µ

min{λj} + µ
≤ max{λj} + µ

µ
.

This is a decreasing function of µ.

The eigenvalues of a matrix A can be bounded by means of Gershgorin’s
theorem:

|λj | ≤ ‖A‖∞ = max
i

∑

j

|aij | . (A.11)

A.3. Difference Approximations
We wish to approximate the derivative of a function f : R 7→ R that is three
times continuously differentiable. The Taylor expansion from x is

f(x+h) = f(x) + hf ′(x) + 1
2 h

2 f ′′(x) + 1

6
h3 f ′′′(ξ) ,

where ξ is between x and x+h. By means of this we see that

D+(h) ≡ f(x+h) − f(x)

h
= f ′(x) + 1

2 h f
′′(x) + 1

6 h
2 f ′′′(ξ+) ,

D−(h) ≡ f(x) − f(x−h)
h

= f ′(x) − 1
2 h f

′′(x) + 1
6 h

2 f ′′′(ξ−) ,

D0(h) ≡ f(x+h) − f(x−h)
2h

= f ′(x) + 1
6 h

2 f ′′′(ξ0) .

(A.12)
Assuming that h> 0, these three expressions are respectively the forward, the
backward and the central difference approximation to f ′(x). It follows that the
first two approximations have error O(h), while the central approximation has
error O(h2). This means that by reducing h we can reduce the error. On a
computer, however, there is a lower limit on how small we can take h before
rounding errors spoil the results.

First, x and h are floating point numbers, and the argument x+h is repre-
sented by the floating point number fl

[
x+h

]
, which satisfies

fl
[
x+ h

]
= (x+ h)(1 + ǫ) , |ǫ| ≤ εM ,

where εM is the machine precision. In general

h = fl
[
x+ h

]
− x 6= h . (A.13)
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For instance h = 0 if x> 0 and 0<h≤ εM x. In order to simplify the further
analysis we shall assume that h is larger than this, and that the h in (A.12) is
the true step as defined by (A.13):

xph := x + h; h := xph - x

In general f(z) is not a floating point number, and the best that we can
hope for is that

f(z) = fl
[
f(z)

]
= f(z)(1 + δz) , |δz | ≤ K εM ,

where K is a small positive number, 1≤K ≤ 10, say. The computed forward
difference approximation is

fl
[
D+(h)

]
=

f(x+h)(1 + δx+h) − f(x)(1 + δx)

h
(1 + ǫ) ,

where the error factor (1 + ǫ) accounts for the rounding errors associated with
the subtraction in the nominator and the division by h. If h is sufficiently small
the two terms in the nominator will have the same sign and the same order of
magnitude, 1

2 ≤ f(x+h)/f(x) ≤ 2, and then there is no rounding error in the
subtraction. The division error remains, corresponding to ǫ≤ εM, and ignoring
this we get

fl
[
D+(h)

]
≃ D+(h) +

f(x+h) δx+h − f(x) δx
h

≃ f(x)(δx+h − δx)

h
.

We combine this with (A.12), and if |f ′′(ξ) ≤ A in the neighbourhood of x,
then we get the error bound

|fl
[
D+(h)

]
− f ′(x)| ≤ 1

2 A h+ 2K |f(x)| εM h
−1 .

A.4. Orthogonal transformation
Let x∈R

m. The vector x̃∈R
m is obtained by an orthogonal transformation

of x, if
x̃ = Q x ,

where Q∈R
m×m is an orthogonal matrix , ie Q−1 = QT , or

QT Q = Q QT = I . (A.14)

An orthogonal matrix Q has a number of important properties, for instance
the following,
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Theorem A.15. If Q is an orthogonal matrix, then

1◦ QT is also orthogonal.

2◦ Both the columns and the rows of Q are orthonormal.

3◦ ‖Qx‖2 = ‖x‖2 and (Qx)T (Qy) = xT y .

