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Abstract: This study investigates three hypotheses about proof-based mathematics instruction: (i) 

that lectures include informal content (ways of thinking and reasoning about advanced 

mathematics that are not captured by the formal symbolic statements), (ii) that informal content is 

usually presented orally but not written on the blackboard, and (iii) that students do not record the 

informal content that is only stated orally but do if it is written on the blackboard.  We recorded 

11 80-minute mathematics lectures and photographed the notes of 96 students. We found that (i) 

informal content was common (with, on average, 32 instances per lecture), (ii) most informal 

content was presented orally, and (iii) typically students recorded written content while not 

recording oral content in their notes. 
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Collegiate proof-oriented mathematics courses are usually taught by lecture (Fukawa-

Connelly, Johnson & Keller, 2016). However, many mathematicians and mathematics educators 

view this practice as being ineffective for helping students learn advanced mathematics (e.g., 

Bressoud, 2011; Leron & Dubinsky, 1995), with students typically emerging from advanced 

mathematics courses with a poor understanding of mathematical content (e.g., Rasmussen & 

Wawro, in press) and without acquiring the skills, such as proof writing, that these courses are 

trying to teach (e.g., Stylianides, Stylianides, & Weber, in press).  

 Recently, we conducted a qualitative case study of what ideas students did and did not 

understand from a lecture that they attended (Lew, Fukawa-Connelly, Mejia-Ramos, & Weber, 

2016). In this case study, we illustrated how students might not recognize the main points that a 

instructor intended to convey during a lecture, even when these points received explicit emphasis 

in the lecture. Specifically, we studied a mathematics professor, Dr. A, teaching a real analysis 

course. We videorecorded Dr. A presenting a ten minute proof of a theorem, showed the 

videorecording to Dr. A, and asked him to identify the main content that he was conveying to the 

students. The content that Dr. A identified as important included a method for proving a 

particular class of statements. We also showed the same videorecording to six students enrolled in 

Dr. A’s course and asked them to describe the mathematical content that they felt Dr. A was 

trying to convey. The students usually did not identify the content that Dr. A had highlighted as 

important. For example, Dr. A thrice stated that if one wanted to prove that a sequence converges 

but could not establish a limit-candidate, that one could try to prove that the sequence is Cauchy. 

In our interview with him Dr. A identified this methodological heuristic as a key reason for 

presenting this proof. None of the six students mentioned this when they were asked what Dr. A 

was trying to convey after watching the videorecording of the proof in its entirety. 

We used the research literature on undergraduate mathematics education and note-taking 

to provide an account for why students might not have learned the main points of Dr. A’s lecture. 



 

 

On the one hand, research in undergraduate mathematics education suggests that, in addition to 

knowing the formal mathematics, students need access to informal ways of reasoning (e.g., 

Dennis & Confrey, 1996; Dreyfus, 1991). In the case of Dr. A’s lecture, we noted that some of 

the main points he was trying to convey (like the methodological heuristic mentioned above) 

represented Dr. A’s own informal ways of thinking about converging sequences. As such, we 

noted that in this case Dr. A’s students had been given some access to these informal ways of 

reasoning in mathematics. On the other hand, the research literature on students’ note-taking has 

found that when students do not record a instructor’s points in their notes, they usually forget 

these points (Kiewra, 1987). Some researchers have estimated that students could recall a point 

that they did not record in their notes less than five percent of the time (Einstein, Morris, & 

Smith, 1985).  

Thus, Lew et al. (2016) hypothesized that an important reason the students in the case 

study likely forgot the points that the professor identified as important was because the students 

did not record these points in their notes. In proposing an account for the students’ failure to 

comprehend the material, we connected the following three observations from the case of Dr. A: 

1) The content that Dr. A identified as important was stated orally, but not written on the 

blackboard; 2) Students’ notes usually did not include any of the content that Dr. A presented 

orally; 3) Consequently, although Dr. A intended to provide students access to the reasoning and 

heuristics he used to produce the proof, these ideas were not recorded in the students’ notes.  

