
587 Problems

[First installment; at a guess: #1 is easy; # 2 is not hard and easy once found; #3

still easy, with some thought; #4 getting more ... interesting.]

1. Slightly modifying the notation from class, define a tournament on V to
be T = (V,A) with A (for “arcs”) a subset of V ⇥ V and xy 2 A i↵ yx 62 A.
A subtournament of T is then T |W = (W,A \ (W ⇥W )) for some W ✓ V .

A tournament (V,A) is transitive if xy, yz 2 A ) xz 2 A. Define v(n)
to be the largest k such that every tournament on n vertices has a transitive
subtournament on k vertices. Show

(a) v(n) � blog2 nc+ 1 (this part not random), and

(b) v(n)  b2 log2 nc+ 1.

2. Let A1, . . . , An be events in a probability space, set µ =
P

P(Ai), and let
Ql be the event that some l independent Ai’s occur. Show P(Ql)  µl/l!.

3. A dominating set in a graph G on V is U ✓ V such that each vertex
of V \ U has at least one neighbor in U . For any n and 1 < � 2 N, find
↵ = ↵(�) as small as you can such that every G on n vertices with minimum
degree at least � has a dominating set of size at most ↵n.

[This is AS Theorem 1.2.2, but a good exercise. To make things a bit easier,
check AS for ↵ and then try to show it works.]

4. Let G = (V,E) be a graph with |V | = n and minimum degree �. Show
there is a partition V = A [ B such that each vertex of B has at least one
neighbor in each of A,B, and |A| < O(n ln �

�
).

[AS, Problem 1.7.4; note they give it a (⇤).]

[Second installment; just a little practice with calculations, as mentioned in class.]

5. (a) Use the “deletion method” to improve Erdős’ lower bound on R(k, k).

(b) Prove R(k, 2k) = ⌦(k↵k) with ↵ as large as you can make it.

(c) Bound R(3, t) and R(4, t) from below, using the deletion method and
trying to optimize the constant factors. You should get

R(3, t) > (1� o(1))2
p
2

3

�
t

ln t

�3/2
and R(4, t) > (1� o(1))3

3p6
16

�
t

ln t

�2
.
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[Third installment. Problem 7 (if new to you) is a lovely use of clever conditioning.]

6. Recall (or see AS, Sec. 1.3) that a hypergraph H on V has Property B—or
is 2-colorable—if there’s a partition V = R [B such that

A \R 6= ; 6= A \B 8A 2 H.

Let m(n) be the least size of an n-uniform H that does not have Property B,
and let g(n) be the least size of an n-uniform H, on some V (say, to avoid
irrelevancies, with m := |V | even), such that each S 2

�
V

m/2

�
contains a

member of H. (So m(n)  g(n), right?) Show

(a) g(n) = O(n22n) (so also m(n) = O(n22n);

(b) g(n) = ⌦(n2n).

[The more interesting of these is (b). The bound in (a), from Erdős 1964, is
still the best known upper bound on m(n). (See AS, Thm. 1.3.2 for a more
precise version, but note some of the e↵ort there is unnecessary for (a).)

Estimating m(n) is a classic problem. See AS, Cor. 3.5.2 for the current
lower bound (a beautiful argument that was already mentioned in class). To
appreciate that the current gap is large, it’s natural to considerm(n)2�(n�1);
so we’re asking, how large the expected number of monochromatic edges in

a random coloring (namely |H|2�(n�1)) must be to guarantee that there’s
no good coloring, and we only know that the answer is somewhere between
⌦(

p
n/ log n) and O(n2).

Hints: for (a) choose a random H; for (b) use something with deletions to
produce a bad S.]

7. Let H be a hypergraph on [n]. Let the “weight” function w : [n] ! [k] be
chosen uniformly at random, and let Q be the event that there’s a unique
edge of minimum weight; that is,

Q = {9A 2 H, w(A) < w(B) 8A 6= B 2 H}

(where the weight of A is w(A) =
P

x2A w(x)).

(a) Show P(Q) > 1� n/k.

(b) Improve this to 1� n/(2k).
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[Fourth installment.]

8. An important though trivial fact (and AS, Theorem 2.2.1): for any graph
G on vertex set V , there is a partition X [ Y of V with

|rG(X,Y )| � |G|/2

(where rG(X,Y ) = {e 2 G : e \X 6= ; 6= e \ Y } and |G| = |E(G)|).