4◦ ‖Q‖2 = 1 and κ(Q) = 1 .

5◦ If Q1,Q2, . . . ,QN are orthogonal, then the product
Q = Q1Q2 · · ·QN is orthogonal.

Proof.

1◦ Follows from (A.14) by interchanging the roles of Q and QT .

2◦ The (i, k)th element in the matrix equation QT Q = I has the form

QT
:,iQ:,k = δik =

{
0 for i 6= k
1 for i = k

,

showing that the columns {Q:,j} are orthonormal. Similarly,

QQT = I implies that the rows {Qi,:} are orthonormal.

3◦ ‖Qx‖2
2 = (Qx)T (Qx) = xT QT Qx = xT x = ‖x‖2

2 .

The proof of x̃
T
ỹ = xT y is similar.

4◦ ‖Q‖2 ≡ max
x 6= 0

{‖Qx‖2/‖x‖2} = max
x 6= 0

{‖x‖2/‖x‖2} = 1 .

Here, we used 3◦. Similarly we see that min
x 6= 0

{‖Qx‖2/‖x‖2} = 1 , and

κ(Q) = 1 follows from Definition A.6 of the condition number.

5◦ We only need to show that the product of two orthogonal matrices is
orthogonal: Let Q̃ = Q1Q2, then

Q̃
T
Q̃ = QT

2 QT
1 Q1 Q2 = QT

2 Q2 = I ,

ie Q̃ is orthogonal.
�

The two properties in 3◦ can be expressed in words: An orthogonal trans-
formation preserves the length of a vector and the pseudo angle1) between
two vectors. Property 4◦ implies that orthogonal transformations do not en-
large effects of rounding errors. Finally, a transformation is often performed
as a series of orthogonal subtransformations, and 5◦ shows that the complete
transformation is orthogonal.

1) The pseudo angle θ between the vectors x and y is defined by cos θ =
xT y/(‖x‖2‖y‖2).
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Orthogonal transformations can be constructed in a number of ways. We
shall only present the so-called Householder transformation: Given a vector
w ∈ R

m, w 6= 0; the matrix2)

Q = I − βw wT with β =
2

wT w
(A.16)

is easily shown to satisfy QT Q = I, ie, it is orthogonal. A transformation with
such a matrix is simple:

x̃ = (I − β w wT )x = x + γ w , where γ = −β wT x . (A.17)

The “cost” is 4m flops instead of the 2m2 flops required by a general matrix–
vector multiplication.
The following lemma gives the background for the next section.

Lemma A.18. Given x and x̃ with x 6= x̃ but ‖x‖2 = ‖x̃‖2.
Let w = x−x̃, then (A.17) transforms x to x̃.

Proof. We first note that

wT w = (x − x̃)T (x − x̃)

= xT x + x̃T x̃ − 2 x̃
T
x

= 2(xT x − x̃
T
x) = 2 wT x .

Here we exploited that ‖x‖2 = ‖x̃‖2 ⇔ xT x = x̃T x̃ . Next, the
definitions in (A.16) give

γ = −βwT x =
−2

wT w
wT x = −1 ,

so that Qx = x − (x−x̃) = x̃ . �

A.5. QR factorization
Given x∈R

m. We want to transform it into x̃∈R
m satisfying

x̃i =

{
xi i = 1, . . . , k−1
0 i = k+1, . . . ,m .

If we ensure that x̃2
k = ‖xk:m‖2

2 = x2
k + · · · + x2

m, then the two vectors satisfy
the conditions in Lemma A.18. For the sake of accuracy we choose the sign of

2) Remember that the outer product wwT is a matrix and the inner product wT w

is a scalar.
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x̃k so that |wk| is as large as possible. The expression for β can be found as in
the proof of Lemma A.18.

x̃ =




x1

...
xk−1

x̃k

0
...
0




, w =




0
...
0

xk−x̃k

xk+1

...
xm




, (A.19)

where

x̃k = −sign(xk)‖xk:m‖2 , β =
2

wT w
=

−1

x̃kwk
. (A.20)

Now, let x = A:,1, the first column of a matrix A∈R
m×n with m≥n. By

means of (A.19) with k = 1 we get

A(1) = Q1 A =




a
(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(1)
22 · · · a

(1)
2n

...
...