In this paper we do not directly test our account for student learning, but rather the extent 

to which the observations we made about one lecture with six students generalize to a larger 

collection of lectures and students. Specifically, we investigate the extent to which the following 

phenomena are present in other lectures in advanced mathematics: 

(1) Instructors in advanced mathematics discuss informal aspects of mathematics. In 

particular, these instructors represent mathematical concepts using informal 



 

 

representations, discuss methods that can be useful for completing other mathematical 

tasks, model mathematical behavior, and give examples of the concepts. 

(2) When instructors discuss informal aspects of mathematics, they usually make their 

comments orally and do not record them on the blackboard. The blackboard is reserved 

for formal mathematics, including definitions, theorems, and proofs. 

(3) When instructors make these comments orally, students usually do not record these 

comments in their notes. 

Method 

Participants  

We recruited participants by e-mailing every instructor at three U.S. universities who 

were teaching a proof-oriented course, asking them if we could record one of their lectures and 

invite their students to participate via a researcher photographing their notes. Instructors were not 

told the purpose of the study. The professors were also asked not to let the students know that we 

would be conducting research on this lecture. Eleven different instructors agreed, and the content 

of their courses and lectures is summarized in Table 1 below. Each class had between 7 and 30 

students enrolled, with a mean of approximately 18 students per class.  All instructors gave 

lectures using a blackboard; no instructor used technology. We did not interview the instructors 

about their courses so we do not know if there was a textbook assigned to students in every 

course. However, instructors typically assign textbooks in undergraduate mathematics courses in 

the United States.   

Instructor Overarching 
Course-content 

Description of content in the lecture we recorded 

M1  Set Theory Transfinite arithmetic, cardinals  

M2  Real Analysis Infinite series, convergence, examples of sequences and series 
that do and do not converge 



 

 

M3  Number Theory Prime Number Theorem, and approximations of the prime 
number theorem 

M4 Linear Algebra Jordan Canonical Form, T-invariant subspaces 

M5  Abstract Algebra Exam problems, permuations, cycle notation, operations on 
permutations, order 

M6  Number Theory Reduced residue systems, Euler’s theorem, multiplicative 
functions, the Euler phi function 

M7  Geometry Isometries and similarities 

M8  Abstract Algebra Ideals, Principal ieals, how congruence mod n is similar to 
congruence in polynomials 

M9  Abstract Algebra Ideals, congruence modulo an ideal, well-defined operations 

M10  Real Analysis Partitions, Riemann integration, Riemann integral 

M11  Differential 
Geometry 

Gaussian Curvature, eigenvalues & eignevectors, principal 
curvature  

Table 1. Overview table of instructor, course, and content 

Data Collection  

For each instructor who agreed to participate, a member of the research team attended a 

class meeting in which an exam was not given. The researcher audiorecorded the lecture, while 

transcribing everything that the instructor wrote on the blackboard in the researcher’s notes using 

a LiveScribe pen (i.e., a pen that one can use to simultaneously audio record and take notes so 

that the timing of the notes is coordinated with the audio recording). 

Each lecture was approximately 80 minutes long. At the end of the lecture, the researcher 

made an announcement to the class inviting students to share their notes with the researcher, even 

if their notes were not of high quality, or if the student had not taken notes at all. Collectively, 96 

students, out of approximately 200, across the 11 lectures agreed and the researcher photographed 

the notes that the students took for that lecture. If the student had not taken any notes, the 

researcher simply photographed a blank page from the student’s notebook.  

Coding the Lectures 



 

 

Each lecture was transcribed. The first two authors coded the lecture for every time one 

of the following was presented: definition, proposition, proof, example, informal representation, 

mathematical method, and modeling mathematical behavior. We describe and sometimes 

illustrate each category below. Any disagreements between the two researchers were resolved by 

discussion.  