Show that if G and H are graphs on V and min{|G|, |H|} is su�ciently
large, then there is a partition X [ Y of V with

|rG(X,Y )| � .49|G| and |rH(X,Y )| � .49|H|.

9. For i 2 [n], let vi = (xi, yi) 2 Z2 with each of |xi|, |yi| at most 2n/2/(100
p
n).

Show that there are disjoint I, J ✓ [n] with
P

i2I vi =
P

i2J vi.

[AS, 4.8.5]

10. Show that there is a positive constant c for which the following holds.
If a1, . . . , an 2 R satisfy

P
a2
i
= 1, and "1, . . . , "n are chosen uniformly and

independently from {±1}, then P(|
P

"iai|  1) � c.

[AS, 4.8.2 (with a (⇤)). The old conjecture that one can take c = 1/2 (note
this is best possible) was proved by Keller and Klein in 2020 (in 76 pages).]

11. Let Dn,p be the random digraph on [n] in which each arc is present with
probability p, independent of other choices. Show

P(Dn,p is Hamiltonian) � P(Gn,p is Hamiltonian).

[Of course for digraphs, “cycle” means directed cycle. This problem is a
beautiful use of coupling that may look easier later in the term but is a nice
challenge now. Cryptic hint: try a sequence of couplings.]
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[Fifth installment.]

12. Let Ai be independent events, Xi = 1Ai , X =
P

Xi, and P(Ai) = pi.

Show that, for a fixed positive µ, X
d

�! Po(µ) i↵

P
pi ! µ and max pi ! 0.

[As usual, Ai is really A(n)
i

and similarly for Xi, X and pi. A proof—at least
for “if”—isn’t necessarily easy to find, but should be short once found.]

13. For p = n�1 lnn, show

P(Gn,p has no isolated vertices and is not connected) ! 0.

[For a challenge you could try a di↵erent assertion from class: for n even,
P(Gn,p has no isolated vertices and no perfect matching) ! 0.]

14. For events A1, . . . , An in a probability space, with µ =
P

P(Ai),

P(some µ+ t independent Ai’s occur)  exp [�µ'(t/µ)]

 exp
⇥
�t2/(2(µ+ t/3))

⇤
,

where '(x) = (1 + x) ln(1 + x)� x for x � �1 (so '(�1) = 1).

[Cf. Problem 2. What’s interesting here is the first inequality; the second
bound (a little calculus exercise, or see p. 27 of [J LR]) is there to make
sense of the first. Hint: consider, for suitable k, the number of sequences of
k independent events that occur and use Markov. You’ll eventually want to
bound a sum by an integral.]
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[Sixth installment. First two from class; I hope all are reasonably interesting.]

15. Recall Ajtai, Komlós and Szemerédi showed:

Theorem. There is a fixed c > 0 such that if G is triangle-free on n vertices
with average degree at most d, then

↵(G) > cn log d/d.

Show that this implies the same statement for ↵(G) (with a di↵erent c).

[Hint: Consider ↵(G[Vp]) for a suitable p. This involves minor details that
can be annoying to write, but the main point is finding something that
should work.]

16. Given G and � > 0, let I be chosen from the independent sets of G
according to the hard-core measure with fugacity � (as defined in class).
Show that E|I| is increasing in �.

17. With S1, . . . , Sm ✓ S, let X1, . . . , Xd 2 S be chosen independently, with
Xi uniform from Si, and X = [Xi. Show that for any A ✓ S and i 2 S \A,

P(i 2 X|A ✓ X)  P(i 2 X). (1)

[It follows that for any B ✓ S, P(B ✓ X) 
Q

i2B P(i 2 X). Hopefully (1)
is intuitively clear, but proving it might need a little idea.]

18. [Recall that for a graph G = (V,E) and S = (Sv : v 2 V ) with Sv ✓ �, a
coloring � : V ! � is S-legal if it is proper in the usual sense and �(v) 2 Sv

8v. The list-chromatic number (or choosability), �l(G), of G is the least t
such that every S as above with |Sv| = t 8v admits an S-legal coloring.]

Show that for a bipartite G of maximum degree D, �l(G) = O(D/(logD)).