...

0 a
(1)
m2 · · · a

(1)
mn




,

where a
(1)
11 = x̃1 and (A.17) is used to transform columns 2, . . . , n. Next, we

compute A(2) = Q2A
(1), where Q2 corresponds to w(2) found by (A.20) with

x = A
(1)
:,2, k = 2. The first element in w(2) is zero, and therefore the first row

is not changed, A
(2)
1,: = A

(1)
1,:. Also, the zeros in the first column of A(1) imply

that (w(2))T A
(1)
:,1 = 0 and (A.17) shows that A

(2)
:,1 = A

(1)
:,1. This means that

the zeros obtained in the first transformation are not changed.

The process continues with the Q3 determined by x = A
(2)
:,3, k = 3, etc.

If, for some k <n it happens that all a
(k−1)
ik = 0, i = k, . . . ,m, then the

process breaks down; the rank of A is less than n and it is outside the scope
of this book to discuss that. Otherwise A has full rank and we finish after n
subtransformations with a “generalized upper triangular” matrix

A(n) =

(
R

0

)
=




r11 r12 · · · r1n

r22 · · · r2n

. . .
...
rnn

0




,
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where rij = a
(i)
ij and all the diagonal elements rii 6= 0. Summarizing, we get

A(n) = Qn · · ·Q2Q1A, or

A = Q

(
R

0

)
, with Q = QT

1 QT
2 · · ·QT

n . (A.21)

This is a so-called QR factorization of A. The last m−n columns in Q do not
contribute to the product, and another formulation is the so-called “economy
size” (or “thin”) QR factorization:

A = Q̂ R , (A.22)

where the m×n matrix Q̂ consists of the first n columns in Q.
We derived (A.21) via Householder transformations, in which case the {Qk}

are symmetric, and we can write Q = Q1Q2 · · ·Qn. Note, however, that Q is
not symmetric, QT = Qn · · ·Q2Q1.

There are other ways to compute a QR-factorization, and the result is not
unique. However, if A = Q̂

′
R′ and A = Q̂

′′
R′′ are two factorizations, then

it can be shown that R′
i,: = siR

′′
i,:, where si = 1 or si = −1 and si can be

different for different values of i. This means that except for “row-wise sign”
the R-factor is unique.

A.6. Minimum norm least squares solution
Consider the least squares problem: Given F ∈R

m×n and y ∈R
m with m ≥ n,

find x∈R
n such that ‖y−Fx‖ is minimized. To analyze this, we shall use the

singular value decomposition (SVD) of F ,

F = U ΣV T =
(
Û Ŭ

) ( Σ̂ 0
0 0

) (
V̂ V̆

)T
= Û Σ̃ V̂ T , (A.23)

where the matrices U ∈R
m×m and V ∈R

n×n are orthogonal, and Σ∈R
m×n

is “diagonal”:

Σ̂ =



σ1

. . .

σp


 with σ1 ≥ · · · ≥ σp > 0 ,

and if p<n we extend with σp+1 = · · · = σn = 0. The σj are the singular
values and the number p is the rank of F , equal to the dimension of the range
of F , R(F ) ⊆ R

m, cf Definition 5.26, page 87.
The columns in U and V can be used as orthonormal bases in R

m and R
n,

respectively, and it follows from (A.23) that

F V :,j = σj U:,j , j = 1, . . . , n .

Further, letting ηj = UT
:,jy and ξj = V T

:,jx, we can write

y =

m∑

j=1

ηj U:,j , x =

n∑

j=1

ξj V :,j ,
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and we get

r = y − F x =

p∑

j=1

(ηj − σjξj)U:,j +
m∑

j=p+1

ηjU:,j .