 We developed our coding scheme in an iterative fashion. For the formal mathematics, we 

chose the terms definition, proposition, and proof from early critiques of mathematics lectures 

describing them as being entirely composed of that type of content (e.g., Davis & Hersh, 1981) 

and these being common content in lectures in advanced mathematics (Weber, 2004). From the 

research on lecture instruction in advanced mathematics, we also took initial codes for example 

(e.g., Fukawa-Connelly & Newton, 2014), modeling mathematical behavior (e.g., Fukawa-

Connelly, 2012), mathematical method (e.g., Weber, 2004), and informal representation (e.g., 

Weber, 2004). Consistent with Davis and Hersh (1981), we refer to instances of definition, 

proposition, and proofs as formal mathematical content. We refer to instances of example, 

modeling mathematical behavior, mathematical method, and informal representation as informal 

mathematical content. We believe that this classification is not only consistent with the existing 

literature, but that most mathematicians and mathematics educators would categorize these 

specific types of content as being formal or informal in a similar way. Finally, we observe that 

this represents only a proper subset of types of formal and informal mathematics.  

For each code, we developed an initial description based on the extant literature. When 

difficult cases arose as we coded, we came to consensus about whether the identified text should 

be counted as an instance of a particular code. We then revised the description of the code in 

order to eliminate the ambiguity posed by the instance.  After an initial round of coding and code-

revision, the first two authors recoded each of the transcripts using the revised coding manual. 



 

 

We treated the codes as mutually exclusive and, as a result, any specific utterance by the 

instructor was assigned at most one code.  

Definition: A definition is a (set of) sentence(s) in which necessary and sufficient conditions 

to describe a concept are stated.  We coded a (set of) sentence(s) as a definition whenever either 

of the following occurred: 

1. The instructor explicitly labeled the sentence a definition by prefacing the sentence with 

the word “definition”  

2. The instructor wrote or said a term and necessary and sufficient conditions to characterize 

the construct associated with that term in succession, linked by the verb define (“we 

define a transposition to be…”) or some word or phrase that is synonymous with define 

such as “we call a transposition….” 

Proposition: A proposition is any mathematical statement that has a truth-value. We coded 

content as a proposition if one of the following two conditions occurred: 

1. The instructor explicitly called or labeled the mathematical statement as a theorem, 

proposition, corollary, or lemma. 

2. The instructor made a mathematical statement that was: (a) outside the context of proof, 

(b) not a claim of the form “object X is an example of concept C”, and (c) the statement 

concerned the new concepts that were being discussed in that lecture.  

Proof: A proof is a justification of a proposition (as defined above) that is a coherent set of 

mathematical statements, consisting of acceptable premises (e.g., definitions, axioms, shared 

knowledge) and new statements that were deduced logically from previous statements, 

culminating with the proposition being justified.  

Example:  An example was coded when the instructor chose a specific mathematical object 

as a representative of a class of mathematical objects. This includes claims of the form “object O 

is a member of category C” and instantiating a general claim that applies to a large or infinite 

class of objects with a particular object. 



 

 

Informal representation: An informal representation was coded when the instructor’s 

presentation gave meaning to the content beyond what is stated in the formal definition. We 

coded such content as occurring if one of the following conditions were met: 

1. The instructor gave a description of the content in a representation system other than the 

verbal-symbolic representation in which the definition was stated, including using a 

diagram or a metaphor. 

2. The instructor drew an analogy between the content that was stated and content that the 

student learned previously in other mathematical settings. 

3. The instructor stated the meaning or purpose of a definition, proposition, or proof using 

colloquial English that was not synonymous with that definition, proposition, or proof.1  

We illustrate this category in the context of a real analysis course in which the instructor (M2) 

was beginning to write a proof that the harmonic series diverges. He began by expressing the 

harmonic series as a histogram (presented in Figure 1 below) and added the following.  

 

Figure 1 A copy of the histogram the instructor drew 

 

                                                             
1 Although there is a continuum of formality, we aimed to be conservative and consistent in our 
coding of informal content. For instance, although describing a limit as "we can make the values 
of 𝑓(𝑥) arbitrarily close to 𝐿 (as close as we like) by taking 𝑥 to be sufficiently close to 𝑎 (on 
either side of 𝑎) but not equal to 𝑎" (Stewart, 2012, p. 50) departs from entirely formal language, 
this would not have been coded as an informal mathematical representation because the provided 
description was sufficiently synonymous with the formal statement. 