[An infuriating open problem: what can one really say here? At a guess,
the truth is ⇥(logD) (which is a lower bound; see AS, Sec. 1.6), but any

improvement on the bound in the problem would be very interesting.]
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[Seventh installment. There’s a beautiful soft proof of # 20, which maybe takes some

thought to convince oneself it works. (You might find a slight echo of a trick we’ve

used, but this problem isn’t so much related to things we’ve been doing.)]

19. Show that there is a fixed C such that if H is a t-uniform, t-regular
hypergraph on V = [n], with n even and t > 1, then there is an f : V ! {±1}
with

|f(H)|  C
p

t ln t 8H 2 H

and
f(V ) = 0.

[Easy once found.]

20. Let G = (V,E) be a finite, connected graph and let H be the graph
with vertex set V ⇥ {0, 1} and edge set

{{(x, "), (y, ")} : {x, y} 2 E, " 2 {0, 1}} [ {{(x, 0), (x, 1)} : x 2 V }.

(Thus H consists of two disjoint copies of G plus, for each v 2 V , an edge
joining the two copies of v. Such an H is often called a bunkbed graph.)

Let a, b 2 V and let (a, 0) = X0, X1 . . . be the random walk on H starting
from (a, 0). [That is, if Xi�1 = v then Xi is uniform from Nv, independent
of X0, . . . , Xi�2.] For the hitting times

S = min{t : Xt = (b, 0)} and T = min{t : Xt = (b, 1)},

show P(S  T ) � 1/2.

[You might also try showing that P(S  t) � P(T  t) (8t) is not true.

In the background here is the notorious

Bunkbed Conjecture: For percolation (at any p) on H,

P((a, 0) $ (b, 0)) � P((a, 0) $ (b, 1)).

(Percolation means we keep edges of H with probability p (independently),
and u $ v means there’s a path of retained edges between u and v.)]
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[Eighth installment.]

21. Let G = G(n, 1/2) and k = k0(n)� 3 (k0 as in class). Show that

P(↵(G) < k) = exp
h
�O

⇣
n
2

log2 n

⌘i
.

22. Recalling that �l was defined in Problem 18, show that

w.h.p. �l(Gn,1/2) ⇠ n/(2 log2 n).

[Hint: do something for a while, then do something else.]

[Ninth installment. A few more than usual, partly because it’s been a while, but also

because there are some nice problems here.]

23. For a permutation ⇡ = (⇡(1), . . . ,⇡(n)) of [n], let X(⇡) be the length
of a longest increasing subsequence in ⇡, i.e. a sequence i1 < · · · < ik with
⇡(i1) < · · · < ⇡(ik). Show that if ⇡ is a (uniform) random permutation of
[n] then X = X(⇡) is “concentrated in O(

p
n).”

[A famous result of Logan and Shepp and (independently) Vershik and Kirov
says EX ⇠ 2

p
n. Ulam had asked for the value of EX and the asymptotic

was conjectured by Hammersley. The actual concentration—a hard analytic
result—turns out to be more like n1/6.]

24. Let G be a simple d-regular graph on vertex set V and (Y0, Y1, . . .) the
usual random walk on G starting from some fixed Y0. Fix m and for v 2 V
set X(v) = |{k 2 [m] : Yk 2 Nv}|, where Nv is the neighborhood of v. Show
that for any v 2 V and � > 1,

P(|X(v)� 1
d

P
w⇠v

X(w)| > �) < 2e�(��1)2/(2m).

25. Let G be a graph with �(G) = 1000 and U a uniform subset of V =
V (G). Show that

P(�(G[U ])  400) < .01

(where, as usual, G[U ] is the subgraph induced by U).

[A-S, 7.9.2]
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26. Let G = Gn,1/2. Prove that �(G) is concentrated in O(
p
n/ log n); that

is: for any " > 0 there are a constant C and a function k(n) such that

P(k(n)  �(G)  k(n) + C
p
n/ log n) > 1� ".

[A-S, 7.9.3]

27. Show that for any (fxied) " > 0, there are infinitely many n for which

maxk P(↵(G) = k) < 1/2 + ".

[Hint: for a given k, consider the least n satisfying P(↵(Gn,1/2) � k) > 1/2.]

28. Show the Alon-Krivilevich theorem stated in class implies: for fixed
� < 1/2 and r : N ! N with r(n) < n� , there is p = p(n) for which
�(Gn,p) = r(n) a.s.
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