By means of the orthonormality of the columns in U this leads to

‖r‖2 = rT r =

p∑

j=1

(ηj − σjξj)
2 +

m∑

j=p+1

η2
j , (A.24)

which is minimized when

ηj − σjξj = 0 , j = 1, . . . , p .

Thus, the least squares solution can be expressed as

x̂ =

p∑

j=1

ηj

σj
V :,j +

n∑

j=p+1

ξjV :,j .

When the matrix F is rank deficient , ie when p<n, the least squares solu-
tion has n−p degrees of freedom: ξp+1, . . . , ξn are arbitrary. Similar to the dis-
cussion around (A.24) we see that ‖x̂‖ is minimized when ξp+1 = · · · = ξn = 0.
The solution corresponding to this choice of the free parameters is the so-called
minimum norm solution,

x̂min =

p∑

j=1

βj

σj
V :,j =

p∑

j=1

UT
:,jy

σj
V :,j . (A.25)

Put another way: the four fundamental subspaces from Definition 5.26 are
spanned by the columns of U and V as follows,

R(F ) R(F T ) N (F ) N (F T )

span(Û) span(V̂ ) span(V̆ ) span(Ŭ)

Thus, the minimum norm solution is obtained by setting the arbitrary compo-
nent in N (F ) equal to zero.

We shall also use the SVD analysis to show some properties of the normal
equations as defined in Section 5.2.1 and two of the Gauss–Newton methods
from Chapter 6: It follows from (A.23) and the orthogonality of U that

A = F T F = V ΣTΣ V T =
∑p

j=1 σ
2
j V :,j V T

:,j ,

b = F T y = V ΣT UT y =
∑p

j=1 σj ηj V :,j .

This shows that the normal equations system is consistent : b ∈ R(A) =
span (V :,1, . . . ,V :,p).

Now consider the Gauss–Newton model from Section 6.1,

r(x+h) ≃ r(x) + J(x)h ,

and let J(x) = UΣV T . The step hgn is a least squares solution to J(x)h ≃
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−r(h), and in case of a rank deficient Jacobian we want the minimum norm
step, as given by the right-hand side in (A.25) with y replaced by −r(x).

In case of the Levenberg–Marquardt methodL–M method from Section 6.2
the solution to the system (JT J + µI)hlm = −JT r can be expressed as

hlm =

p∑

j=1

σjβj

σ2
j + µ

V :,j , βj = −UT
:,j

(
JT r

)
.

This shows that the step has zero component in N (J), and if µ ≪ σp, then
hlm is almost equal to the minimum norm least squares solution to J h ≃ −r.

A.7. Basic statistical concepts
Let Z be a random variable with outcomes (measured values) z1, . . . , zp. The
expected value and variance of Z are

z = E
[
Z
]
, V

[
Z
]

= E
[
(Z − z)2

]
.

z may be interpreted as the average of z1, . . . , zp for p → ∞. We also use the
formulation

Z = z + E with E
[
E
]

= 0 , V
[
E
]

= V
[
Z
]
. (A.26)

If X and Y are independent random variables and c is a constant, then

E
[
X + Y

]
= E

[
X
]
+ E

[
Y
]
,

E
[
c ·X

]
= c · E

[
X
]
,

E
[
X · Y

]
= E

[
X
]
· E
[
Y
]
.

(A.27)

Next, let Z be a random vector with m elements. We can still use (A.26),
where now zi = E

[
Zi

]
, i = 1, . . . ,m. The variance–covariance matrix is

V = V
[
Z
]

= E
[
E ET

]
. (A.28)

Note that vii = V
[
Zi

]
and vij = 0 if Zi and Zj are independent (also said to

be uncorrelated).