 

 

 

M2: So I’m going to draw a histogram. And I’m not going to go very far with this 

nonsense, but the histogram is a-sub-1 is 1, a-sub-2 is ½, a-sub-3, is there, now the point 

that you should notice is that the subscript goes to the right of this. So to the right of this 

is a-sub-n minus 1 and the right of this is a-sub-n. Now if I connect these, these vertices, I 

get y equals 1 over x. 

This satisfied criterion 1. M2 is expressing the concept of harmonic series, which was originally 

(and is conventionally) represented as !
!

!
!!! , visually as the area of an infinite histogram. A 

second illustration occurred in the context of M7’s geometry classroom in which the notion of 

homothety (i.e., a function on a space that dilates distances with respect to a point). 

M7: Oh and by the way, so we said if we have a homothety it sends a triangle to a similar 

triangle. We said if we have similar triangles, we can map one to the other using a 

homothety plus possibly an isometry to get things in the right place, so now we can 

redefine… Just as we redefined congruence we can redefine similarity [...] We said 

isometries are the tool for congruence, for proving congruences, homotheties are going to 

be the tool for proving similarities, and in fact there’s this theorem and it is 5.3.25, that 

goes, check it if you want, if… Sorry, how do I want to phrase it? If two triangles are 

similar and not congruent, then… 

This transcript satisfied criterion 2. M7 is relating the relationship between homothety and 

similarity to the relationship between congruence and rotation and translation. 

Mathematical method: By mathematical method, we mean any instance in which a 

instructor described a non-algorithmic approach to accomplish a general mathematical task or the 

instructor states conditions under which a particular technique is likely to be useful. To recognize 

an instance of mathematical method, we looked for instances in the text where: 

1. The instructor provided a general guideline for completing a task (such as writing a 

proof) that (a) could be applied to other tasks beyond the particular task at hand and (b) 

was not logically necessary for performing the task at hand.  

2. The instructor described a trick or heuristic for accomplishing a mathematical task. 



 

 

3. The instructor described specific conditions under which a mathematical concept or 

method was either likely to be useful or likely not to be useful. 

We illustrate this category with two examples. In an abstract algebra class, the instructor (M5) 

was addressing how one would prove the following claim that was written on the blackboard: 

Let I = {f in C| f(2) = 0}. Claim 𝐶 𝐼 ≅ 𝑅     

M5: What we wanted to do was show that [this] is isomorphic to the real numbers using 

the first isomorphism theorem. Remember, when you see this type of statement, you 

always want to think about constructing a homomorphism from C into the real numbers. 

The critical line of this transcript is “Remember when you see this type of statement, you always 

want to think about constructing a homomorphism from C into the real numbers”. We interpreted 

“this type of statement” meaning a statement of the form 𝐶
𝐼 ≅ 𝑅, where I could be any ideal. 

Here M5 is providing a general guideline (“think about constructing a homomorphism from C to 

the real numbers”) beyond this particular problem (indicated explicitly by “always” that this can 

be applied for any ideal I), although this is not strictly logically necessary (i.e., you can prove a 

quotient ring is isomorphic to another ring without invoking the first isomorphism theorem; it’s 

just usually easier and more efficient to use the first isomorphism theorem). A second example 

occurred in the linear algebra lecture in which the instructor (M4) described a method for 

showing that two square matrices are similar: 

M4: Two matrices, square matrices, with all eigenvalues in F, the field, are similar if and 

only if they have the same Jordan Canonical form. [Writes Corollary: Two square 

matrices with all eigenvalues in F are similar ⟺ they have same JC form] If you’re ever 

presented with two square matrices and you wanna know if they’re similar, that’s a hard 

question to answer unless you take this approach. Figure out their Jordan canonical forms 

and see if they’re the same. 

The first sentence was coded as a proposition because the instructor specifically called it a 

corollary in the written text. The remainder of this transcript satisfies criterion 2 and 3. The 

informal statement that M4 has given gives two additional pieces of information beyond the 

formal statement. First, the instructor has presented it as a means to accomplish a specific task, 



 

 

and, second, noted that otherwise the task would be difficult. The formal statement makes no 

mention of when it would likely be useful to apply this statement.  

Modeling Mathematical Behavior: We defined an instructor as modeling mathematical 

behavior if he or she: 

1. Made an aesthetic appraisal of a mathematical contribution that went beyond describing a 

statement as true or false and arguments as valid or invalid. This includes describing 

definitions or notational choices as “good” or proofs as “parsimonious” or “elegant”. 

2. Asked a question or began an investigation with a suggestion or an explicit indication that 

the question or investigation was a natural question to ask in a mathematical context. 

3. Described the motivation for things other than solving a mathematical problem or 

completing a mathematical task, including choosing notation, the names of concepts, 

which examples to study,  

4. Described mathematical habits or dispositions that are desirable and what habits and 

dispositions are not productive 

We illustrate this with an example from M9’s abstract algebra class in which he was discussing 

elements of the ring of polynomials: 

M9: Now, where do you expect to find the something, where do the representatives come 

from? They come from F square bracket x, and so you say to yourself, ah, this is in F 

square bracket x, but, it appears only to be a field element.  That’s the place where you 

want to exercise your mathematical judgment and, indeed, call upon notational 

conventions, and so you say, “ah” that field element, how can I interpret that as a 

polynomial? It is the constant polynomial that has that value. 

This transcript satisfies criterion 4. M9 described a habit of “exercise[ing] your mathematical 

judgment” in interpreting notation in helpful and sensible ways.  

Coding Whether Content Was Written  

In deciding whether a instructor recorded a piece of content on the blackboard or if a 

student recorded this content in their notes, we used a generous coding scheme. If the instructor 



 

 

or student wrote any aspect of this content or anything that referred to this content, this was coded 

as written. There is an important caveat. For content to be coded as written by the instructor or 

recorded in students’ notes, what was written must contain or refer to the reason that we coded 

the content the way that we did. We illustrate this with M4’s description of a theorem about 

Jordan canonical forms. 

M4: Two matrices, square matrices, with all eigenvalues in F, the field, are similar if and 

only if they have the same Jordan Canonical form. [Writes Corollary: Two square 

matrices with all eigenvalues in F are similar ⟺ they have same JC form] If you're ever 

presented with two square matrices and you want to know if they're similar, that’s a hard 

question to answer unless you take this approach. Figure out their Jordan canonical forms 

and see if they're the same. 

 
As described above, the first sentence was coded as a proposition while the second two sentences 

were coded as an instance of mathematical method. Because the instructor wrote the corollary on 

the board, we coded that as a written proposition. We coded the method as being only orally 

presented because nothing in the written text described either the difficulty of other approaches or 

when the fact stated in the corollary might be useful. Similarly, if students only wrote the 

corollary in their notes, but nothing indicating when it would be useful to apply the corollary, the 

corollary would be judged to be present in their notes, but the method would not. 

Results 

Table 2 presents the number of instances of each category, the percentage of instances 

that were written on the blackboard or only presented orally, and the percentage of possible 

instances that these comments appeared in students’ notes (for example, there could have been up 

to 411 total recorded instances of Oral Method collectively in student notes, only 5 instances were 

recorded). This was calculated by taking the number of student notes from a lecture and 

multiplying by the number of instances of that type of content in the lecture and summing across 

lectures. 



 

 

 Instances in all lectures Recorded in students’ notes 
Method Total: 65 

Oral 51  (78% of Method instances) 1%   (5 out of 411) 
Written 14 (21%) 82% (89 out of 109) 

Informal 
representatio
n 

Total: 157 
Oral 114 (73%) 2% (20 out of 935) 
Written 43 (27%) 64% (219 out of 343) 

Model math 
behavior 

Total: 69 
Oral 67 (97%) 1% (3 out of 538) 
Written 2 (3%) 100% (10 out of 10) 

Examples Total: 65 
Oral 10 (15%) 3% (3 out of 89) 
Written 55 (85%) 79% (371 out of 472) 

Definitions Total: 20 
Oral 1 (5%) 0% (0 out of 9) 
Written 19 (95%) 86% (127 out of 148) 

Propositions Total: 59 
Oral 2 (3%) 0% (0 out of 20) 
Written 57 (97%) 86% (452 out of 525) 

Proofs Total: 31 
Oral 1 (3%) 0% (0 out of 5) 
Written 30 (97%) 83% (238 out of 286) 

Table 2. Summary of content and recording in notes 
These data largely confirm the three hypotheses that we test in the paper. First, there were 356 

instances of mathematicians presenting mathematical methods, conceptual content, modeling 

mathematical behaviors, and examples across the 11 lectures, or over 32 instances per lecture on 

average, and each instructor presented at least 14 instances of informal types of content.  