Now consider a continuously differentiable function u : R
n 7→ R,

u = u(z) = u(z1, . . . , zn) ,

where z is an outcome of a random vector Z. We introduce (A.26), and by
Taylor’s theorem (with the assumption that the {ej} are small) we get

u(z + e) ≃ u(z) + gT e with gj =
∂u

∂zj
(z) ,
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and from (A.27) and (A.28) we see that

E
[
u(Z)

]
= u(z) ,

V
[
u(Z)

]
= E

[
gT e eT g

]
= gT V g .

(A.29)

If the Zi are independent, then the variance simplifies to

V
[
u(Z)

]
=

n∑

j=1

(
∂u

∂zj
(z)

)2

V
[
Zj

]
. (A.30)

As an important consequence, let u = Az, where A is a constant matrix.
By applying (A.29) to ui(z) = Ai,:z we see that

E
[
u
]

= A z , V
[
u
]

= AV AT . (A.31)

A.8. Cubic splines
A cubic spline s(t) with knots τ0 < τ1 ≤ τ2 ≤ · · · ≤ τn−1 < τn is a piecewise
3rd degree polynomial. In each knot interval s(t) is a cubic, s(t) = sj(t) for
τj−1 ≤ t < τj , and the sj satisfy

sj(τj−) = sj+1(τj+)

s′j(τj−) = s′j+1(τj+)

s′′j (τj−) = s′′j+1(τj+)





j = 1, . . . , n−1 .

Therefore, if the knots are distinct, then s∈C2[τ0, τn], the space of twice con-
tinuously differentiable functions on the interval [τ0, τn]. In each open knot
interval s′′′(t) is constant, and in general s′′′(τj−) 6= s′′′(τj+). If τj is a knot
of multiplicity d> 1, then there may be a jump in s(4−d)(t) across this knot.
Especially if d ≥ 4, then s splits into two separate splines.

The spline can be represented in a number of ways. The most straight-
forward is the so-called pp (piecewise polynomial) representation,

sj(t) = aj(t− τj−1)
3 + bj(t− τj−1)

2 + cj(t− τj−1) + dj . (A.32)

This shows that the spline is given by the knots and 4n polynomial coefficients.
However, the continuity of s, s′ and s′′ across the interior knots gives 3(n−1)
conditions, and this leaves

4n− 3(n−1) = n+3 degrees of freedom .

Thus, we need n+3 linearly independent conditions in order to determine s
uniquely. If, for instance, we want to interpolate a function f with known
values f(τj) = yj , j = 0, 1, . . . , n, we can use the n+1 conditions s(τj) = yj ,
j = 0, 1, . . . , n, supplied with two boundary conditions, for instance given values
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for the end point slopes s′(τ0) and s′(τn), or given values for s′′(τ0) and s′′(τn).
A “natural cubic spline” satisfies s′′(τ0) = s′′(τn) = 0.

Another representation that is better suited for determining a fitting spline
is

s(t) =

n+3∑

j=1

cj Bj(t) , (A.33)

where the Bj are so-called B-splines . Each Bj is a cubic spline; they are
linearly independent, and their number equals the dimension of the space that
s belongs to. Therefore they form a basis of that space.

The Bj are only defined on [τ0, τn] and satisfy Bj(t) ≥ 0. They have local
support : Bj(t) is nonzero only for τj−4 < t < τj , ie in four consecutive knot
intervals. Put another way: in the interval [τj−1, τj ] the only nonzero basis
splines are Bj:j+3. They can be computed by the recurrence

Bj,0(t) = 1/(τj − τj−1) , Bi,0(t) = 0 for i 6= j ,

Bi,r+1(t) =
(t− τi−2−r)Bi−1,r(t) + (τi − t)Bi,r(t)

τi − τi−2−r
, r = 0, 1 ,

Bi(t) = (t− τi−4)Bi−1,2(t) + (τi − t)Bi,2(t) .