Second, for method, informal representation, and modeled mathematical behaviors, most 

of these comments were made orally and not written on the blackboard. For the three non-

example categories, each instructor presented at least 75% of them orally. The presentation of 

examples was an exception. Examples usually were written on the blackboard; we believe that 

this is because this allowed the mathematics instructors to perform formal calculations and 

derivations with the examples. Third, when instructors presented their comments orally, these 



 

 

comments rarely were recorded in students’ notes. For the three non-example categories, for each 

lecture, the oral comments were collectively recorded less than 3.2% of the time. However, if 

instructors wrote their comments on the blackboard, they usually were recorded in students’ 

notes. When formal content (definitions, propositions, and proofs) was not written on the 

blackboard, the students did not record it. This suggests that what students record in their notes is 

determined primarily by the mode of presentation rather than the type of content being presented. 

 

Discussion 

 Lew et al. (2016) reported the case of a lecture that mathematicians perceived to be of 

high quality, but in which students failed to grasp the main ideas the instructor intended to 

convey. In that report, we provided theoretical explanations for why students might not 

understand this kind of lecture. One of these possible explanations was based on the literature on 

note taking and a number of observations we had made in that particular lecture. On the one hand, 

studies on note taking have found that students recall lecture content mainly if that content is 

recorded in their notes. On the other hand, in that case study we noticed that students only 

recorded in their notes what was written on the blackboard, while the instructor only stated orally 

the main ideas of the lecture. In the current study we have confirmed that these observations 

generalize to a larger set of mathematics lectures, and that these student and instructor behaviors 

are not idiosyncratic to that one observed lecture. Thus, although our explanation remains one of 

many other possible explanations for why students might not understand mathematics lectures, 

these new findings offer support for the generality and validity of the observations substantiating 

that explanation, namely: 

(1) When mathematics instructors present formal mathematics in their advanced mathematics 

lectures, they usually write this formal mathematics on the blackboard. 



 

 

(2) Instructors present informal content, including examples, informal representations, 

mathematical methods, and modeling mathematical behavior during their advanced mathematics 

lectures, at least some of the time. 

(3) Instructors usually write examples while stating aloud any informal representations or 

mathematical methods, and orally modeling mathematical behaviors. 

(4) Regardless of type of content, students usually record what is written on the blackboard in 

their notes, but not what is only stated orally. 

This study did not allow us to determine the importance that the instructors placed on the formal 

and informal mathematics. However, prior studies with mathematicians indicate that they believe 

it important to help students develop intuitive understandings, proof-writing skills, and modeling 

mathematical behavior (e.g., Alcock, 2010; Fukawa-Connelly, 2012; Lew et al., 2016; Weber, 

2004, 2012). This study suggests that these important ideas are typically presented orally and are 

not usually recorded in students’ notes, which is one reason that they may not be learned or are 

quickly forgotten. We note that the distinction we have made between formal and informal was in 

response to the literature. We do not make any claims about the quality of the exposure to the 

informal content that the instructors offered to the students; we only note the presence of it. 

 Although we attempted to test the generality of phenomena observed in a case study 

(Lew et al., 2016), our sample of 11 mathematicians remains modest and the mathematicians who 

agreed to participate may represent a biased sample. Given the large effects that we observed, we 

hypothesize that the trends that we observed would still be present with a larger sample, but more 

research is needed to confirm this. Moreover, there are two unknowns that this study did not 

address but that are opportunities for future research. We do not know why mathematics 

instructors usually did not write their informal mathematics on the blackboard or why students 

did not record their instructors’ oral comments. More research on both groups’ rationality for 

these behaviors would be an important topic for future research.  
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