Omitting nonzero values, the computation can be illustrated as shown in Fig-
ure A.1. The intermediate values can be used to compute derivatives of the

Bj,0(t) PPPq
���1 Bj,1(t)

Bj+1,1(t)

PPPq
���1

PPPq
���1

Bj,2(t)

Bj+1,2(t)

Bj+2,2(t)

PPPq
���1

PPPq
���1

PPPq
���1

Bj(t)

Bj+1(t)

Bj+2(t)

Bj+3(t)

Figure A.1. Nonzero values in recurrence for B-splines.

B-splines:

B′
i(t) = 3 (Bi−1,2(t) −Bi,2(t)) ,

B′′
i (t) = 6

(
Bi−2,1(t) −Bi−1,1(t)

τi−1 − τi−4
− Bi−1,1(t) −Bi,1(t)

τi − τi−3

)
.
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A.9. LP problems
An LP (linear programming) problem (also called a linear optimization problem
has the form

minimize the linear function cT x

subject to the linear constraints Ax ≥ b ,

where c∈R
n, A∈R

m×n and b∈R
m are given, and we seek the minimizer

x̂∈R
n. The solution of this type of problem plays an important role in for in-

stance finance and operations research. There are a number of efficient methods
for solving LP problems. It is outside the scope of the present version of the
book, however, to describe them. We refer to [44, Chapters 13 – 14].
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Selected Proofs

B.1. Proof of Theorem 2.41
We shall use induction to show that for j= 1, . . . , n:

hT
i Hhj = 0 for all i < j . (B.1)

We use the notation gi = ∇f(xi) and define the search directions by hi =
xi − xi−1. Then (2.35) leads to

Hhr = gr − gr−1 , (B.2)

and Algorithm 2.37 and (2.40) combine to

hr+1 = αr+1

(
−gr + γrα

−1
r hr

)
with γr =

gT
r gr

gT
r−1gr−1

, (B.3)

and αr+1 found by exact line search. Finally, we remind the reader of the
following results from the proof of Theorem 2.39

hT
r gr = 0 and α−1

r+1h
T
r+1gr = −gT

r gr . (B.4)

Now we are ready for the induction:

For j=1, (B.1) is trivially satisfied, there is no hi vector with i<1.

Next, assume that (B.1) holds for all j= 1, . . . , k. Then it follows from the
proof of Theorem 2.39 that

gT
k hi = 0 for i=1, . . . , k . (B.5)

If we insert (B.3), we see that this implies

0 = gT
k

(
−gi−1 + γi−1α

−1
i−1hi−1

)
= −gT

k gi−1 .

Thus, the gradients at the iterates are orthogonal,

gT
k gi = 0 for i=1, . . . , k−1 . (B.6)
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Now, we will show that (B.1) also holds for j = k+1 :

α−1
k+1h

T
i H hk+1 = hT

i H
(
−gk + γkα

−1
k hk

)

= −gT
k Hhi + γkα

−1
k hT

i H hk

= −gT
k

(
gi − gi−1

)
+ γkα

−1
k hT

i H hk .

For i <k each term is zero according to (B.1) for j≤ k and (B.5).
For i= k also the term gT

k gk−1 = 0, and we get

α−1
k+1h

T
k H hk+1 = −gT

k gk + γkα
−1
k hT

k

(
gk − gk−1

)

= −gT
k gk + γk

(
0 + gT

k−1gk−1

)
= 0 .

In the first reformulation we use both relations in (B.4), and next we use the
definition of γk in (B.3).

Thus, we have shown that (B.1) also holds for j= k+1 and thereby finished
the proof. �

B.2. Proof of Theorem 3.4
The Taylor expansion of ∇f from x is

∇f(x+h) = ∇f(x) + ∇2f(x)h + η ,

where the remainder term η depends on h. For h = x̂−x we get

∇f(x) + ∇2f(x)(x̂ − x) + η = ∇f(x̂) = 0 .

From the definition of the Newton step we see that

∇f(x) + ∇2f(x)(xnew − x) = 0 ,

and by subtracting the last two equations we get

∇2f(x)(xnew − x̂) = −η .

According to Theorem 1.6 and the definition of O(·) on page 5 there exist
numbers δ1, c1> 0 such that

‖η‖ ≤ c1‖x − x̂‖2 for ‖x − x̂‖ ≤ δ1 .

Further, ∇2f(x) is nonsingular in a neighbourhood around x̂. This means that
there exist numbers δ2, c2 > 0 such that if ‖x − x̂‖ ≤ δ2, then

‖
(
∇2f(x)

)−1
η‖ ≤ c2 ‖η‖ .

Therefore, if ‖x−x̂‖ ≤ δ ≡ min{δ1, δ2}, then

‖xnew − x̂‖ ≤ c1c2‖x− x̂‖2 .

For sufficiently small δ we have c1c2‖x−x̂‖≤ c1c2δ < 1, implying that xnew is
even closer to x̂, and the ensuing iterates stay in this neighbourhood, and the
last equation shows that there is quadratic convergence as defined in (1.8). �
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B.3. Proof of (5.25)

Let the symmetric, positive semidefinite matrix A = F T F have the eigen-
solutions (λj ,vj),

Avj = λjvj , j = 1, . . . n .

All the eigenvalues are real and nonnegative, and we assume that they are
numbered so that

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 .

Further, the {vj} are orthonormal, ie vT
k vj = 0 for j 6= k and vT

k vk = 1.
Now, for any x∈R

n we have

x = ξ1v1 + · · · + ξnvn with ξj = vT
j x ,

Ax = λ1ξ1v1 + · · · + λnξnvn ,

and
‖Ax‖2

2

‖x‖2
2

=
λ2

1ξ
2
1 + · · · + λ2

nξ
2
n

ξ21 + · · · + ξ2n
≤ λ2

1

with the maximum attained for x = βv1, ie ξ2 = · · · = ξn = 0. Comparing
with the definition (5.18) we have shown that

‖A‖2 = λ1 .

Similarly we see that maxx6=0{‖x‖2/‖Ax‖2} = 1/λn (attained for x = βvn),
and by means of definition (5.17) we get

κ(A) = λ1/λn .

Next,

‖Fx‖2
2

‖x‖2
2

=
xT F T F x

xT x
=

xT A x

xT x
=

λ1ξ
2
1 + · · · + λnξ

2
n

ξ21 + · · · + ξ2n
≤ λ1 ,

leading to

‖F ‖2 =
√
λ1 =

√
‖A‖2 .

Similarly we see that maxx6=0{‖x‖2/‖Fx‖2} = 1/
√
λn , so that

κ(F ) =
√
λ1/λn =

√
κ(A) .

�

B.4. Proof of Theorem 5.28
Let v = Rx, then

F x = Q̃ R x = Q̃ v =

n∑

j=1

vjQ:,j .
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This shows that Q:,j ∈R(F ), j = 1, . . . , n. Further, because they are orthogo-
nal, these n vectors are linearly independent, and the number of them is equal
to the dimension of the subspace. Therefore the columns of Q̃ is a basis for
R(F ). This basis is orthonormal.

Next, any vector y ∈ span(Q:,n+1:m) can be expressed as

y =

m−n∑

j=1

ujQ:,n+j = Q̂ u ,

and by means of (5.21) we see that

F T y = RT Q̃T Q̂ u = RT 0u = 0 .

This shows that every column in Q̂ belongs to N (F T ), and proceeding as before
we see that they form an orthonormal basis of this nullspace.

Finally, all columns in Q form an orthonormal basis of the whole space R
m.

This implies that we can write

y =

m∑

j=1

ujQ:,j = Q u ,

and (5.29) is derived by splitting the sum after the nth element. Again (5.21)
can be used to prove the orthogonality of the two components:

ỹT ŷ = ũT Q̃T Q̂ û = ũT 0 û = 0 .
�
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